Common Polymorphisms Linked to Obesity and Cardiovascular Disease in Europeans and Asians are Associated with Type 2 Diabetes in Mexican Mestizos
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. DNA Extraction and Genotyping
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Fronzo, R.A.; Ferrannini, E. Insulin Resistance: A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991, 14, 173. [Google Scholar] [CrossRef]
- Ferdinand, K.C.; Nasser, S.A. Racial/ethnic disparities in prevalence and care of patients with type 2 diabetes mellitus. Curr. Med. Res. Opin. 2015, 31, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Avilés-Santa, M.L.; Colón-Ramos, U.; Lindberg, N.M.; Mattei, J.; Pasquel, F.J.; Pérez, C.M. From sea to shining sea and the great plains to Patagonia: A review on current knowledge of diabetes mellitus in Hispanics/Latinos in the US and Latin America. Front. Endocrinol. 2017, 8, 298. [Google Scholar] [CrossRef] [PubMed]
- ENSANUT. Encuesta Nacional de Nutrición. Available online: https://ensanut.insp.mx/ensanut2016/descarga_bases.php (accessed on 10 September 2018).
- International Diabetes Federation. IDF Diabetes Atlas; International Diabetes Federation: Brussels, Belgium, 2015. [Google Scholar]
- Liu, X.; Liu, Y.; Zhan, J.; He, Q. Overweight, obesity and risk of all-cause and cardiovascular mortality in patients with type 2 diabetes mellitus: A dose–response meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 2015, 30, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Pozos, K.; Menjívar, M. Genetic component of Type 2 Diabetes in a Mexican population. Arch. Med. Res. 2016, 47, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, J.; Yoon, J.H.; Ghim, J.; Yea, K.; Song, P.; Park, S.; Lee, A.; Hong, C.P.; Jang, M.S.; et al. CXCL12 secreted from adipose tissue recruits macrophages and induces insulin resistance in mice. Diabetologia 2014, 57, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Samani, N.J.; Erdmann, J.; Hall, A.S.; Hengstenberg, C.; Mangino, M.; Mayer, B.; Dixon, R.J.; Meitinger, T.; Braund, P.; Wichmann, H.-E.; et al. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 2007, 357, 443–453. [Google Scholar] [CrossRef]
- Bressler, J.; Folsom, A.R.; Couper, D.J.; Volcik, K.A.; Boerwinkle, E. Genetic variants identified in a European genome-wide association study that were found to predict incident coronary heart disease in the atherosclerosis risk in communities study. Am. J. Epidemiol. 2010, 171, 14–23. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Wang, Y.Y.; He, Q.; Chen, M.H. Association between various rs501120 genotypes and progress of unstable coronary atherosclerotic plaque in diabetes mellitus complicated with acute coronary syndrome. Chin. J. Med. Genet. 2012, 29, 592–595. [Google Scholar]
- Rane, S.G.; Dubus, P.; Mettus, R.V.; Galbreath, E.J.; Boden, G.; Reddy, E.P.; Barbacid, M. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nat. Genet. 1999, 22, 44–52. [Google Scholar] [CrossRef]
- McPherson, R.; Pertsemlidis, A.; Kavaslar, N.; Stewart, A.; Roberts, R.; Cox, D.R.; Hinds, D.A.; Pennacchio, L.A.; Tybjaerg-Hansen, A.; Folsom, A.R.; et al. A common allele on chromosome 9 associated with coronary heart disease. Science 2007, 316, 1488–1491. [Google Scholar] [CrossRef] [PubMed]
- Hinohara, K.; Nakajima, T.; Takahashi, M.; Hohda, S.; Sasaoka, T.; Nakahara, K.I.; Chida, K.; Sawabe, M.; Arimura, T.; Sato, A.; et al. Replication of the association between a chromosome 9p21 polymorphism and coronary artery disease in Japanese and Korean populations. J. Hum. Genet. 2008, 53, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Karvanen, J.; Silander, K.; Kee, F.; Tiret, L.; Salomaa, V.; Kuulasmaa, K.; Wiklund, P.G.; Virtamo, J.; Saarela, O.; Perret, C.; et al. The impact of newly identified loci on coronary heart disease, stroke and total mortality in the MORGAM prospective cohorts. Genet. Epidemiol. 2009, 33, 237–246. [Google Scholar] [CrossRef]
- Meng, W.; Hughes, A.E.; Patterson, C.C.; Belton, C.; Kee, F.; McKeown, P.P. Chromosome 9p21.3 is associated with early-onset coronary heart disease in the Irish population. Dis. Markers 2008, 25, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Willeit, J.; Kronenberg, F.; Xu, Q.; Kiechl, S. Association of genetic variation on chromosome 9p21 with susceptibility and progression of atherosclerosis. A population-based, prospective study. J. Am. Coll. Cardiol. 2008, 52, 378–384. [Google Scholar] [CrossRef]
- Hiura, Y.; Fukushima, Y.; Yuno, M.; Sawamura, H.; Kokubo, Y.; Okamura, T.; Tomoike, H.; Goto, Y.; Nonogi, H.; Takahashi, R.; et al. Validation of the association of genetic variants on chromosome 9p21 and 1q41 with myocardial infarction in a Japanese population. Circ. J. Off. J. Jpn. Circ. Soc. 2008, 72, 1213–1217. [Google Scholar] [CrossRef]
- Consortium, T.W.T.C.C.; Burton, P.R.; Clayton, D.G.; Cardon, L.R.; Craddock, N.; Deloukas, P.; Duncanson, A.; Kwiatkowski, D.P.; McCarthy, M.I.; Ouwehand, W.H.; et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447, 661–678. [Google Scholar]
- Qi, L.; Parast, L.; Cai, T.; Powers, C.; Gervino, E.V.; Hauser, T.H.; Hu, F.B.; Doria, A. Genetic susceptibility to coronary heart disease in type 2 diabetes: 3 independent studies. J. Am. Coll. Cardiol. 2011, 58, 2675–2682. [Google Scholar] [CrossRef]
- Wakil, S.M.; Muiya, N.P.; Tahir, A.I.; Al-Najai, M.; Baz, B.; Andres, E.; Mazhar, N.; Al Tassan, N.; Alshahid, M.; Meyer, B.F.; et al. A new susceptibility locus for myocardial infarction, hypertension, type 2 diabetes mellitus, and dyslipidemia on chromosome 12q24. Dis. Markers 2014. [Google Scholar] [CrossRef]
- Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.B.; Elliott, K.S.; Lango, H.; Rayner, N.W.; et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007, 316, 889–894. [Google Scholar] [CrossRef]
- Freathy, R.M.; Timpson, N.J.; Lawlor, D.A.; Pouta, A.; Ben-Shlomo, Y.; Ruokonen, A.; Ebrahim, S.; Shields, B.; Zeggini, E.; Weedon, M.N.; et al. Common variation in the FTO gene alters diabetes-related metabolic traits to the extent expected given its effect on BMI. Diabetes 2008, 68. [Google Scholar] [CrossRef] [PubMed]
- Al-Attar, S.A.; Pollex, R.L.; Ban, M.R.; Young, T.K.; Bjerregaard, P.; Anand, S.S.; Yusuf, S.; Zinman, B.; Harris, S.B.; Hanley, A.J.G.; et al. Association between the FTO rs9939609 polymorphism and the metabolic syndrome in a non-Caucasian multi-ethnic sample. Cardiovasc. Diabetol. 2008, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Hoffstedt, J.; Eriksson, P.; Mottagui-Tabar, S.; Arner, P. A polymorphism in the leptin promoter region (-2548 G/A) influences gene expression and adipose tissue secretion of leptin. Horm. Metab. Res. 2002, 34, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Zayani, N.; Omezzine, A.; Boumaiza, I.; Achour, O.; Rebhi, L.; Rejeb, J.; Ben Rejeb, N.; Ben Abdelaziz, A.; Bouslama, A. Association of ADIPOQ, leptin, LEPR, and resistin polymorphisms with obesity parameters in Hammam Sousse Sahloul Heart Study. J. Clin. Lab. Anal. 2017, 31, e22148. [Google Scholar] [CrossRef] [PubMed]
- Ben Ali, S.; Kallel, A.; Ftouhi, B.; Sediri, Y.; Feki, M.; Slimane, H.; Jemaa, R.; Kaabachi, N. The -2548G/A LEP polymorphism is associated with blood pressure in Tunisian obese patients. Blood Press. 2008, 17, 278–283. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic; WHO: Geneva, Switzerland, 2000. [Google Scholar]
- American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in Diabetes-2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef] [PubMed]
- Schunkert, H.; König, I.R.; Kathiresan, S.; Reilly, M.P.; Assimes, T.L.; Holm, H.; Preuss, M.; Stewart, A.F.R.; Barbalic, M.; Gieger, C.; et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 2011, 43, 333–338. [Google Scholar] [CrossRef]
- Zhu, R.; Liu, X.; He, Z. Genetic Variants on Chromosome 10q11.21 are Associated with Ischemic Stroke in the Northern Chinese Han Population. J. Mol. Neurosci. 2013, 51, 394–400. [Google Scholar] [CrossRef]
- Kiechl, S.; Laxton, R.C.; Xiao, Q.; Hernesniemi, J.A.; Raitakari, O.T.; Kähönen, M.; Mayosi, B.M.; Jula, A.; Moilanen, L.; Willeit, J.; et al. Coronary artery disease-related genetic variant on chromosome 10q11 is associated with carotid intima-media thickness and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2678–2683. [Google Scholar] [CrossRef]
- Mehta, N.N.; Li, M.; William, D.; Khera, A.V.; Derohannessian, S.; Qu, L.; Ferguson, J.F.; McLaughlin, C.; Shaikh, L.H.; Shah, R.; et al. The novel atherosclerosis locus at 10q11 regulates plasma CXCL12 levels. Eur. Heart J. 2011, 32, 963–971. [Google Scholar] [CrossRef]
- Leng, Q.; Nie, Y.; Zou, Y.; Chen, J. Elevated CXCL12 expression in the bone marrow of NOD mice is associated with altered T cell and stem cell trafficking and diabetes development. BMC Immunol. 2008, 9, 51. [Google Scholar] [CrossRef] [PubMed]
- Vidakovic, M.; Grdovic, N.; Dinic, S.; Mihailovic, M.; Uskokovic, A.; Arambasic Jovanovic, J. The importance of the CXCL12/CXCR4 axis in therapeutic approaches to Diabetes mellitus attenuation. Front. Immunol. 2015, 6, 403. [Google Scholar] [CrossRef] [PubMed]
- Huuskonen, A.; Lappalainen, J.; Tanskanen, M.; Oksala, N.; Kyröläinen, H.; Atalay, M. Genetic variations of leptin and leptin receptor are associated with body composition changes in response to physical training. Cell Biochem. Funct. 2010, 28, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Manriquez, V.; Aviles, J.; Salazar, L.; Saavedra, N.; Seron, P.; Lanas, F.; Fajardo, C.M.; Hirata, M.H.; Hirata, R.D.C.; Cerda, A. Polymorphisms in genes involved in the leptin-melanocortin pathway are associated with obesity-related cardiometabolic alterations in a Southern Chilean population. Mol. Diagn. Ther. 2018, 22, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Hernández, A.; Gallegos-Arreola, M.P.; Moreno-Macías, H.; Espinosa Fematt, J.; Pérez-Morales, R. LEP rs7799039, LEPR rs1137101, and ADIPOQ rs2241766 and 1501299 Polymorphisms are associated with obesity and chemotherapy response in Mexican women with breast cancer. Clin. Breast Cancer 2017, 17, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Katsiki, N.; Mikhailidis, D.P.; Banach, M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol. Sin. 2018, 39, 1176–1188. [Google Scholar] [CrossRef]
- Könner, A.C.; Brüning, J.C. Selective insulin and leptin resistance in metabolic disorders. Cell Metab. 2012, 16, 144–152. [Google Scholar] [CrossRef]
- Andreasen, C.H.; Stender-Petersen, K.L.; Mogensen, M.S.; Torekov, S.S.; Wegner, L.; Andersen, G.; Nielsen, A.L.; Albrechtsen, A.; Borch-Johnsen, K.; Rasmussen, S.S.; et al. Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation. Diabetes 2008, 57, 95–101. [Google Scholar] [CrossRef]
- Hunt, S.C.; Stone, S.; Xin, Y.; Scherer, C.A.; Magness, C.L.; Iadonato, S.P.; Hopkins, P.N.; Adams, T.D. Association of the FTO gene with BMI. Obesity 2008, 16, 902–904. [Google Scholar] [CrossRef]
- Hotta, K.; Nakata, Y.; Matsuo, T.; Kamohara, S.; Kotani, K.; Komatsu, R.; Itoh, N.; Mineo, I.; Wada, J.; Masuzaki, H.; et al. Variations in the FTO gene are associated with severe obesity in the Japanese. J. Hum. Genet. 2008. [Google Scholar] [CrossRef]
- Chang, Y.C.; Liu, P.H.; Lee, W.J.; Chang, T.J.; Jiang, Y.D.; Li, H.Y.; Kuo, S.S.; Lee, K.C.; Chuang, L.M. Common variation in the fat mass and Obesity-Associated (FTO) gene confers risk of obesity and modulates BMI in the chinese population. Diabetes 2008, 57, 2245–2252. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Anzaldúa, A.; Ocampo-Mendoza, Y.; Hernández-Lagunas, J.O.; Díaz-Madrid, F.A.; Romo-Nava, F.; Juárez-García, F.; Ortega-Ortiz, H.; Díaz-Anzaldúa, A.; Gutiérrez-Mora, D.; Becerra-Palars, C.; et al. Differences in body mass index according to fat mass- and obesity-associated (FTO) genotype in Mexican patients with bipolar disorder. Bipolar Disord. 2015, 17, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Villalobos-Comparán, M.; Antuna-Puente, B.; Villarreal-Molina, M.T.; Canizales-Quinteros, S.; Velázquez-Cruz, R.; León-Mimila, P.; Villamil-Ramírez, H.; González-Barrios, J.A.; Merino-García, J.L.; Thompson-Bonilla, M.R.; et al. Interaction between FTO rs9939609 and the Native American-origin ABCA1 rs9282541 affects BMI in the admixed Mexican population. BMC Med. Genet. 2017, 18, 46. [Google Scholar] [CrossRef] [PubMed]
- Villalobos-Comparán, M.; Teresa Flores-Dorantes, M.; Teresa Villarreal-Molina, M.; Rodríguez-Cruz, M.; García-Ulloa, A.C.; Robles, L.; Huertas-Vázquez, A.; Saucedo-Villarreal, N.; López-Alarcón, M.; Sánchez-Muñoz, F.; et al. The FTO gene is associated with adulthood obesity in the Mexican population. Obesity 2008, 16, 2296–2301. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, J.; Lin, H.; Huo, X.; Zhu, Q.; Zhang, M. Relationship between fat mass and obesity-associated gene expression and type 2 diabetes mellitus severity. Exp. Ther. Med. 2018, 15, 2917–2921. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Peng, W.; Zhang, X.; Lu, L.; Zhang, R.; Zhang, Q.; Wang, L.; Chen, Q.; Shen, W. Chromosome 9p21.3 polymorphism in a Chinese Han population is associated with angiographic coronary plaque progression in non-diabetic but not in type 2 diabetic patients. Cardiovasc. Diabetol. 2010, 9, 33. [Google Scholar] [CrossRef] [PubMed]
Obesity Group | Non-Obesity Group | |||||
---|---|---|---|---|---|---|
Variable | Case | Control | p-Value | Case | Control | p-Value |
N | 301 | 321 | 336 | 400 | ||
Age | 54 (47–62) | 48 (45–52) | <0.001 | 55 (49–64) | 49 (45–53) | <0.001 |
Male, n (%) | 134 (44) | 189 (57.5) | 0.001 | 189 (54) | 211 (50.7) | 0.365 |
BMI | 33.4 (31.3–36.4) | 32.8 (31.2–35) | 0.1201 | 26.6 (24.1–28.3) | 26.4 (24.7–28.1) | 0.7958 |
Glucose | 128 (100.5–187) | 98 (91.5–105) | <0.001 | 121.3 (99–164.8) | 94 (89–101) | <0.001 |
HbA1c | 5.8 (4.9–7.4) | 4.2 (3.6–4.9) | <0.001 | 5.85 (4.7–7.4) | 4 (3.5–4.6) | <0.001 |
SNP | Gene | MAF | Allele | ORDOM (95% CI), p | ORREC (95% CI), p | ORADD (95% CI), p |
---|---|---|---|---|---|---|
rs501120 | CXCL12 | 0.3 | C | 1.02 (0.7–1.4), 0.88 | 1.96 (1.1–3.7), 0.02 | 1.15 (0.8–1.5), 0.3 |
rs1333049 | CDNK2A/B | 0.46 | C | 1 (0.7–1.4), 0.99 | 0.8 (0.5–1.2), 0.29 | 0.93 (0.7–1.2), 0.54 |
rs2259816 | HNF-1α | 0.37 | T | 0.8 (0.6–1.1), 0.25 | 1.02 (0.6–1.6), 0.92 | 0.9 (0.7–1.2), 0.45 |
rs9939609 | FTO | 0.34 | A | 1.03 (0.7–1.4), 0.84 | 2.2 (1.1–5.1), 0.04 | 1.14 (0.85–1.5), 0.36 |
rs7799039 | LEP | 0.22 | A | 0.84 (0.6–1.2), 0.32 | 0.6 (0.3–0.9), 0.03 | 0.8 (0.6–1.02), 0.07 |
SNP | Gene | MAF | Allele | ORDOM (95% CI), p | ORREC (95% CI), p | ORADD (95% CI), p |
---|---|---|---|---|---|---|
rs501120 | CXCL12 | 0.3 | C | 1.05 (0.7–1.4), 0.78 | 0.92 (0.5–1.7), 0.81 | 1.01 (0.8–1.3), 0.9 |
rs1333049 | CDNK2A/B | 0.48 | C | 0.85 (0.6–1.2), 0.33 | 1.47 (1–2.2), 0.06 | 1.1 (0.8–1.3), 0.52 |
rs2259816 | HNF-1α | 0.4 | T | 1.03 (0.7–1.4), 0.41 | 0.82 (0.5–1.3), 0.41 | 0.96 (0.7–1.2), 0.75 |
rs9939609 | FTO | 0.41 | A | 0.52 (0.2–1.2), 0.13 | 1.9 (0.8–4.4), 0.13 | 1.1 (0.8–1.4), 0.51 |
rs7799039 | LEP | 0.19 | A | 0.93 (0.6–1.3), 0.69 | 1.27 (0.8–1.9), 0.26 | 1.03 (0.8–1.3), 0.74 |
SNP | Gene | MAF | Allele | β Glucose (95% CI) | p | β HbA1c (95% CI) | p |
---|---|---|---|---|---|---|---|
rs501120 | CXCL12 | 0.30 | C | 3.5 (−4.8–11.8) | 0.41 | −0.1 (−0.5–0.3) | 0.59 |
rs1333049 | CDNK2A/B | 0.46 | C | −2.6 (−9.9–4.7) | 0.48 | 0.4 (0.04–0.7) | 0.03 |
rs2259816 | HNF-1α | 0.37 | T | −4.6 (−12.5–3.2) | 0.25 | 0.07 (−0.3–0.4) | 0.68 |
rs9939609 | FTO | 0.34 | A | 0.94 (−10.1–8.2) | 0.84 | 0.5 (0.4–0.9) | 0.03 |
rs7799039 | LEP | 0.22 | A | −1.6 (−9.3–6) | 0.67 | 0.3 (−0.05–0.6) | 0.09 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Osorio, A.S.; Musalem-Younes, C.; Cárdenas-Hernández, H.; Solares-Tlapechco, J.; Costa-Urrutia, P.; Medina-Contreras, O.; Granados, J.; López-Saucedo, C.; Estrada-Garcia, T.; Rodríguez-Arellano, M.E. Common Polymorphisms Linked to Obesity and Cardiovascular Disease in Europeans and Asians are Associated with Type 2 Diabetes in Mexican Mestizos. Medicina 2019, 55, 40. https://doi.org/10.3390/medicina55020040
Jiménez-Osorio AS, Musalem-Younes C, Cárdenas-Hernández H, Solares-Tlapechco J, Costa-Urrutia P, Medina-Contreras O, Granados J, López-Saucedo C, Estrada-Garcia T, Rodríguez-Arellano ME. Common Polymorphisms Linked to Obesity and Cardiovascular Disease in Europeans and Asians are Associated with Type 2 Diabetes in Mexican Mestizos. Medicina. 2019; 55(2):40. https://doi.org/10.3390/medicina55020040
Chicago/Turabian StyleJiménez-Osorio, Angélica Saraí, Claudette Musalem-Younes, Helios Cárdenas-Hernández, Jacqueline Solares-Tlapechco, Paula Costa-Urrutia, Oscar Medina-Contreras, Julio Granados, Catalina López-Saucedo, Teresa Estrada-Garcia, and Martha Eunice Rodríguez-Arellano. 2019. "Common Polymorphisms Linked to Obesity and Cardiovascular Disease in Europeans and Asians are Associated with Type 2 Diabetes in Mexican Mestizos" Medicina 55, no. 2: 40. https://doi.org/10.3390/medicina55020040
APA StyleJiménez-Osorio, A. S., Musalem-Younes, C., Cárdenas-Hernández, H., Solares-Tlapechco, J., Costa-Urrutia, P., Medina-Contreras, O., Granados, J., López-Saucedo, C., Estrada-Garcia, T., & Rodríguez-Arellano, M. E. (2019). Common Polymorphisms Linked to Obesity and Cardiovascular Disease in Europeans and Asians are Associated with Type 2 Diabetes in Mexican Mestizos. Medicina, 55(2), 40. https://doi.org/10.3390/medicina55020040