Comparative Chloroplast Genomes and Phylogenetic Relationships of True Mangrove Species Brownlowia tersa and Brownlowia argentata (Malvaceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, DNA Extraction, and Sequencing
2.2. Chloroplast Genome Assembly and Annotation
2.3. RNA Sequencing and RNA Editing Site Identification
2.4. Chloroplast Genome Comparative Analysis
2.5. Nucleotide Diversity Analysis
2.6. Analysis of Simple Sequence Repeats and Dispersed Repeats
2.7. Phylogenetic Analysis
2.8. Gene Selective Pressure Analysis
3. Results
3.1. Characteristics of B. tersa and B. argentata Chloroplast Genomes
3.2. Comparative Chloroplast Genomes
3.3. RNA Editing Sites in Chloroplast Genes of Brownlowia
3.4. Simple Sequence Repeats and Dispersed Repeats
3.5. Nucleotide Diversity
3.6. Phylogenetic Relationships
3.7. Selective Pressure Genes
4. Discussion
4.1. Chloroplast Genome Structure and Evolution in the Genus Brownlowia
4.2. RNA Editing in Brownlowia Species
4.3. SSRs, Dispersed Repeats, and Nucleotide Diversity
4.4. Phylogenetic Relationships of Malvaceae
4.5. Selective Pressure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christenhusz, M.J.M.; Byng, J.W. The Number of Known Plants Species in the World and Its Annual Increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef]
- Bayer, C.; Fay, M.F.; Bruijn, A.Y.; Savolainen, V.; Morton, C.M.; Kubitzki, K.; Alverson, W.S.; Chase, M.W. Support for an Expanded Family Concept of Malvaceae within a Recircumscribed Order Malvales: A Combined Analysis of Plastid atpB and rbcL DNA Sequences. Bot. J. Linn. Soc. 1999, 129, 267–303. [Google Scholar] [CrossRef]
- Tomlinson Barry, P. The Botany of Mangroves, 2nd ed.; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Chung, R.C.K.; Soepadmo, E. Brownlowia latifiana (Malvaceae-Brownlowioideae), a New Species from Terengganu, Peninsular Malaysia. Phytotaxa 2017, 298, 134–146. [Google Scholar] [CrossRef]
- Mannan, M.A.; Rahman, M.F.; Farhad, M.; Khan, H. Brownlowia tersa (Linn.) Kosterm: A Review of Traditional Uses, Phytochemistry and Pharmacology. J. Med. Plants Stud. 2019, 7, 34–37. [Google Scholar]
- Kathiresan, K.; Salmo, S.G., III; Fernando, E.S.; Peras, J.R.; Sukardjo, S.; Miyagi, T.; Ellison, J.; Koedam, N.E.; Wang, Y.; Primavera, J.; et al. Brownlowia tersa, The IUCN Red List of Threatened Species; IUCN: Gland, Switzerland, 2010; p. e.T178835A7621783. [Google Scholar]
- Duke, N.; Kathiresan, K.; Salmo, S.G., III; Fernando, E.S.; Peras, J.R.; Sukardjo, S.; Miyagi, T.; Ellison, J.; Koedam, N.E.; Wang, Y.; et al. Brownlowia argentata, The IUCN Red List of Threatened Species; IUCN: Gland, Switzerland, 2010; p. e.T178848A7625926. [Google Scholar]
- Atanu, M.S.H.; Ashab, I.; Howlader, M.S.I.; Sarkar, M.R.; Mahbub, K.M.; Lina, S.M.M. Phytochemical, Anti-Bacterial, Antidiarrhoeal and Analgesic Activity of Brownlowia tersa (Linn.). Int. J. Pharm. Biomed. Reserch 2012, 3, 157–161. [Google Scholar]
- Hossain, H.; Jahan, I.A.; Howlader, S.I.; Shilpi, J.A.; Dey, S.K.; Hira, A.; Ahmed, A. Anti-Inflammatory and Antioxidant Activities of Ethanolic Leaf Extract of Brownlowia tersa (L.) Kosterm. Orient. Pharm. Exp. Med. 2013, 13, 181–189. [Google Scholar] [CrossRef]
- Macintosh, D.J.; Suárez, E.L.; Sidik, F.; Thinh, P.T.; Polgar, G.; Nightingale, M.; Valderrábano, M.; Macintosh, D.J.; Suárez, E.L.; Sidik, F.; et al. Mangroves of the Sunda Shelf. In IUCN Red List of Ecosystems; IUCN: Gland, Switzerland, 2023; pp. 1–24. [Google Scholar]
- Polidoro, B.A.; Carpenter, K.E.; Collins, L.; Duke, N.C.; Ellison, A.M.; Ellison, J.C.; Farnsworth, E.J.; Fernando, E.S.; Kathiresan, K.; Koedam, N.E.; et al. The Loss of Species: Mangrove Extinction Risk and Geographic Areas of Global Concern. PLoS ONE 2010, 5, e10095. [Google Scholar] [CrossRef]
- Cai, J.; Ma, P.F.; Li, H.T.; Li, D.Z. Complete Plastid Genome Sequencing of Four Tilia Species (Malvaceae): A Comparative Analysis and Phylogenetic Implications. PLoS ONE 2015, 10, e0142705. [Google Scholar] [CrossRef]
- Abdullah; Mehmood, F.; Shahzadi, I.; Waseem, S.; Mirza, B.; Ahmed, I.; Waheed, M.T. Chloroplast Genome of Hibiscus rosa-sinensis (Malvaceae): Comparative Analyses and Identification of Mutational Hotspots. Genomics 2020, 112, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Shearman, J.R.; Sonthirod, C.; Naktang, C.; Sangsrakru, D.; Yoocha, T.; Chatbanyong, R.; Vorakuldumrongchai, S.; Chusri, O.; Tangphatsornruang, S.; Pootakham, W. Assembly of the Durian Chloroplast Genome Using Long PacBio Reads. Sci. Rep. 2020, 10, 15980. [Google Scholar] [CrossRef]
- Shi, C.; Han, K.; Li, L.; Seim, I.; Lee, S.M.Y.; Xu, X.; Yang, H.; Fan, G.; Liu, X. Complete Chloroplast Genomes of 14 Mangroves: Phylogenetic and Comparative Genomic Analyses. BioMed Res. Int. 2020, 2020, 8731857. [Google Scholar] [CrossRef] [PubMed]
- Cvetkovic, T.; Areces-Berazain, F.; Hinsinger, D.D.; Thomas, D.C.; Wieringa, J.J.; Ganesan, S.K.; Strijk, J.S. Phylogenomics Resolves Deep Subfamilial Relationships in Malvaceae s.l. G3 Genes Genomes Genet. 2021, 11, jkab136. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhu, Y.; Du, Z.; Bao, P. The Complete Chloroplast Genome Sequence of the Mangrove Associate Species Talipariti tiliaceum. Mitochondrial DNA Part B Resour. 2021, 6, 2376–2378. [Google Scholar] [CrossRef]
- Wu, M.; He, L.; Ma, G.; Zhang, K.; Yang, H.; Yang, X. The Complete Chloroplast Genome of Diplodiscus trichospermus and Phylogenetic Position of Brownlowioideae within Malvaceae. BMC Genom. 2023, 24, 571. [Google Scholar] [CrossRef]
- Yoocha, T.; Kongkachana, W.; Sonthirod, C.; Naktang, C.; Phetchawang, P.; Yamprasai, S.; Tangphatsornruang, S.; Pootakham, W. The Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Heritiera fomes Buch.-Ham. (Malvales: Sterculiaceae. Mitochondrial DNA Part B Resour. 2023, 8, 932–935. [Google Scholar] [CrossRef]
- Chen, Z.; Grover, C.E.; Li, P.; Wang, Y.; Nie, H.; Zhao, Y.; Wang, M.; Liu, F.; Zhou, Z.; Wang, X.; et al. Molecular Evolution of the Plastid Genome during Diversification of the Cotton Genus. Mol. Phylogene. Evol. 2017, 112, 268–276. [Google Scholar] [CrossRef]
- Patwardhan, A.; Ray, S.; Roy, A. Molecular Markers in Phylogenetic Studies-a Review. J. Phylogene. Evol. Biol. 2014, 2, 131. [Google Scholar] [CrossRef]
- Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast Genomes: Diversity, Evolution, and Applications in Genetic Engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef]
- Tangphatsornruang, S.; Sangsrakru, D.; Chanprasert, J.; Uthaipaisanwong, P.; Yoocha, T.; Jomchai, N.; Tragoonrung, S. The Chloroplast Genome Sequence of Mungbean (Vigna radiata) Determined by High-Throughput Pyrosequencing: Structural Organization and Phylogenetic Relationships. DNA Res. 2010, 17, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Ruang-areerate, P.; Yoocha, T.; Kongkachana, W.; Phetchawang, P.; Maknual, C.; Meepol, W.; Jiumjamrassil, D.; Pootakham, W.; Tangphatsornruang, S. Comparative Analysis and Phylogenetic Relationships of Ceriops Species (Rhizophoraceae) and Avicennia lanata (Acanthaceae): Insight into the Chloroplast Genome Evolution between Middle and Seaward Zones of Mangrove Forests. Biology 2022, 11, 383. [Google Scholar] [CrossRef] [PubMed]
- Ruang-areerate, P.; Kongkachana, W.; Naktang, C.; Sonthirod, C.; Narong, N.; Jomchai, N.; Maprasop, P.; Maknual, C.; Phormsin, N.; Shearman, J.R.; et al. Complete Chloroplast Genome Sequences of Five Bruguiera Species (Rhizophoraceae): Comparative Analysis and Phylogenetic Relationships. PeerJ 2021, 9, e12268. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, P.; Zhang, Y.; Sun, H.; Wang, Y.; Gao, Z.; Liu, X. Chloroplast Genome of Calamus tetradactylus Revealed Rattan Phylogeny. BMC Genom. Data 2024, 25, 34. [Google Scholar] [CrossRef]
- Wang, O.; Chin, R.; Cheng, X.; Yan Wu, M.K.; Mao, Q.; Tang, J.; Sun, Y.; Anderson, E.; Lam, H.K.; Chen, D.; et al. Efficient and Unique Cobarcoding of Second-Generation Sequencing Reads from Long DNA Molecules Enabling Cost-Effective and Accurate Sequencing, Haplotyping, and de Novo Assembly. Genome Res. 2019, 29, 798–808. [Google Scholar] [CrossRef]
- Doyle, J. Molecular Techniques in Taxonomy: DNA Protocols for Plants; Hewitt, G.M., Johnston, A.W.B., Young, J.P.W., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; Volume 57, ISBN 978-3-642-83964-1. [Google Scholar]
- Jin, J.J.; Yu, W.B.; Yang, J.B.; Song, Y.; DePamphilis, C.W.; Yi, T.S.; Li, D.Z. GetOrganelle: A Fast and Versatile Toolkit for Accurate de Novo Assembly of Organelle Genomes. Genome Biol. 2020, 21, 1–31. [Google Scholar] [CrossRef]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq—Versatile and Accurate Annotation of Organelle Genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef]
- Laslett, D.; Canback, B. ARAGORN, a Program to Detect tRNA Genes and tmRNA Genes in Nucleotide Sequences. Nucleic Acids Res. 2004, 32, 11–16. [Google Scholar] [CrossRef]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. TRNAscan-SE 2.0: Improved Detection and Functional Classification of Transfer RNA Genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef]
- Greiner, S.; Lehwark, P.; Bock, R. OrganellarGenomeDRAW (OGDRAW) Version 1.3.1: Expanded Toolkit for the Graphical Visualization of Organellar Genomes. Nucleic Acids Res. 2019, 47, W59–W64. [Google Scholar] [CrossRef]
- Pootakham, W.; Naktang, C.; Kongkachana, W.; Sonthirod, C.; Yoocha, T.; Sangsrakru, D.; Jomchai, N.; U-thoomporn, S.; Romyanon, K.; Toojinda, T.; et al. De Novo Chromosome-Level Assembly of the Centella asiatica Genome. Genomics 2021, 113, 2221–2228. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows-Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Thorvaldsdóttir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-Performance Genomics Data Visualization and Exploration. Brief. Bioinform. 2013, 14, 178–192. [Google Scholar] [CrossRef]
- Brudno, M.; Do, C.B.; Cooper, G.M.; Kim, M.F.; Davydov, E.; Green, E.D.; Sidow, A.; Batzoglou, S. LAGAN and Multi-LAGAN: Efficient Tools for Large-Scale Multiple Alignment of Genomic DNA. Genome Res. 2003, 13, 721–731. [Google Scholar] [CrossRef]
- Li, H.; Guo, Q.; Xu, L.; Gao, H.; Liu, L.; Zhou, X. CPJSdraw: Analysis and Visualization of Junction Sites of Chloroplast Genomes. PeerJ 2023, 11, e15326. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sanchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sanchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Thiel, T.; Michalek, W.; Varshney, R.K.; Graner, A. Exploiting EST Databases for the Development and Characterization of Gene-Derived SSR-Markers in Barley (Hordeum vulgare L.). Theor. Appl. Genet. 2003, 106, 411–422. [Google Scholar] [CrossRef]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The Manifold Applications of Repeat Analysis on a Genomic Scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML Version 8: A Tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, Y.; Zhang, Z.; Zhu, J.; Yu, J. KaKs_Calculator 2.0: A Toolkit Incorporating Gamma-Series Methods and Sliding Window Strategies. Genom. Proteom. Bioinform. 2010, 8, 77–80. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Yang, Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef]
- Yang, Z.; Nielsen, R. Codon-Substitution Models for Detecting Molecular Adaptation at Individual Sites along Specific Lineages. Mol. Biol. Evol. 2002, 19, 908–917. [Google Scholar] [CrossRef]
- Asaf, S.; Khan, A.L.; Numan, M.; Al-Harrasi, A. Mangrove Tree (Avicennia marina): Insight into Chloroplast Genome Evolutionary Divergence and Its Comparison with Related Species from Family Acanthaceae. Sci. Rep. 2021, 11, 3586. [Google Scholar] [CrossRef]
- Kim, K.-J.; Lee, H.-L. Complete Chloroplast Genome Sequences from Korean Ginseng (Panax schinseng Nees) and Comparative Analysis of Sequence Evolution among 17 Vascular Plants. DNA Res. 2004, 11, 247–261. [Google Scholar] [CrossRef]
- Gichira, A.W.; Avoga, S.; Li, Z.; Hu, G.; Wang, Q.; Chen, J. Comparative Genomics of 11 Complete Chloroplast Genomes of Senecioneae (Asteraceae) Species: DNA Barcodes and Phylogenetics. Bot. Stud. 2019, 60, 17. [Google Scholar] [CrossRef]
- Ichinose, M.; Sugita, M. RNA Editing and Its Molecular Mechanism in Plant Organelles. Genes 2017, 8, 5. [Google Scholar] [CrossRef]
- Chu, D.; Wei, L. The Chloroplast and Mitochondrial C-to-U RNA Editing in Arabidopsis thaliana Shows Signals of Adaptation. Plant Direct 2019, 3, e00169. [Google Scholar] [CrossRef]
- Mohammed, T.; Firoz, A.; Ramadan, A.M. RNA Editing in Chloroplast: Advancements and Opportunities. Curr. Issues Mol. Biol. 2022, 44, 5593–5604. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Liu, D.; Li, Z.A.; Molloy, D.P.; Luo, Z.F.; Su, Y.; Li, H.O.; Liu, Q.; Wang, R.Z.; Xiao, L.T. The PPR Protein RARE1-Mediated Editing of Chloroplast accD Transcripts Is Required for Fatty Acid Biosynthesis and Heat Tolerance in Arabidopsis. Plant Commun. 2023, 4, 100461. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Wang, Y.; Wu, J.; Han, X.; Gu, X.; Lu, T.; Zhang, Z. The RNA Editing Factor DUA1 Is Crucial to Chloroplast Development at Low Temperature in Rice. New Phytol. 2019, 221, 834–849. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Wu, S.; Jiang, Y.; Zhang, L.; Tang, M.; Xiao, G.; Yu, J. GhYGL1d, a Pentatricopeptide Repeat Protein, Is Required for Chloroplast Development in Cotton. BMC Plant Biol. 2019, 19, 350. [Google Scholar] [CrossRef]
- Jobson, R.W.; Qiu, Y.L. Did RNA Editing in Plant Organellar Genomes Originate under Natural Selection or through Genetic Drift? Biol. Direct 2008, 3, 3–43. [Google Scholar] [CrossRef]
- He, P.; Huang, S.; Xiao, G.; Zhang, Y.; Yu, J. Abundant RNA Editing Sites of Chloroplast Protein-Coding Genes in Ginkgo biloba and an Evolutionary Pattern Analysis. BMC Plant Biol. 2016, 16, 257. [Google Scholar] [CrossRef]
- Zhang, A.; Jiang, X.; Zhang, F.; Wang, T.; Zhang, X. Dynamic Response of RNA Editing to Temperature in Grape by RNA Deep Sequencing. Funct. Integr. Genom. 2020, 20, 421–432. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; He, M.; Wei, Z.; Qin, X.; Wu, Y.; Jiang, Q.; Xiao, Y.; Yang, Y.; Wang, W.; et al. Comparative Chloroplast Genome Analyses Provide Insights into Evolutionary History of Rhizophoraceae Mangroves. PeerJ 2023, 11, e16400. [Google Scholar] [CrossRef]
- Wang, J.H.; Moore, M.J.; Wang, H.; Zhu, Z.X.; Wang, H.F. Plastome Evolution and Phylogenetic Relationships among Malvaceae Subfamilies. Gene 2021, 765, 145103. [Google Scholar] [CrossRef]
- Hirose, T.; Sugiura, M. Both RNA Editing and RNA Cleavage Are Required for Translation of Tobacco Chloroplast ndhD MRNA: A Possible Regulatory Mechanism for the Expression of a Chloroplast Operon Consisting of Functionally Unrelated Genes. EMBO J. 1997, 16, 6804–6811. [Google Scholar] [CrossRef]
- Ruwe, H.; Castandet, B.; Schmitz-Linneweber, C.; Stern, D.B. Arabidopsis Chloroplast Quantitative Editotype. FEBS Lett. 2013, 587, 1429–1433. [Google Scholar] [CrossRef]
- Xiong, Y.; Fang, J.; Jiang, X.; Wang, T.; Liu, K.; Peng, H.; Zhang, X.; Zhang, A. Genome-Wide Analysis of Multiple Organellar RNA Editing Factor (MORF) Family in Kiwifruit (Actinidia chinensis) Reveals Its Roles in Chloroplast RNA Editing and Pathogens Stress. Plants 2022, 11, 146. [Google Scholar] [CrossRef]
- Zandueta-Criado, A.; Bock, R. Surprising Features of Plastid ndhD Transcripts: Addition of Non-Encoded Nucleotides and Polysome Association of MRNAs with an Unedited Start Codon. Nucleic Acids Res. 2004, 32, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, Y.; Chen, Y.; Gul, J.; Zhang, J.; Liu, Q.; Chen, Q. Complete Chloroplast Genome Sequence of the Mangrove Species Kandelia obovata and Comparative Analyses with Related Species. PeerJ 2019, 7, e7713. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Liao, X.; Chen, S.; Liao, B.; Guo, Y.; Cheng, R.; Xiao, S.; Hu, H.; Chen, J.; Pei, J.; et al. A Comparative Analysis of the Chloroplast Genomes of Four Polygonum Medicinal Plants. Front. Genet. 2022, 13, 764534. [Google Scholar] [CrossRef]
- Alzahrani, D.A.; Albokhari, E.J.; Yaradua, S.S.; Abba, A. Comparative Analysis of Chloroplast Genomes of Four Medicinal Capparaceae Species: Genome Structures, Phylogenetic Relationships and Adaptive Evolution. Plants 2021, 10, 1229. [Google Scholar] [CrossRef]
- Gou, W.; Jia, S.B.; Price, M.; Guo, X.L.; Zhou, S.D.; He, X.J. Complete Plastid Genome Sequencing of Eight Species from Hansenia, Haplosphaera and Sinodielsia (Apiaceae): Comparative Analyses and Phylogenetic Implications. Plants 2020, 9, 1523. [Google Scholar] [CrossRef]
- Alverson, W.S.; Whitlock, B.A.; Nyffeler, R.; Bayer, C.; Baum, D.A. Phylogeny of the Core Malvales: Evidence from ndhF Sequence Data. Am. J. Bot. 1999, 86, 1474–1486. [Google Scholar] [CrossRef]
- Nyffeler, R.; Bayer, C.; Alverson, W.S.; Yen, A.; Whitlock, B.A.; Chase, M.W.; Baum, D.A. Phylogenetic Analysis of the Malvadendrina Clade (Malvaceae s.l.) Based on Plastid DNA Sequences. Org. Divers. Evol. 2005, 5, 109–123. [Google Scholar] [CrossRef]
- Hernández-Gutiérrez, R.; Magallón, S. The Timing of Malvales Evolution: Incorporating Its Extensive Fossil Record to Inform about Lineage Diversification. Mol. Phylogene. Evol. 2019, 140, 106606. [Google Scholar] [CrossRef]
- Whitlock, B.A.; Bayer, C.; Baum, D.A. Phylogenetic Relationships and Floral Evolution of the Byttnerioideae (‘Sterculiaceae’ or Malvaceae s.l.) Based on Sequences of the chloroplast Gene, ndhF. Syst. Bot. 2001, 26, 420–437. [Google Scholar]
- Le Péchon, T.; Gigord, L.D.B. On the Relevance of Molecular Tools for Taxonomic Revision in Malvales, Malvaceae s.l., and Dombeyoideae. Methods Mol. Biol. 2014, 1115, 337–363. [Google Scholar] [CrossRef] [PubMed]
- Millen, R.S.; Olmstead, R.G.; Adams, K.L.; Palmer, J.D.; Lao, N.T.; Heggie, L.; Kavanagh, T.A.; Hibberd, J.M.; Gray, J.C.; Morden, C.W.; et al. Many Parallel Losses of infA from Chloroplast DNA during Angiosperm Evolution with Multiple Independent Transfers to the Nucleus. Plant Cell 2001, 13, 645–658. [Google Scholar] [CrossRef]
- Krawczyk, K.; Sawicki, J. The Uneven Rate of the Molecular Evolution of Gene Sequences of DNA-Dependent RNA Polymerase I of the Genus Lamium L. Int. J. Mol. Sci. 2013, 14, 11376–11391. [Google Scholar] [CrossRef]
- Zeng, S.; Zhou, T.; Han, K.; Yang, Y.; Zhao, J.; Liu, Z.L. The Complete Chloroplast Genome Sequences of Six Rehmannia Species. Genes 2017, 8, 103. [Google Scholar] [CrossRef]
- Dong, W.L.; Wang, R.N.; Zhang, N.Y.; Fan, W.B.; Fang, M.F.; Li, Z.H. Molecular Evolution of Chloroplast Genomes of Orchid Species: Insights into Phylogenetic Relationship and Adaptive Evolution. Int. J. Mol. Sci. 2018, 19, 716. [Google Scholar] [CrossRef]
- Gao, L.Z.; Liu, Y.L.; Zhang, D.; Li, W.; Gao, J.; Liu, Y.; Li, K.; Shi, C.; Zhao, Y.; Zhao, Y.J.; et al. Evolution of Oryza Chloroplast Genomes Promoted Adaptation to Diverse Ecological Habitats. Commun. Biol. 2019, 2, 278. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Y.; Wan, Y.; Li, Z.; Ma, H. Genetic Diversity of Phyllanthus Emblica from Two Different Climate Type Areas. Front. Plant Sci. 2020, 11, 580812. [Google Scholar] [CrossRef]
Characteristics | Brownlowia tersa | Brownlowia argentata |
---|---|---|
Genome size (bp) | 159,478 | 159,510 |
LSC length (bp) | 88,394 | 88,435 |
SSC length (bp) | 19,984 | 19,985 |
IR length (bp) | 25,550 | 25,545 |
GC content (%) Genome | 37.05 | 37.05 |
LSC | 34.89 | 34.89 |
SSC | 31.35 | 31.36 |
IR | 43.01 | 43.01 |
Coding regions | ||
No. of total genes | 130 | 130 |
No. of protein coding genes | 84 | 84 |
No. of rRNAs | 8 | 8 |
No. of tRNAs | 37 | 37 |
No. of duplicated genes in IR | 16 | 16 |
No. of pseudogenes | 1 (ψinfA) | 1 (ψinfA) |
Category | Gene Groups | Gene Name |
---|---|---|
Photosynthesis | Subunits of photosystem I | psaA, psaB, psaC, psaI, psaJ |
Subunits of photosystem II | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, | |
psbK, psbL, psbM, psbN, psbT, psbZ | ||
Subunits of NADH dehydrogenase | ndhA *, ndhB * (×2), ndhC, ndhD, ndhE, ndhF, ndhG, | |
ndhH, ndhI, ndhJ, ndhK | ||
Subunits of cytochrome b/f complex | petA, petB *, petD *, petG, petL, petN | |
Subunits of ATP synthase | atpA, atpB, atpE, atpF *, atpH, atpI | |
Large subunit of rubisco | rbcL | |
Self-replication | Large subunit of ribosome | rpl2 * (×2), rpl14, rpl16 *, rpl20, rpl22, rpl23 (×2), rpl32, |
rpl33, rpl36 | ||
Small subunit of ribosome | rps2, rps3, rps4, rps7 (×2), rps8, rps11, rps12 ** (×2), | |
rps14, rps15, rps16 *, rps18, rps19 | ||
DNA-dependent RNA polymerase | rpoA, rpoB, rpoC1 *, rpoC2 | |
Ribosomal RNAs | rrn4.5 (×2), rrn5 (×2), rrn16 (×2), rrn23 (×2) | |
Transfer RNAs | trnA-UGC * (×2), trnC-GCA, trnD-GUC, trnE-UUC, | |
trnF-GGA, trnG-GCC *, trnH-GUG, trnI-GAC * (×2), | ||
trnK-UUU, trnL-CAA (×2), trnL-UAA *, trnM-CAU (×2), | ||
trnN-GUU (×2), trnP-UGG, trnQ-UUG, trnR-ACG (×2), | ||
trnR-ACG, trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, | ||
trnT-GGU, trnT-UGU, trnV-GAC (×2), trnV-UAC, | ||
trnW-CCA, trnP-UGG, trnQ-UUG | ||
Other genes | Maturase | matK |
Protease | clpP ** | |
Envelope membrane protein | cemA | |
Acetyl-CoA carboxylase | accD | |
C-type cytochrome synthesis gene | ccsA | |
Translation initiation factor | ψinfA | |
Genes of unknown | Proteins of unknown function | ycf1, ycf2 (×2), ycf3 **, ycf4 |
Gene Name | Editing Position in cp Genome | Editing Position in cp Gene | Editing Position in Codon | Codon Change | Amino Acid Change | Editing Efficiency |
---|---|---|---|---|---|---|
matK | 2560 | 514 | 1 | CAC to UAC | H to Y | 47% |
3093 | 237 | 2 | UCU to UUU | S to F | 45% | |
3163 | 214 | 1 | CAU to UAU | H to Y | 32% | |
3340 | 155 | 1 | CAC to UAC | H to Y | 57% | |
atpA | 10,577 | 472 | 3 | UUC to UUU | F to F | 42% |
10,845 | 383 | 2 | UCA to UUA | S to L | 80% | |
11,079 | 305 | 2 | UCA to UUA | S to L | 93% | |
atpE | 13,321 | 31 | 2 | CCU to CUU | P to L | 93% |
atpI | 15,616 | 210 | 2 | UCA to UUA | S to L | 98% |
rps2 | 16,924 | 83 | 2 | UCG to UUG | S to L | 48% |
17,038 | 45 | 2 | ACA to AUA | T to I | 50% | |
rpoC1 | 23,320 | 163 | 2 | UCA to UUA | S to L | 46% |
24,534 | 14 | 2 | UCA to UUA | S to L | 34% | |
rpoB | 27,248 | 189 | 2 | UCG to UUG | S to L | 40% |
27,263 | 184 | 2 | UCA to UUA | S to L | 37% | |
psbZ | 37,905 | 17 | 2 | UCA to UUA | S to L | 95% |
rps14 | 39,067 | 50 | 2 | UCA to UUA | S to L | 92% |
39,136 | 27 | 2 | UCA to UUA | S to L | 84% | |
ndhC | 53,716 | 108 | 2 | UCA to UUA | S to L | 74% |
accD | 62,029 | 266 | 2 | UCG to UUG | S to L | 69% |
62,620 | 463 | 2 | CCA to CUA | P to L | 94% | |
62,638 | 469 | 2 | CCU to CUU | P to L | 95% | |
psaI | 63,525 | 28 | 2 | UCU to UUU | S to F | 79% |
psbJ | 68,099 | 20 | 2 | CCU to CUU | P to L | 94% |
psbF | 68,484 | 26 | 2 | UCU to UUU | S to F | 86% |
petL | 69,593 | 2 | 2 | CCU to CUU | P to L | 83% |
rps18 | 72,056 | 74 | 2 | UCG to UUG | S to L | 16% |
rpl20 | 72,481 | 103 | 2 | UCA to UUA | S to L | 19% |
clpP | 73,890 | 187 | 1 | CAU to UAU | H to Y | 95% |
psbN | 78,377 | 10 | 2 | UCU to UUU | S to F | 97% |
petB | 79,693 | 4 | 3 | GUC to GUU | V to V | 79% |
80,099 | 140 | 1 | CGG to UGG | R to W | 95% | |
rpoA | 82,180 | 277 | 2 | UCA to UUA | S to L | 45% |
82,810 | 67 | 2 | UCU to UUU | S to F | 23% | |
rpl23 | 90,239 and 157,707 | 30 | 2 | UCA to UUA | S to L | 31% |
90,257 and 157,689 | 24 | 2 | UCU to UUU | S to F | 58% | |
ndhB | 99,260 and 148,686 | 494 | 2 | CCA to CUA | P to L | 78% |
99,486 and 148,460 | 419 | 1 | CAU to UAU | H to Y | 68% | |
99,905 and 148,041 | 279 | 2 | UCA to UUA | S to L | 43% | |
99,911 and 148,035 | 277 | 2 | UCG to UUG | S to L | 73% | |
100,678 and 147,268 | 249 | 2 | UCU to UUU | S to F | 39% | |
100,687 and 147,259 | 246 | 2 | CCA to CUA | P to L | 35% | |
100,813 and 147,133 | 204 | 2 | UCA to UUA | S to L | 51% | |
100,838 and 147,108 | 196 | 1 | CAU to UAU | H to Y | 40% | |
100,882 and 147,064 | 181 | 2 | ACG to AUG | T to M | 60% | |
100,957and 146,989 | 156 | 2 | CCA to CUA | P to L | 67% | |
101,275 and 146,671 | 50 | 2 | UCA to UUA | S to L | 79% | |
ndhF | 115,941 | 97 | 2 | UCA to UUA | S to L | 55% |
ndhD | 120,208 | 437 | 2 | UCA to UUA | S to L | 76% |
120,220 | 433 | 2 | UCA to UUA | S to L | 93% | |
120,640 | 293 | 2 | UCA to UUA | S to L | 82% | |
121,135 | 128 | 2 | UCA to UUA | S to L | 63% | |
121,516 | 1 | 2 | ACG to AUG | T to M | 16% | |
ndhA | 124,746 | 189 | 3 | UCA to UUA | S to L | 36% |
126,107 | 114 | 2 | UCA to UUA | S to L | 79% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruang-areerate, P.; Sangsrakru, D.; Yoocha, T.; Kongkachana, W.; U-Thoomporn, S.; Prathip Na Thalang, O.; Chumriang, P.; Wanthongchai, P.; Tangphatsornruang, S.; Pootakham, W. Comparative Chloroplast Genomes and Phylogenetic Relationships of True Mangrove Species Brownlowia tersa and Brownlowia argentata (Malvaceae). Curr. Issues Mol. Biol. 2025, 47, 74. https://doi.org/10.3390/cimb47020074
Ruang-areerate P, Sangsrakru D, Yoocha T, Kongkachana W, U-Thoomporn S, Prathip Na Thalang O, Chumriang P, Wanthongchai P, Tangphatsornruang S, Pootakham W. Comparative Chloroplast Genomes and Phylogenetic Relationships of True Mangrove Species Brownlowia tersa and Brownlowia argentata (Malvaceae). Current Issues in Molecular Biology. 2025; 47(2):74. https://doi.org/10.3390/cimb47020074
Chicago/Turabian StyleRuang-areerate, Panthita, Duangjai Sangsrakru, Thippawan Yoocha, Wasitthee Kongkachana, Sonicha U-Thoomporn, Onnitcha Prathip Na Thalang, Pranom Chumriang, Poonsri Wanthongchai, Sithichoke Tangphatsornruang, and Wirulda Pootakham. 2025. "Comparative Chloroplast Genomes and Phylogenetic Relationships of True Mangrove Species Brownlowia tersa and Brownlowia argentata (Malvaceae)" Current Issues in Molecular Biology 47, no. 2: 74. https://doi.org/10.3390/cimb47020074
APA StyleRuang-areerate, P., Sangsrakru, D., Yoocha, T., Kongkachana, W., U-Thoomporn, S., Prathip Na Thalang, O., Chumriang, P., Wanthongchai, P., Tangphatsornruang, S., & Pootakham, W. (2025). Comparative Chloroplast Genomes and Phylogenetic Relationships of True Mangrove Species Brownlowia tersa and Brownlowia argentata (Malvaceae). Current Issues in Molecular Biology, 47(2), 74. https://doi.org/10.3390/cimb47020074