Cranberry: A Promising Natural Product for Animal Health and Performance
Abstract
:1. Introduction
2. Composition of Cranberry
2.1. Polyphenols
2.1.1. Phenolic Acids
2.1.2. Flavonoids
2.2. Terpenoids
3. Physiological Properties of Cranberry
3.1. Antioxidant Activity
3.2. Anti-Inflammatory Activity
3.3. Antimicrobial Activity
3.4. Antiviral Activity
3.5. Immunomodulatory Effect
3.6. Cranberry in Gut Microbiota
3.7. Bioactivity of Cranberry Polyphenols with Metal Conjugation
4. Cranberry in Animal Health
4.1. Cranberry in Poultry Health
4.2. Cranberry in Swine Health
4.3. Cranberry in Canine Health
4.4. Cranberry in Feline Health
4.5. Cranberry in Ruminant Health
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Brown, P.N.; Turi, C.E.; Shipley, P.R.; Murch, S.J. Comparisons of large (Vaccinium macrocarpon Ait.) and small (Vaccinium oxycoccos L., Vaccinium vitis-idaea L.) cranberry in British Columbia by phytochemical determination, antioxidant potential, and metabolomic profiling with chemometric analysis. Planta Med. 2012, 78, 630–640. [Google Scholar] [CrossRef] [PubMed]
- Cesoniene, L.; Daubaras, R.; Paulauskas, A.; Zukauskiene, J.; Zych, M. Morphological and genetic diversity of European cranberry (Vaccinium oxycoccos L., Ericaceae) clones in Lithuanian reserves. Acta Soc. Bot. Pol. 2013, 82, 211–217. [Google Scholar] [CrossRef]
- Nemzer, B.V.; Al-Taher, F.; Yashin, A.; Revelsky, I.; Yashin, Y. Cranberry: Chemical Composition, Antioxidant Activity and Impact on Human Health: Overview. Molecules 2022, 27, 1503. [Google Scholar] [CrossRef] [PubMed]
- Oszmianski, J.; Kolniak-Ostek, J.; Lachowicz, S.; Gorzelany, J.; Matlok, N. Phytochemical Compounds and Antioxidant Activity in Different Cultivars of Cranberry (Vaccinium macrocarpon L). J. Food Sci. 2017, 82, 2569–2575. [Google Scholar] [CrossRef] [PubMed]
- Česonienė, L.; Daubaras, R. Phytochemical Composition of the Large Cranberry (Vaccinium macrocarpon) and the Small Cranberry (Vaccinium oxycoccos). In Nutritional Composition of Fruit Cultivars; Elsevier: Amsterdam, The Netherlands, 2016; pp. 173–194. [Google Scholar]
- Oszmianski, J.; Lachowicz, S.; Gorzelany, J.; Matlok, N. The effect of different maturity stages on phytochemical composition and antioxidant capacity of cranberry cultivars. Eur. Food Res. Technol. 2018, 244, 705–719. [Google Scholar] [CrossRef]
- Jensen, H.D.; Struve, C.; Christensen, S.B.; Krogfelt, K.A. Cranberry Juice and Combinations of Its Organic Acids Are Effective against Experimental Urinary Tract Infection. Front. Microbiol. 2017, 8, 542. [Google Scholar] [CrossRef]
- Blumberg, J.B.; Camesano, T.A.; Cassidy, A.; Kris-Etherton, P.; Howell, A.; Manach, C.; Ostertag, L.M.; Sies, H.; Skulas-Ray, A.; Vita, J.A. Cranberries and their bioactive constituents in human health. Adv. Nutr. 2013, 4, 618–632. [Google Scholar] [CrossRef] [PubMed]
- Cesoniene, L.; Daubaras, R.; Jasutiene, I.; Miliauskiene, I.; Zych, M. Investigations of anthocyanins, organic acids, and sugars show great variability in nutritional and medicinal value of European cranberry (Vaccinium oxycoccos) fruit. J. Appl. Bot. Food Qual. 2015, 88, 295–299. [Google Scholar] [CrossRef]
- Howell, A.B. Cranberry proanthocyanidins and the maintenance of urinary tract health. Crit. Rev. Food Sci. Nutr. 2002, 42, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.S.; Lim, Y.R.; Lee, K.; Lee, J.; Lee, J.H.; Lee, I.S. Terpenes from Forests and Human Health. Toxicol. Res. 2017, 33, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Kondo, M.; MacKinnon, S.L.; Craft, C.C.; Matchett, M.D.; Hurta, R.A.; Neto, C.C. Ursolic acid and its esters: Occurrence in cranberries and other Vaccinium fruit and effects on matrix metalloproteinase activity in DU145 prostate tumor cells. J. Sci. Food Agric. 2011, 91, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Galarraga-Vinueza, M.E.; Dohle, E.; Ramanauskaite, A.; Al-Maawi, S.; Obreja, K.; Magini, R.; Sader, R.; Ghanaati, S.; Schwarz, F. Anti-inflammatory and macrophage polarization effects of Cranberry Proanthocyanidins (PACs) for periodontal and peri-implant disease therapy. J. Periodontal. Res. 2020, 55, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Cesoniene, L.; Jasutiene, I.; Sarkinas, A. Phenolics and anthocyanins in berries of European cranberry and their antimicrobial activity. Medicina 2009, 45, 992–999. [Google Scholar] [CrossRef]
- Su, X.; Howell, A.B.; D’Souza, D.H. Antiviral effects of cranberry juice and cranberry proanthocyanidins on foodborne viral surrogates—A time dependence study in vitro. Food Microbiol. 2010, 27, 985–991. [Google Scholar] [CrossRef]
- Schell, J.; Betts, N.M.; Foster, M.; Scofield, R.H.; Basu, A. Cranberries improve postprandial glucose excursions in type 2 diabetes. Food Funct. 2017, 8, 3083–3090. [Google Scholar] [CrossRef]
- Han, Y.; Huang, M.; Li, L.; Cai, X.; Gao, Z.; Li, F.; Rakariyatham, K.; Song, M.; Fernandez Tome, S.; Xiao, H. Non-extractable polyphenols from cranberries: Potential anti-inflammation and anti-colon-cancer agents. Food Funct. 2019, 10, 7714–7723. [Google Scholar] [CrossRef] [PubMed]
- Dohadwala, M.M.; Holbrook, M.; Hamburg, N.M.; Shenouda, S.M.; Chung, W.B.; Titas, M.; Kluge, M.A.; Wang, N.; Palmisano, J.; Milbury, P.E.; et al. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease. Am. J. Clin. Nutr. 2011, 93, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, E.; Cameron, D.; Sobhan, R.; Wong, C.; Pontifex, M.G.; Tosi, N.; Mena, P.; Del Rio, D.; Sami, S.; Narbad, A.; et al. Chronic Consumption of Cranberries (Vaccinium macrocarpon) for 12 Weeks Improves Episodic Memory and Regional Brain Perfusion in Healthy Older Adults: A Randomised, Placebo-Controlled, Parallel-Groups Feasibility Study. Front. Nutr. 2022, 9, 849902. [Google Scholar] [CrossRef]
- Dinh, J.; Angeloni, J.T.; Pederson, D.B.; Wang, X.; Cao, M.; Dong, Y. Cranberry extract standardized for proanthocyanidins promotes the immune response of Caenorhabditis elegans to Vibrio cholerae through the p38 MAPK pathway and HSF-1. PLoS ONE 2014, 9, e103290. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Han, Y.; Gu, M.; Song, M.; Wu, X.; Li, Z.; Li, F.; Goulette, T.; Xiao, H. Dietary cranberry suppressed colonic inflammation and alleviated gut microbiota dysbiosis in dextran sodium sulfate-treated mice. Food Funct. 2019, 10, 6331–6341. [Google Scholar] [CrossRef] [PubMed]
- Balawejder, M.; Piechowiak, T.; Kapusta, I.; Checiek, A.; Matlok, N. In Vitro Analysis of Selected Antioxidant and Biological Properties of the Extract from Large-Fruited Cranberry Fruits. Molecules 2023, 28, 7895. [Google Scholar] [CrossRef]
- Guo, L.; Qiao, J.; Mikhailovich, M.S.; Wang, L.; Chen, Y.; Ji, X.; She, H.; Zhang, L.; Zhang, Y.; Huo, J. Comprehensive structural analysis of anthocyanins in blue honeysuckle (Lonicera caerulea L.), bilberry (Vaccinium uliginosum L.), cranberry (Vaccinium macrocarpon Ait.), and antioxidant capacity comparison. Food Chem. X 2024, 23, 101734. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Kim, J.H.; Kwak, H.K. Antioxidant effects of cranberry powder in lipopolysaccharide treated hypercholesterolemic rats. Prev. Nutr. Food Sci. 2014, 19, 75–81. [Google Scholar] [CrossRef]
- Deyhim, F.; Patil, B.S.; Villarreal, A.; Lopez, E.; Garcia, K.; Rios, R.; Garcia, C.; Gonzales, C.; Mandadi, K. Cranberry juice increases antioxidant status without affecting cholesterol homeostasis in orchidectomized rats. J. Med. Food 2007, 10, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Si, W.; Mba, O.I.; Sienkiewicz, O.; Ngadi, M.; Ross, K.; Kithama, M.; Kiarie, E.G.; Kennes, Y.M.; Diarra, M.S.; et al. Research Note: Effects of supplementing cranberry and blueberry pomaces on meat quality and antioxidative capacity in broilers. Poult. Sci. 2021, 100, 100900. [Google Scholar] [CrossRef]
- Bodet, C.; Chandad, F.; Grenier, D. Anti-inflammatory activity of a high-molecular-weight cranberry fraction on macrophages stimulated by lipopolysaccharides from periodontopathogens. J. Dent. Res. 2006, 85, 235–239. [Google Scholar] [CrossRef] [PubMed]
- La, V.D.; Howell, A.B.; Grenier, D. Anti-Porphyromonas gingivalis and anti-inflammatory activities of A-type cranberry proanthocyanidins. Antimicrob. Agents Chemother. 2010, 54, 1778–1784. [Google Scholar] [CrossRef] [PubMed]
- Hannon, D.B.; Thompson, J.T.; Khoo, C.; Juturu, V.; Vanden Heuvel, J.P. Effects of cranberry extracts on gene expression in THP-1 cells. Food Sci. Nutr. 2017, 5, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Nowaczyk, P.M.; Bajerska, J.; Lasik-Kurdys, M.; Radziejewska-Kubzdela, E.; Szwengiel, A.; Wozniewicz, M. The effect of cranberry juice and a cranberry functional beverage on the growth and metabolic activity of selected oral bacteria. BMC Oral Health 2021, 21, 660. [Google Scholar] [CrossRef]
- Lian, P.Y.; Maseko, T.; Rhee, M.; Ng, K. The antimicrobial effects of cranberry against Staphylococcus aureus. Food Sci. Technol. Int. 2012, 18, 179–186. [Google Scholar] [CrossRef]
- Ulrey, R.K.; Barksdale, S.M.; Zhou, W.; van Hoek, M.L. Cranberry proanthocyanidins have anti-biofilm properties against Pseudomonas aeruginosa. BMC Complement. Altern. Med. 2014, 14, 499. [Google Scholar] [CrossRef] [PubMed]
- Maisuria, V.B.; Los Santos, Y.L.; Tufenkji, N.; Deziel, E. Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Sci. Rep. 2016, 6, 30169. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, K.; Morrissette, M.; Strandwitz, P.; Ghiglieri, M.; Caboni, M.; Liu, H.; Khoo, C.; D’Onofrio, A.; Lewis, K. Cranberry extracts promote growth of Bacteroidaceae and decrease abundance of Enterobacteriaceae in a human gut simulator model. PLoS ONE 2019, 14, e0224836. [Google Scholar] [CrossRef] [PubMed]
- Guven, O.; Sayilan, S.; Tataroglu, O.; Hokenek, N.M.; Keles, D.V. Antibiotic versus cranberry in the treatment of uncomplicated urinary infection: A randomized controlled trial. Rev. Assoc. Med. Bras. 2023, 70, e20230799. [Google Scholar] [CrossRef]
- Babar, A.; Moore, L.; Leblanc, V.; Dudonne, S.; Desjardins, Y.; Lemieux, S.; Bochard, V.; Guyonnet, D.; Dodin, S. High dose versus low dose standardized cranberry proanthocyanidin extract for the prevention of recurrent urinary tract infection in healthy women: A double-blind randomized controlled trial. BMC Urol. 2021, 21, 44. [Google Scholar] [CrossRef] [PubMed]
- Koradia, P.; Kapadia, S.; Trivedi, Y.; Chanchu, G.; Harper, A. Probiotic and cranberry supplementation for preventing recurrent uncomplicated urinary tract infections in premenopausal women: A controlled pilot study. Expert Rev. Anti Infect. Ther. 2019, 17, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Bruyere, F.; Azzouzi, A.R.; Lavigne, J.P.; Droupy, S.; Coloby, P.; Game, X.; Karsenty, G.; Issartel, B.; Ruffion, A.; Misrai, V.; et al. A Multicenter, Randomized, Placebo-Controlled Study Evaluating the Efficacy of a Combination of Propolis and Cranberry (Vaccinium macrocarpon) (DUAB(R)) in Preventing Low Urinary Tract Infection Recurrence in Women Complaining of Recurrent Cystitis. Urol. Int. 2019, 103, 41–48. [Google Scholar] [CrossRef]
- Islam, M.R.; Hassan, Y.I.; Das, Q.; Lepp, D.; Hernandez, M.; Godfrey, D.V.; Orban, S.; Ross, K.; Delaquis, P.; Diarra, M.S. Dietary organic cranberry pomace influences multiple blood biochemical parameters and cecal microbiota in pasture-raised broiler chickens. J. Funct. Foods 2020, 72, 104053. [Google Scholar] [CrossRef]
- Chou, H.I.; Chen, K.S.; Wang, H.C.; Lee, W.M. Effects of cranberry extract on prevention of urinary tract infection in dogs and on adhesion of Escherichia coli to Madin-Darby canine kidney cells. Am. J. Vet. Res. 2016, 77, 421–427. [Google Scholar] [CrossRef]
- Tamkute, L.; Haddad, J.G.; Diotel, N.; Despres, P.; Venskutonis, P.R.; El Kalamouni, C. Cranberry Pomace Extract Exerts Antiviral Activity against Zika and Dengue Virus at Safe Doses for Adult Zebrafish. Viruses 2022, 14, 1101. [Google Scholar] [CrossRef] [PubMed]
- Mirandola, M.; Salvati, M.V.; Rodigari, C.; Appelberg, K.S.; Mirazimi, A.; Maffei, M.E.; Gribaudo, G.; Salata, C. Cranberry (Vaccinium macrocarpon) Extract Impairs Nairovirus Infection by Inhibiting the Attachment to Target Cells. Pathogens 2021, 10, 1025. [Google Scholar] [CrossRef] [PubMed]
- Pillai, U.J.; Cherian, L.; Taunk, K.; Iype, E.; Dutta, M. Identification of antiviral phytochemicals from cranberry as potential inhibitors of SARS-CoV-2 main protease (M(pro)). Int. J. Biol. Macromol. 2024, 261, 129655. [Google Scholar] [CrossRef]
- Lipson, S.M.; Gordon, R.E.; Ozen, F.S.; Karthikeyan, L.; Kirov, N.; Stotzky, G. Cranberry and Grape Juices Affect Tight Junction Function and Structural Integrity of Rotavirus-Infected Monkey Kidney Epithelial Cell Monolayers. Food Environ. Virol. 2011, 3, 46–54. [Google Scholar] [CrossRef]
- Lipson, S.M.; Karalis, G.; Karthikeyan, L.; Ozen, F.S.; Gordon, R.E.; Ponnala, S.; Bao, J.; Samarrai, W.; Wolfe, E. Mechanism of Anti-rotavirus Synergistic Activity by Epigallocatechin Gallate and a Proanthocyanidin-Containing Nutraceutical. Food Environ. Virol. 2017, 9, 434–443. [Google Scholar] [CrossRef]
- Luganini, A.; Terlizzi, M.E.; Catucci, G.; Gilardi, G.; Maffei, M.E.; Gribaudo, G. The Cranberry Extract Oximacro((R)) Exerts in vitro Virucidal Activity Against Influenza Virus by Interfering With Hemagglutinin. Front. Microbiol. 2018, 9, 1826. [Google Scholar] [CrossRef]
- Terlizzi, M.E.; Occhipinti, A.; Luganini, A.; Maffei, M.E.; Gribaudo, G. Inhibition of herpes simplex type 1 and type 2 infections by Oximacro((R)), a cranberry extract with a high content of A-type proanthocyanidins (PACs-A). Antivir. Res. 2016, 132, 154–164. [Google Scholar] [CrossRef]
- Weiss, E.I.; Houri-Haddad, Y.; Greenbaum, E.; Hochman, N.; Ofek, I.; Zakay-Rones, Z. Cranberry juice constituents affect influenza virus adhesion and infectivity. Antivir. Res. 2005, 66, 9–12. [Google Scholar] [CrossRef]
- Oiknine-Djian, E.; Houri-Haddad, Y.; Weiss, E.I.; Ofek, I.; Greenbaum, E.; Hartshorn, K.; Zakay-Rones, Z. High molecular weight constituents of cranberry interfere with influenza virus neuraminidase activity in vitro. Planta Med. 2012, 78, 962–967. [Google Scholar] [CrossRef] [PubMed]
- Weh, K.M.; Howard, C.L.; Zhang, Y.; Tripp, B.A.; Clarke, J.L.; Howell, A.B.; Rubenstein, J.H.; Abrams, J.A.; Westerhoff, M.; Kresty, L.A. Prebiotic proanthocyanidins inhibit bile reflux-induced esophageal adenocarcinoma through reshaping the gut microbiome and esophageal metabolome. JCI Insight 2024, 9, e168112. [Google Scholar] [CrossRef] [PubMed]
- Nantz, M.P.; Rowe, C.A.; Muller, C.; Creasy, R.; Colee, J.; Khoo, C.; Percival, S.S. Consumption of cranberry polyphenols enhances human gammadelta-T cell proliferation and reduces the number of symptoms associated with colds and influenza: A randomized, placebo-controlled intervention study. Nutr. J. 2013, 12, 161. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Oomah, D.B.; Diarra, M.S. Potential immunomodulatory effects of non-dialyzable materials of cranberry extract in poultry production. Poult. Sci. 2017, 96, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Medina-Larque, A.S.; Rodriguez-Daza, M.C.; Roquim, M.; Dudonne, S.; Pilon, G.; Levy, E.; Marette, A.; Roy, D.; Jacques, H.; Desjardins, Y. Cranberry polyphenols and agave agavins impact gut immune response and microbiota composition while improving gut barrier function, inflammation, and glucose metabolism in mice fed an obesogenic diet. Front. Immunol. 2022, 13, 871080. [Google Scholar] [CrossRef]
- Khoo, C.; Duysburgh, C.; Marzorati, M.; Van den Abbeele, P.; Zhang, D. A Freeze-Dried Cranberry Powder Consistently Enhances SCFA Production and Lowers Abundance of Opportunistic Pathogens In Vitro. BioTech 2022, 11, 14. [Google Scholar] [CrossRef]
- Gao, T.; Hou, M.; Zhang, B.; Pan, X.; Liu, C.; Sun, C.; Jia, M.; Lin, S.; Xiong, K.; Ma, A. Effects of cranberry beverages on oxidative stress and gut microbiota in subjects with Helicobacter pylori infection: A randomized, double-blind, placebo-controlled trial. Food Funct. 2021, 12, 6878–6888. [Google Scholar] [CrossRef]
- Lessard-Lord, J.; Roussel, C.; Lupien-Meilleur, J.; Genereux, P.; Richard, V.; Guay, V.; Roy, D.; Desjardins, Y. Short term supplementation with cranberry extract modulates gut microbiota in human and displays a bifidogenic effect. NPJ Biofilms Microbiomes 2024, 10, 18. [Google Scholar] [CrossRef]
- Kalra, N.; Prasad, S.; Shukla, Y. Antioxidant potential of black tea against 7,12-dimethylbenz(a)anthracene- induced oxidative stress in Swiss albino mice. J. Environ. Pathol. Toxicol. Oncol. 2005, 24, 105–114. [Google Scholar] [CrossRef]
- Urbstaite, R.; Raudone, L.; Janulis, V. Phytogenotypic Anthocyanin Profiles and Antioxidant Activity Variation in Fruit Samples of the American Cranberry (Vaccinium macrocarpon Aiton). Antioxidants 2022, 11, 250. [Google Scholar] [CrossRef] [PubMed]
- Elberry, A.A.; Abdel-Naim, A.B.; Abdel-Sattar, E.A.; Nagy, A.A.; Mosli, H.A.; Mohamadin, A.M.; Ashour, O.M. Cranberry (Vaccinium macrocarpon) protects against doxorubicin-induced cardiotoxicity in rats. Food Chem. Toxicol. 2010, 48, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Kunnumakkara, A.B.; Sailo, B.L.; Banik, K.; Harsha, C.; Prasad, S.; Gupta, S.C.; Bharti, A.C.; Aggarwal, B.B. Chronic diseases, inflammation, and spices: How are they linked? J. Transl. Med. 2018, 16, 14. [Google Scholar] [CrossRef]
- Margetis, D.; Roux, D.; Gaudry, S.; Messika, J.; Bouvet, O.; Branger, C.; Ponnuswamy, P.; Oufella, H.A.; Dreyfuss, D.; Denamur, E.; et al. Effects of Proanthocyanidins on Adhesion, Growth, and Virulence of Highly Virulent Extraintestinal Pathogenic Escherichia coli Argue for Its Use to Treat Oropharyngeal Colonization and Prevent Ventilator-Associated Pneumonia. Crit. Care Med. 2015, 43, e170–e178. [Google Scholar] [CrossRef] [PubMed]
- Lo Verso, L.; Talbot, G.; Morissette, B.; Guay, F.; Matte, J.J.; Farmer, C.; Gong, J.; Wang, Q.; Bissonnette, N.; Beaulieu, C.; et al. The combination of nutraceuticals and functional feeds as additives modulates gut microbiota and blood markers associated with immune response and health in weanling piglets. J. Anim. Sci. 2020, 98, skaa208. [Google Scholar] [CrossRef] [PubMed]
- Lessard, M.; Talbot, G.; Bergeron, N.; Lo Verso, L.; Morissette, B.; Yergeau, E.; Matte, J.J.; Bissonnette, N.; Blais, M.; Gong, J.; et al. Weaning diet supplemented with health-promoting feed additives influences microbiota and immune response in piglets challenged with Salmonella. Vet. Immunol. Immunopathol. 2023, 255, 110533. [Google Scholar] [CrossRef]
- Nawirska, A.; Kwasniewska, M. Dietary Fibre Fractions from Fruit Processing Waste. Acta Sci. Pol. Technol. Aliment. 2004, 3, 13–20. [Google Scholar]
- Jewell, D.E.; Jackson, M.I.; Cochrane, C.Y.; Badri, D.V. Feeding Fiber-Bound Polyphenol Ingredients at Different Levels Modulates Colonic Postbiotics to Improve Gut Health in Dogs. Animals 2022, 12, 627. [Google Scholar] [CrossRef] [PubMed]
- Jewell, D.E.; Jackson, M.I.; Cochrane, C.Y.; Badri, D.V. Feeding Fiber-Bound Polyphenol Ingredients at Different Levels Modulates Colonic Postbiotics to Improve Gut Health in Cats. Animals 2022, 12, 1654. [Google Scholar] [CrossRef]
- Coutinho-Wolino, K.S.; Melo, M.F.S.; Mota, J.C.; Mafra, D.; Guimaraes, J.T.; Stockler-Pinto, M.B. Blueberry, cranberry, raspberry, and strawberry as modulators of the gut microbiota: Target for treatment of gut dysbiosis in chronic kidney disease? From current evidence to future possibilities. Nutr. Rev. 2024, 82, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Guo, M. Zinc-binding sites on selected flavonoids. Biol. Trace Elem. Res. 2014, 161, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; DuBourdieu, D.; Srivastava, A.; Kumar, P.; Lall, R. Metal-Curcumin Complexes in Therapeutics: An Approach to Enhance Pharmacological Effects of Curcumin. Int. J. Mol. Sci. 2021, 22, 7094. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Lall, R. Zinc-curcumin based complexes in health and diseases: An approach in chemopreventive and therapeutic improvement. J. Trace Elem. Med. Biol. 2022, 73, 127023. [Google Scholar] [CrossRef]
- Ashour, A.A.; Raafat, D.; El-Gowelli, H.M.; El-Kamel, A.H. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: Characterization and antimicrobial properties. Int. J. Nanomed. 2015, 10, 7207–7221. [Google Scholar] [CrossRef]
- Puiso, J.; Jonkuviene, D.; Macioniene, I.; Salomskiene, J.; Jasutiene, I.; Kondrotas, R. Biosynthesis of silver nanoparticles using lingonberry and cranberry juices and their antimicrobial activity. Colloids Surf. B Biointerfaces 2014, 121, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Queen, J.E.; Prasad, T.A.; Vithiya, B.S.; Tamizhdurai, P.; Albakri, G.S.; Khalid, M.; Alreshidi, M.A.; Yadav, K.K. Bio fabricated palladium nano particles using phytochemicals from aqueous cranberry fruit extract for anti-bacterial, cytotoxic activities and photocatalytic degradation of anionic dyes. RSC Adv. 2024, 14, 23730–23743. [Google Scholar] [CrossRef]
- Moldovan, B.; David, L.; Vulcu, A.; Olenic, L.; Perde-Schrepler, M.; Fischer-Fodor, E.; Baldea, I.; Clichici, S.; Filip, G.A. In vitro and in vivo anti-inflammatory properties of green synthesized silver nanoparticles using Viburnum opulus L. fruits extract. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 79, 720–727. [Google Scholar] [CrossRef]
- Begcevic, I.; Simundic, A.M.; Nikolac, N.; Dobrijevic, S.; Rajkovic, M.G.; Tesija-Kuna, A. Can cranberry extract and vitamin C+Zn supplements affect the in vivo activity of paraoxonase 1, antioxidant potential, and lipid status? Clin. Lab 2013, 59, 1053–1060. [Google Scholar] [CrossRef]
- Laky, B.; Bruckmann, C.; Blumenschein, J.; Durstberger, G.; Haririan, H. Effect of a multinutrient supplement as an adjunct to nonsurgical treatment of periodontitis: A randomized placebo-controlled clinical trial. J. Periodontol. 2024, 95, 101–113. [Google Scholar] [CrossRef]
- Das, Q.; Lepp, D.; Yin, X.; Ross, K.; McCallum, J.L.; Warriner, K.; Marcone, M.F.; Diarra, M.S. Transcriptional profiling of Salmonella enterica serovar Enteritidis exposed to ethanolic extract of organic cranberry pomace. PLoS ONE 2019, 14, e0219163. [Google Scholar] [CrossRef]
- Apostolidis, E.; Kwon, Y.I.; Shetty, K. Inhibition of Listeria monocytogenes by oregano, cranberry and sodium lactate combination in broth and cooked ground beef systems and likely mode of action through proline metabolism. Int. J. Food Microbiol. 2008, 128, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Das, Q.; Shay, J.; Gauthier, M.; Yin, X.; Hasted, T.L.; Ross, K.; Julien, C.; Yacini, H.; Kennes, Y.M.; Warriner, K.; et al. Effects of Vaccination Against Coccidiosis on Gut Microbiota and Immunity in Broiler Fed Bacitracin and Berry Pomace. Front. Immunol. 2021, 12, 621803. [Google Scholar] [CrossRef] [PubMed]
- Brink, I.; Sipailiene, A.; Leskauskaite, D. Antimicrobial properties of chitosan and whey protein films applied on fresh cut turkey pieces. Int. J. Biol. Macromol. 2019, 130, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Kithama, M.; Hassan, Y.I.; Yin, X.; Ross, K.; Julien, C.; Kennes, Y.M.; Kiarie, E.G.; Diarra, M.S. Growth performance, organ weight, and plasma metabolites in broiler chickens fed corn-soybean meal diet containing berry pomaces and fed without or with multienzymes supplement. Poult. Sci. 2023, 102, 102544. [Google Scholar] [CrossRef] [PubMed]
- Coddens, A.; Loos, M.; Vanrompay, D.; Remon, J.P.; Cox, E. Cranberry extract inhibits in vitro adhesion of F4 and F18(+) Escherichia coli to pig intestinal epithelium and reduces in vivo excretion of pigs orally challenged with F18(+) verotoxigenic E. coli. Vet. Microbiol. 2017, 202, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Coleman, C.M.; Auker, K.M.; Killday, K.B.; Azadi, P.; Black, I.; Ferreira, D. Arabinoxyloglucan Oligosaccharides May Contribute to the Antiadhesive Properties of Porcine Urine after Cranberry Consumption. J. Nat. Prod. 2019, 82, 589–605. [Google Scholar] [CrossRef]
- Tamkute, L.; Gil, B.M.; Carballido, J.R.; Pukalskiene, M.; Venskutonis, P.R. Effect of cranberry pomace extracts isolated by pressurized ethanol and water on the inhibition of food pathogenic/spoilage bacteria and the quality of pork products. Food Res. Int. 2019, 120, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Sullivan, G.A.; Jackson, A.L.; Zhou, G.H.; Sebranek, J.G. Use of natural antimicrobials to improve the control of Listeria monocytogenes in a cured cooked meat model system. Meat Sci. 2011, 88, 503–511. [Google Scholar] [CrossRef]
- Gong, S.; Fei, P.; Sun, Q.; Guo, L.; Jiang, L.; Duo, K.; Bi, X.; Yun, X. Action mode of cranberry anthocyanin on physiological and morphological properties of Staphylococcus aureus and its application in cooked meat. Food Microbiol. 2021, 94, 103632. [Google Scholar] [CrossRef] [PubMed]
- Carvajal-Campos, A.; Jeusette, I.; Mayot, G.; Torre, C.; Andre, A.; Di Martino, P. Adherence of Uropathogenic Escherichia coli in Dog Urine After Consumption of Food Supplemented with Cranberry (Vaccinium macrocarpon). J. Vet. Res. 2023, 67, 49–54. [Google Scholar] [CrossRef]
- Colombino, E.; Cavana, P.; Martello, E.; Devalle, V.; Miniscalco, B.; Ravera, N.; Zanatta, R.; Capucchio, M.T.; Biasibetti, E. A new diet supplement formulation containing cranberry extract for the treatment of feline idiopathic cystitis. Nat. Prod. Res. 2022, 36, 2884–2887. [Google Scholar] [CrossRef]
- Di Cerbo, A.; Iannitti, T.; Guidetti, G.; Centenaro, S.; Canello, S.; Cocco, R. A nutraceutical diet based on Lespedeza spp., Vaccinium macrocarpon and Taraxacum officinale improves spontaneous feline chronic kidney disease. Physiol. Rep. 2018, 6, e13737. [Google Scholar] [CrossRef] [PubMed]
- Barone, C.D.; Zajac, A.M.; Manzi-Smith, L.A.; Howell, A.B.; Reed, J.D.; Krueger, C.G.; Petersson, K.H. Anthelmintic efficacy of cranberry vine extracts on ovine Haemonchus contortus. Vet. Parasitol. 2018, 253, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Wu, V.C.; Qiu, X.; de los Reyes, B.G.; Lin, C.S.; Pan, Y. Application of cranberry concentrate (Vaccinium macrocarpon) to control Escherichia coli O157:H7 in ground beef and its antimicrobial mechanism related to the downregulated slp, hdeA and cfa. Food Microbiol. 2009, 26, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Luise, D.; Lauridsen, C.; Bosi, P.; Trevisi, P. Methodology and application of Escherichia coli F4 and F18 encoding infection models in post-weaning pigs. J. Anim. Sci. Biotechnol. 2019, 10, 53. [Google Scholar] [CrossRef]
- Glodde, F.; Gunal, M.; Kinsel, M.E.; AbuGhazaleh, A. Effects of Natural Antioxidants on The Stability of Omega-3 Fatty Acids in Dog Food. J. Vet. Res. 2018, 62, 103–108. [Google Scholar] [CrossRef]
- Madden, E.; McLachlan, C.; Oketch-Rabah, H.; Calderon, A.I. Safety of Cranberry: Evaluation of Evidence of Kidney Stone Formation and Botanical Drug-Interactions. Planta Med. 2021, 87, 803–817. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Tarko, T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023, 28, 2536. [Google Scholar] [CrossRef]
- National Institute of Diabetes and Digestive and Kidney Diseases. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012.
Effect | Model | Dose | References | |
---|---|---|---|---|
Antioxidant Property | ||||
Inhibited ROS and induced CAT and SOD | S. cerevisiae | 5–50 μg/mL | [22] | |
Exhibited antioxidant activity | DPPH, ABTS | 6.44 & 12.30 mg TE/g | [23] | |
Exhibited antioxidant activity | ABTS, DPPH, and FRAP assays | 0.04 gm/ml | [4] | |
Induced antioxidant effects | Hypercholesterolemic rats | 5–10% w/w cranberry powder | [24] | |
Increased antioxidant status (SOD) and reduced MDA | Orchidectomized rats | 27% and 45% cranberry juice | [25] | |
Increased levels of Nrf, Gpx2, and HO-1 antioxidant enzymes | Broilers | 0.5 or 1.0% cranberry pomace | [26] | |
Anti-inflammatory Property | ||||
Suppressed cytokine IL-8 and IL-6 and upregulated anti-inflammatory cytokine IL-10 | LPS-stimulated macrophage | 50 and 100 µg/mL cranberry concentrates | [13] | |
Inhibited pro-inflammatory cytokine IL-1β, IL-6, IL-8, and TNF-α | LPS-stimulated macrophage | cranberry juice concentrate | [27] | |
Neutralized virulency of P. gingivalis by inhibition of IL-8, CCL5 and NF-κB | Oral epithelial cells | 100 μg/mL cranberry proanthocyanidins | [28] | |
Altered TNFα, IFIT1 and 3, MSR1, and CSF2 expression | THP-1 cells | 100 μg/mL cranberry extract | [29] | |
Antimicrobial Activity | ||||
Inhibited growth of wide range of human pathogenic bacteria | Gram +ve and gram −ve bacteria | 50 µL of 5% of cranberries | [14] | |
Bactericidal effect of oral pathogens | A. naeslundii and S. mutans | 0.50 mL/mL cranberry juice | [30] | |
Suppressed pathogenic bacteria | S. aureus | 173.2 µg GAE/mL | [31] | |
Disrupted the biofilm formation and decreased swarming motility | P. aeruginosa | 100 μg/mL cranberry PACs | [32] | |
Restricted virulence of P. aeruginosa | Drosophila melanogaster | 200 μg/mL of cranberry extract | [33] | |
Reduced Enterobacteriaceae and Bacteroidaceae and protected from UTI | A human gut microbiota (simulator) | Cranberry powder containing 1 mg/mL Salicylate | [34] | |
Beneficial effects on uncomplicated UTI | Human patients | 36 mg PAC | [35] | |
Prevented of recurrent UTI | Healthy, adult women | 2 × 18.5 mg daily | [36] | |
Prevented recurrent uncomplicated UTI | Pre-menopausal adult women | 18 mg cranberry PACs and 5 × 108 CFU probiotic microorganisms | [37] | |
Prevented low UTI recurrence | Women with at least 4 episodes of cystitis | Combination of propolis and cranberry | [38] | |
Suppressed undesirable bacteria (Synergistaceae and Desulfovibrio, and Fusobacteriaceae) | Broiler chicken | 1 or 2% of cranberry pomace | [39] | |
Suppressed UTI development | Dogs | Cranberry powder (1 g for <25 kg; 2 g for ≥25 kg) | [40] | |
Anti-viral Activity | ||||
Decreased viral load of MNV-1, FCV-F9, MS2(ssRNA) and phiX-174(ssDNA) bacteriophage | CRFK or RAW 264.7 cells | Cranberry juice with 0.30–1.20 mg/mL of PAC | [15] | |
Inhibited dengue virus and zika virus binding to the host–cell | Adult zebrafish, human Huh7.5 and A549 cell lines | 25 to 2000 µg/mL | [41] | |
Inhibited replication cycle of Hazara virus through direct interaction | Vero cells | 3.125–100 μg/mL cranberry extract | [42] | |
Targeted main protease (Mpro) enzyme of SARS-CoV-2 | in vitro FRET enzyme inhibitory assay | 9.98 μM-cyanidin 3-O-galactoside 23.58 μg/mL-cranberry extract | [43] | |
Induced the aggregation of rotavirus and caused the destruction of rotavirus capsid protein VP6 | Monkey kidney epithelial cells | Crude cranberry juice | [44] | |
Reduces rotavirus titer by 32% | Coliphage T4II (phage T4) and the rotavirus strain SA-11(RTV) | EGCG-30 µg/mL and cranberry proanthocyanidin-25 µg/ml | [45] | |
Inhibited influenza A and B viruses’ (IAV, IBV) attachment and entry into target cells | MDCK cells | 2.5–20 μg/mL of Oximacro | [46] | |
Abolished the infectivity of HSV1 and 2 particles by targeting viral envelope glycoproteins gD and gB | African green monkey kidney cells | 100 μg/mL of PACs-A | [47] | |
Inhibited influenza virus-induced hemagglutination, suppressed viral replication | MDCK cells | 125 μg/mL NDM of cranberry | [48] | |
Inhibited neuraminidase enzymatic activity of influenza A and B strains | the MUNANA method | 187–1200 μg/mL NDM | [49] | |
Immunomodulatory Effect | ||||
Upregulated innate immune genes, enhanced host immune response | C. elegans | 2 mg/mL of WCESP | [20] | |
Induced immune-implicated proteins and genes | Sprague Dawley rats | 700 μg/rat/day | [50] | |
Enhanced human γδ-T immune cell proliferation | Human | 450 mL of cranberry juice | [51] | |
Increased serum IgM level and their antibody titers against IBDV | Broilers | Cranberry NDM (2 and 4 mg/mL/bird) | [52] | |
Gut Microbiota Enhancement | ||||
Increased beneficial bacteria like Lactobacillus and Bifidobacterium, and decreased harmful bacteria Sutterella and Bilophila | DSS-induced colitis in mice | 1.5% (w/w) freeze-dried whole cranberry powder | [21] | |
Increased metabolically beneficial bacteria Akkermansia muciniphila and other glycan-degrading bacteria | Obesogenic mice | 200 mg/kg | [53] | |
Increased short-chain fatty acids and decreased branched-chain fatty acids and increased luminal Bacteroidetes | Human gut simulator | 5 g/L cranberry powder | [54] | |
Reduced abundance of Pseudomonas | Humans | 480 mL cranberry beverage | [55] | |
Decreased acetate ratio and increased butyrate ratio by increasing butyrate-producing bacteria | Healthy humans | 60 g of fresh cranberries | [56] | |
Increased beneficial bacterial taxa (Bifidobacterium, unclassified_Rikenellaceae, and Faecalibacterium) in intestine | Broilers | 1% or 2% cranberry pomace | [39] |
Type of Cranberry (e.g., Extract, Powder, etc.) | Dose and Route | Effects | Reference |
---|---|---|---|
Poultry | |||
Ethanolic extract from cranberry pomaces | 2 or 4 mg/mL of cranberry pomaces | Downregulation of bacterial genes such as SPI-1 and hilA | [77] |
Oregano and oregano–cranberry (1:1) ratio | 750 ppm in both broth and cooked meat | Cranberry inhibits L. monocytogenes | [78] |
Cranberry (CP1) and wild blueberry (BP1) pomace | 1% each supplemented with food | Reduces Eimeria acervulina and Clostridium perfringens incidences and decreases intestinal lesion | [79] |
Whey protein-chitosan film incorporating cranberry juice | 1:1 ratio on fresh turkey | Inhibits multiple bacterial growth such as S. typhimurium, E. coli, and C. jejuni | [80] |
NDMs of cranberry extract | 1, 2, 4, 8 mg/mL oral | Increases humoral immune response and antioxidant, anti-inflammatory, and bacterial susceptibility to immuno-defense mechanisms | [52] |
Cranberry pomace | 0.5 or 1.0% diet | Increases levels of antioxidant enzymes Nrf2, Gpx2, and HO-1 | [26] |
Cranberry pomace | 0.5% diet feed | Lowers mortality during the chicken’s grower phase | [81] |
Swine | |||
Spray-dried cranberry powder | 1% w/w in feed, 0.1% w/v in drinking water | Inhibited diarrhea by suppressing adherence of F4 and F18 fimbriae of E. coli to pig intestinal epithelium | [82] |
Mixture of diets containing cranberry | 1 g/kg cranberry and other polyphenol and vitamins in feed | Mitigates the influence of Salmonella infection on intestinal microbial populations and modulates systemic and intestinal immune defenses | [63] |
Mixture of diet containing cranberry | 0.1% cranberry and other polyphenol and vitamins in feed | Increases the concentrations of vitamins E and B12, improve the growth performance of piglets | [62] |
Spray-dried cranberry powder | 5 g/kg/day in diet to adult female sows | Arabinoxyloglucan oligosaccharides found in cranberry have antiadhesion properties. | [83] |
Cranberry pomace ethanol extract | 2% in pork slurry, pork burgers, and cooked ham | Significant growth inhibition of pathogenic L. monocytogenes and some other species | [84] |
Cranberry powder | 1%, 2%, and 3% in cured cooked pork | Inhibits 2–4 log CFU/g growth of L. monocytogenes | [85] |
Cranberry anthocyanin | MIC 5 mg/mL in cooked pork and beef | Inhibits 8 log CFU/mL of S. aureus by lowering intracellular ATP and soluble protein levels and damaging membrane structure | [86] |
Canine | |||
Cranberry fruit powder | 2% of diet in dogs | Might provide protection to female dogs against adhesion of uropathogenic E. coli to urinary epithelial cells | [87] |
Cranberry extract | 1 g for dogs < 25 kg and 2 g for dogs ≥ 25 kg mixed with food | Prevents the development of a UTI and prevents E coli adherence to MDCK cells | [40] |
Feline | |||
Oral nutritional supplement containing cranberry extract | 60 mg cranberry extract per tablet with supplement | Reduces lower urinary tract and gastrointestinal signs in feline idiopathic cystitis. | [88] |
Nutraceutical diet containing cranberry | 0.0371% Cranberry | Decreases creatinine, blood urea nitrogen, total protein, aspartate aminotransferase, and urine turbidity score in cats | [89] |
Fiber bundle composed of pecan shells, flax seed, and powders of cranberry, citrus, and beet | 1%, 2%, and 4% in diet | Decreases levels of ammonium and fecal-branched-chain fatty acids and increased beneficial metabolites from baseline in cats. | [66] |
Ruminant | |||
Cranberry vine powder | 21.1 g for 3 days orally | Inhibits Haemonchus contortus in lambs | [90] |
Cranberry concentrate | 2.5%, 5%, and 7.5% (w/w) in beef | Reduces total aerobic pathogenic bacteria and E. coli | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasad, S.; Patel, B.; Kumar, P.; Mitra, P.; Lall, R. Cranberry: A Promising Natural Product for Animal Health and Performance. Curr. Issues Mol. Biol. 2025, 47, 80. https://doi.org/10.3390/cimb47020080
Prasad S, Patel B, Kumar P, Mitra P, Lall R. Cranberry: A Promising Natural Product for Animal Health and Performance. Current Issues in Molecular Biology. 2025; 47(2):80. https://doi.org/10.3390/cimb47020080
Chicago/Turabian StylePrasad, Sahdeo, Bhaumik Patel, Prafulla Kumar, Pranabendu Mitra, and Rajiv Lall. 2025. "Cranberry: A Promising Natural Product for Animal Health and Performance" Current Issues in Molecular Biology 47, no. 2: 80. https://doi.org/10.3390/cimb47020080
APA StylePrasad, S., Patel, B., Kumar, P., Mitra, P., & Lall, R. (2025). Cranberry: A Promising Natural Product for Animal Health and Performance. Current Issues in Molecular Biology, 47(2), 80. https://doi.org/10.3390/cimb47020080