Metabolic Alterations, Aggressive Hormone-Naïve Prostate Cancer and Cardiovascular Disease: A Complex Relationship
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of Studies
2.2. Inclusion Criteria
2.3. Our Experience
3. Results and Discussion
3.1. Literature Review
3.1.1. Prostate Cancer and Diabetes Mellitus
3.1.2. Prostate Cancer and Dyslipidemia
3.1.3. Prostate Cancer and Obesity
3.1.4. Prostate Cancer and Systemic Arterial Hypertension
3.2. Personal Experience
3.2.1. Obesity and Aggressive Prostate Cancer
3.2.2. Obesity, Diabetes Mellitus and Aggressive Prostate Cancer
3.2.3. Systemic Arterial Hypertension, Dyslipidemia and Aggressive Prostate Cancer
3.2.4. Metabolic Syndrome and Aggressive Prostate Cancer
3.2.5. Hormone-naive Prostate Cancer and Vascular Damage
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Toivanen, R.; Shen, M.M. Prostate organogenesis: Tissue induction, hormonal regulation and cell type specification. Development 2017, 144, 1382–1398. [Google Scholar] [CrossRef] [PubMed]
- Izumi, K.; Shigehara, K.; Nohara, T.; Narimoto, K.; Kadono, Y.; Mizokami, A. Both High and Low Serum Total Testosterone Levels Indicate Poor Prognosis in Patients with Prostate Cancer. Anticancer Res. 2017, 37, 5559–5564. [Google Scholar] [PubMed]
- Huggins, C.; Hodges, C.V. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. J. Urol. 2002, 168, 9–12. [Google Scholar] [CrossRef]
- Krakowsky, Y.; Morgentaler, A. Risk of Testosterone Flare in the Era of the Saturation Model: One More Historical Myth. Eur. Urol. Focus. 2019, 5, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Morgentaler, A. Testosterone and prostate cancer: An historical perspective on a modern myth. Eur. Urol. 2006, 50, 935–939. [Google Scholar] [CrossRef] [PubMed]
- Gunter, J.H.; Sarkar, P.L.; Lubik, A.A.; Nelson, C.C. New players for advanced prostate cancer and the rationalisation of insulin-sensitising medication. Int. J. Cell Biol. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.J.; Smith, M.R.; de Bono, J.S.; Molina, A.; Logothetis, C.; de Souza, P.; Fizazi, K.; Mainwaring, P.; Piulats, J.M.; Ng, S.; et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 2013, 368, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Benedettini, E.; Nguyen, P.; Loda, M. The pathogenesis of prostate cancer: From molecular to metabolic alterations. Diagn. Histopathol. 2008, 14, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Fritz, V.; Benfodda, Z.; Henriquet, C.; Hure, S.; Cristol, J.P.; Michel, F.; Carbonneau, M.A.; Casas, F.; Fajas, L. Metabolic intervention on lipid synthesis converging pathways abrogates prostate cancer growth. Oncogene 2013, 32, 5101–5110. [Google Scholar] [CrossRef] [PubMed]
- Itkonen, H.M.; Brown, M.; Urbanucci, A.; Tredwell, G.; Ho Lau, C.; Barfeld, S.; Hart, C.; Guldvik, I.J.; Takhar, M.; Heemers, H.V.; et al. Lipid degradation promotes prostate cancer cell survival. Oncotarget 2017, 8, 38264–38275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidaway, P. Prostate cancer: Targeting lipid metabolism. Nat. Rev. Urol. 2017, 14. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.S.; Koczwara, B.; Order, D.; Vitry, A. Development of comorbidities in men with prostate cancer treated with androgen deprivation therapy: An Australian population-based cohort study. Prostate Cancer Prostatic Dis. 2018, 21, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Wallis, C.J.; Mahar, A.L.; Satkunasivam, R.; Herschorn, S.; Kodama, R.T.; Lee, Y.; Kulkarni, G.S.; Narod, S.A.; Nam, R.K. Cardiovascular and Skeletal-related Events Following Localized Prostate Cancer Treatment: Role of Surgery, Radiotherapy, and Androgen Deprivation. Urology 2016, 97, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Abdollah, F.; Sammon, J.D.; Reznor, G.; Sood, A.; Schmid, M.; Klett, D.E.; Sun, M.; Aizer, A.A.; Choueiri, T.K.; Hu, J.C.; et al. Medical androgen deprivation therapy and increased non-cancer mortality in non-metastatic prostate cancer patients aged ≥66 years. Eur. J. Surg. Oncol. 2015, 41, 1529–1539. [Google Scholar] [CrossRef] [PubMed]
- Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 2007, 7, 763–777. [Google Scholar] [CrossRef] [PubMed]
- Arthur, R.; Møller, H.; Garmo, H.; Holmberg, L.; Stattin, P.; Malmstrom, H.; Lambe, M.; Hammar, N.; Walldius, G.; Robinson, D.; et al. Association between baseline serum glucose, triglycerides and total cholesterol, and prostate cancer risk categories. Cancer Med. 2016, 5, 1307–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bensimon, L.; Yin, H.; Suissa, S.; Pollak, M.N.; Azoulay, L. Type 2 diabetes and the risk of mortality among patients with prostate cancer. Cancer Causes Control 2014, 25, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.; Patel, A.V.; Mondul, A.M.; Jacobs, E.J.; Thun, M.J.; Calle, E.E. Diabetes and risk of prostate cancer in a prospective cohort of US men. Am. J. Epidemiol. 2005, 161, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Haring, A.; Murtola, T.J.; Talala, K.; Taari, K.; Tammela, T.L.; Auvinen, A. Antidiabetic drug use and prostate cancer risk in the Finnish Randomized Study of Screening for Prostate Cancer. Scand. J. Urol. 2017, 51, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Barone, B.B.; Yeh, H.C.; Snyder, C.F.; Peairs, K.S.; Stein, K.B.; Derr, R.L.; Wolff, A.C.; Brancati, F.L. Long-term All-Cause Mortality in Cancer Patients with Preexisting Diabetes Mellitus: A Systematic Review and Meta-analysis. JAMA 2008, 300, 2754–2764. [Google Scholar] [CrossRef] [PubMed]
- Pierce, B.; Plymate, S.; Ostrander, E.; Stanford, J. Diabetes mellitus and prostate cancer risk. Prostate 2008, 68, 1126–1132. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Neuhouser, M.L.; Goodman, P.J.; Albanes, D.; Chi, C.; Hsing, A.W.; Lippman, S.M.; Platz, E.A.; Pollak, M.N.; Thompson, I.M.; et al. Obesity, Diabetes, and Risk of Prostate Cancer: Results from the Prostate Cancer Prevention Trial. Cancer Epidemiol. Prev. Biomark. 2006, 15, 1977–1983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, D.M.; Anderson, T.; Gerber, L.; Thomas, J.A.; Bañez, L.L.; McKeever, M.G.; Hoyo, C.; Grant, D.; Jayachandran, J.; Freedland, S.J. The association of diabetes mellitus and high-grade prostate cancer in a multiethnic biopsy series. Cancer Cause Control 2011, 22, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Chen, M.H.; Zhang, Y.; Moran, B.J.; Dosoretz, D.E.; Katin, M.J.; Braccioforte, M.H.; Salenius, S.A.; D’Amico, A.V. Type of diabetes mellitus and the odds of Gleason score 8 to 10 prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Karlin, N.J.; Amin, S.B.; Verona, P.M.; Kosiorek, H.E.; Cook, C.B. Co-Existing Prostate Cancer and Diabetes Mellitus: Implications for Patient Outcomes and Care. Endocr. Pract. 2017, 23, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Krönig, M.; Haverkamp, C.; Schulte, A.; Heinicke, L.; Schaal, K.; Drendel, V.; Werner, M.; Wetterauer, U.; Schultze-Seemann, W.; Jilg, C.A. Diabetes and beta-adrenergic blockage are risk factors for metastatic prostate cancer. World J. Surg. Oncol. 2017, 15. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Jiang, H.W.; Ding, G.X.; Zhang, H.; Zhang, L.M.; Mao, S.H.; Ding, Q. Diabetes mellitus and prostate cancer risk of different grade or stage: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2013, 99, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Calton, B.A.; Chang, S.C.; Wright, M.E.; Kipnis, V.; Lawson, K.; Thompson, F.E.; Subar, A.F.; Mouw, T.; Campbell, D.S.; Hurwitz, P.; et al. History of diabetes mellitus and subsequent prostate cancer risk in the NIH-AARP diet and health study. Cancer Cause Control 2007, 18, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Ozbek, E.; Otunctemur, A.; Dursun, M.; Sahin, S.; Besiroglu, H.; Koklu, I.; Erkoc, M.; Danis, E.; Bozkurt, M. Diabetes mellitus and HbA1c levels associated with high grade prostate cancer. Asian Pac. J. Cancer Prev. 2014, 15, 2555–2558. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, H.; Masuda, H.; Kawakami, S.; Ito, M.; Sakura, M.; Numao, N.; Koga, F.; Saito, K.; Fujii, Y.; Yamamoto, S.; et al. Effect of diabetes mellitus on high-grade prostate cancer detection among Japanese obese patients with prostate-specific antigen less than 10 ng/mL. Urology 2012, 79, 1329–1334. [Google Scholar] [CrossRef] [PubMed]
- Daousi, C.; Casson, I.F.; Gill, G.V.; MacFarlane, I.A.; Wilding, J.P.H.; Pinkney, J.H. Prevalence of obesity in type 2 diabetes in secondary care: Association with cardiovascular risk factors. Postgrad. Med. J. 2006, 82, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Wallner, L.P.; Morgenstern, H.; McGree, M.E.; Jacobson, D.J.; St Sauver, J.L.; Jacobsen, S.J.; Sarma, A.V. The effects of metabolic conditions on prostate cancer incidence over 15 years of follow-up: Results from the Olmsted County Study. BJU Int. 2011, 107, 929–935. [Google Scholar] [CrossRef] [PubMed]
- Fokidis, H.B.; Yieng Chin, M.; Ho, V.W.; Adomat, H.H.; Soma, K.K.; Fazli, L.; Nip, K.M.; Cox, M.; Krystal, G.; Zoubeidi, A.; et al. A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice. J. Steroid Biochem. Mol. Biol. 2015, 150, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Urquiza-Salvat, N.; Pascual-Geler, M.; Lopez-Guarnido, O.; Rodrigo, L.; Martinez-Burgos, A.; Cozar, J.M.; Ocaña-Peinado, F.M.; Álvarez-Cubero, M.J.; Rivas, A. Adherence to Mediterranean diet and risk of prostate cancer. Aging Male 2018, 15, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Schwedhelm, C.; Galbete, C.; Hoffmann, G. Adherence to mediterranean diet and risk of cancer: An updated systematic review and meta-analysis. Nutrients 2017, 9, 1063. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, A.V.; Palmiero, P.; Manfrini, O.; Puddu, P.E.; Nodari, S.; Dei Cas, A.; Mercuro, G.; Scrutinio, D.; Palermo, P.; Sciomer, S.; et al. Mediterranean diet impact on cardiovascular diseases: A narrative review. J. Cardiovasc. Med. 2017, 18, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Castelló, A.; Boldo, E.; Amiano, P.; Castaño-Vinyals, G.; Aragonés, N.; Gómez-Acebo, I.; Peiró, R.; Jimenez-Moleón, J.J.; Alguacil, J.; Tardón, A.L.; et al. MCC-Spain Researchers. Mediterranean Dietary Pattern is Associated with Low Risk of Aggressive Prostate Cancer: MCC-Spain Study. J. Urol. 2018, 199, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Ferguson, L.R. Nutrigenetics and prostate cancer: 2011 and beyond. Lifestyle Genom. 2011, 4, 121–136. [Google Scholar] [CrossRef] [PubMed]
- Bishop, K.S.; Erdrich, S.; Karunasinghe, N.; Han, D.Y.; Zhu, S.; Jesuthasan, A.; Ferguson, L.R. An investigation into the association between DNA damage and dietary fatty acid in men with prostate cancer. Nutrients 2015, 7, 405–422. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Lopez, O.; Milagro, F.I.; Allayee, H.; Chmurzynska, A.; Choi, M.S.; Curi, R.; De Caterina, R.; Ferguson, L.R.; Goni, L.; Kang, J.X.; et al. Guide for Current Nutrigenetic, Nutrigenomic, and Nutriepigenetic Approaches for Precision Nutrition Involving the Prevention and Management of Chronic Diseases Associated with Obesity. Lifestyle Genom. 2017, 10, 43–62. [Google Scholar] [CrossRef] [PubMed]
- Mostaghel, E.A.; Solomon, K.R.; Pelton, K.; Freeman, M.R.; Montgomery, R.B. Impact of circulating cholesterol levels on growth and intratumoral androgen concentration of prostate tumors. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Pelton, K.; Freeman, M.R.; Solomon, K.R. Cholesterol and prostate cancer. Curr. Opin. Pharmacol. 2012, 12, 751–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galbraith, L.; Leung, H.Y.; Ahmad, I. Lipid pathway deregulation in advanced prostate cancer. Pharmacol. Res. 2018, 131, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Platz, E.; Till, C.; Goodman, P.J.; Parnes, H.L.; Figg, W.D.; Albanes, D.; Neuhouser, M.L.; Klein, E.A.; Thompson, I.M., Jr.; Kristal, A.R. Men with low serum cholesterol have a lower risk of high-grade prostate cancer in the placebo arm of the prostate cancer prevention trial. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2807–2813. [Google Scholar] [CrossRef] [PubMed]
- Leon, C.G.; Locke, J.A.; Adomat, H.H.; Etinger, S.L.; Twiddy, A.L.; Neumann, R.D.; Nelson, C.C.; Guns, E.S.; Wasan, K.M. Alterations in cholesterol regulation contribute to the production of intratumoral androgens during progression to castration-resistant prostate cancer in a mouse xenograft model. Prostate 2010, 70, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Allott, E.H.; Masko, E.M.; Freedland, S.J. Obesity and prostate cancer: Weighing the evidence. Eur. Urol. 2013, 63, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Todenhöfer, T.; Hennenlotter, J.; Kühs, U.; Gerber, V.; Gakis, G.; Vogel, U.; Aufderklamm, S.; Merseburger, A.; Knapp, J.; Stenzl, A.; et al. Altered expression of farnesyl pyrophosphate synthase in prostate cancer: Evidence for a role of the mevalonate pathway in disease progression? World J. Urol. 2013, 31, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Segawa, T.; Inoue, T.; Shiraishi, T.; Yoshida, T.; Toda, Y.; Yamada, T.; Kinukawa, N.; Terada, N.; Kobayashi, T.; et al. Increased Akt and phosphorylated Akt expression are associated with malignant biological features of prostate cancer in Japanese men. BJU Int. 2007, 100, 685–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llaverias, G.; Danilo, C.; Wang, Y.; Witkiewicz, A.K.; Daumer, K.; Lisanti, M.P.; Frank, P.G. A Western-type diet accelerates tumor progression in an autochthonous mouse model of prostate cancer. Am. J. Pathol. 2010, 177, 3180–3191. [Google Scholar] [CrossRef] [PubMed]
- Locke, J.A.; Guns, E.S.; Lehman, M.L.; Ettinger, S.; Zoubeidi, A.; Lubik, A.; Margiotti, K.; Fazli, L.; Adomat, H.; Wasan, K.M.; et al. Arachidonic acid activation of intratumoral steroid synthesis during prostate cancer progression to castration resistance. Prostate 2010, 70, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, R.B.; Mostaghel, E.A.; Vessella, R.; Hess, D.L.; Kalhorn, T.F.; Higano, C.S.; True, L.D.; Nelson, P.S. Maintenance of intratumoral androgens in metastatic prostate cancer: A mechanism for castration-resistant tumor growth. Cancer Res. 2008, 68, 4447–4454. [Google Scholar] [CrossRef] [PubMed]
- Dillard, P.R.; Lin, M.F.; Khan, S.A. Androgen-independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol. Mol. Cell Endocrinol. 2008, 295, 115–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnoeller, T.J.; Jentzmik, F.; Schrader, A.J.; Steinestel, J. Influence of serum cholesterol level and statin treatment on prostate cancer aggressiveness. Oncotarget 2017, 8, 47110–47120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allott, E.H.; Arab, L.; Su, L.J.; Farnan, L.; Fontham, E.T.; Mohler, J.L.; Bensen, J.T.; Steck, S.E. Saturated fat intake and prostate cancer aggressiveness: Results from the population-based North Carolina-Louisiana Prostate Cancer Project. Prostate Cancer Prostatic Dis. 2017, 20, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Allott, E.H.; Farnan, L.; Steck, S.E.; Arab, L.; Su, L.J.; Mishel, M.; Fontham, E.T.; Mohler, J.L.; Bensen, J.T. Statin Use and Prostate Cancer Aggressiveness: Results from the Population-Based North Carolina-Louisiana Prostate Cancer Project. Cancer Epidemiol. Biomark. Prev. 2016, 25, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.; Kung, H.J.; Ghosh, P.M. Statins and prostate cancer: Role of cholesterol inhibition versus prevention of small GTP binding proteins. Am. J. Cancer Res. 2011, 1, 542–561. [Google Scholar] [PubMed]
- Russell, R.G. Bisphosphonates: The first 40 years. Bone 2011, 49, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Eberlé, D.; Hegarty, B.; Bossard, P.; Ferré, P.; Foufelle, F. SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie 2004, 86, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Ettinger, S.L.; Sobel, R.; Whitmore, T.G.; Akbari, M.; Bradley, D.R.; Gleave, M.E.; Nelson, C.C. Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res. 2004, 64, 2212–2221. [Google Scholar] [CrossRef] [PubMed]
- Jespersen, C.G.; Nørgaard, M.; Friis, S.; Skriver, C.; Borre, M. Statin use and risk of prostate cancer: A Danish population-based case-control study, 1997–2010. Cancer Epidemiol. 2014, 38, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Lustman, A.; Nakar, S.; Cohen, A.D.; Vinker, S. Statin use and incident prostate cancer risk: Does the statin brand matter? A population-based cohort study. Prostate Cancer Prostatic Dis. 2014, 17, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Li, W.; Yuan, L.; Mehta, R.G.; Kopelovich, L.; McCormick, D.L. Inhibition of proliferation and induction of autophagy by atorvastatin in PC3 prostate cancer cells correlate with downregulation of Bcl2 and upregulation of miR-182 and p21. PLoS ONE 2013, 8, e70442. [Google Scholar] [CrossRef] [PubMed]
- Bansal, D.; Undela, K.; D’Cruz, S.; Schifano, F. Statin use and risk of prostate cancer: A meta-analysis of observational studies. PLoS ONE 2012, 7, e46691. [Google Scholar] [CrossRef] [PubMed]
- Farwell, W.R.; D’Avolio, L.W.; Scranton, R.E.; Lawler, E.V.; Gaziano, J.M. Statins and prostate cancer diagnosis and grade in a veterans population. J. Natl. Cancer Inst. 2011, 103, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Herold, M.J.; Kimmel, B.; Muller, I.; Rincon-Orozco, B.; Kunzmann, V.; Herrmann, T. Reduced expression of the mevalonate pathway enzyme farnesyl pyrophosphate synthase unveils recognition of tumor cells by Vc9Vd2 T cells. J. Immunol. 2009, 182, 8118–8124. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Graner, E.; Febbo, P.; Weinstein, L.; Bhattacharya, N.; Onody, T.; Bubley, G.; Balk, S.; Loda, M. Fatty acid synthase expression defines distinct molecular signatures in prostate cancer. Mol. Cancer Res. 2003, 1, 707–715. [Google Scholar] [PubMed]
- Hisanori, U.; Kobayashi, T.; Matsumoto, M.; Watanabe, S.; Yoneda, A.; Yoshimi, B. Adipose tissue: Critical contributor to the development of prostate cancer. J. Med. Investig. 2018, 65, 9–17. [Google Scholar]
- Wright, C.; Iyer, A.K.V.; Kaushik, V.; Azad, N. Anti-Tumorigenic Potential of a Novel Orlistat-AICAR Combination in Prostate Cancer Cells. J. Cell Biochem. 2017, 118, 3834–3845. [Google Scholar] [CrossRef] [PubMed]
- Sadowski, M.C.; Pouwer, R.H.; Gunter, J.H.; Lubik, A.A.; Quinn, R.J.; Nelson, C.C. The fatty acid synthase inhibitor triclosan: Repurposing an anti-microbial agent for targeting prostate cancer. Oncotarget 2014, 5, 9362–9381. [Google Scholar] [CrossRef] [PubMed]
- Flavin, R.; Zadra, G.; Loda, M. Metabolic alterations and targeted therapies in prostate cancer. J. Pathol. 2011, 223, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.B.; Xu, H.; Zhu, W.H.; Bai, P.D.; Hu, J.M.; Yang, T.; Jiang, H.W.; Ding, Q. High-fat diet-induced adipokine and cytokine alterations promote the progression of prostate cancer in vivo and in vitro. Oncol. Lett. 2018, 15, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Figiel, S.; Pinault, M.; Domingo, I.; Guimaraes, C.; Guibon, R.; Besson, P.; Tavernier, E.; Blanchet, P.; Multigner, L.; Bruyère, F.; et al. Fatty acid profile in peri-prostatic adipose tissue and prostate cancer aggressiveness in African-Caribbean and Caucasian patients. Eur. J. Cancer 2018, 91, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Shen, M.; Chen, X.; Zhu, R.; Yang, D.R.; Tsai, Y.; Keng, P.C.; Chen, Y.; Lee, S.O. Adipocytes affect castration-resistant prostate cancer cells to develop the resistance to cytotoxic action of NK cells with alterations of PD-L1/NKG2D ligand levels in tumor cells. Prostate 2018, 78, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Cho, S.Y.; Lee, S.B.; Son, H.; Jeong, H. Obesity is associated with higher risk of prostate cancer detection in a Korean biopsy population. BJU Int. 2014, 114, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Morote, J.; Celma, A.; Planas, J.; Placer, J.; Konstantinidis, C.; Iztueta, I.; de Torres, I.M.; Oliván, M.; Reventós, J.; Doll, A. Sedentarism and overweight as risk factors for the detection of prostate cancer and its aggressivenes. Actas Urológicas Españolas 2014, 38, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Tewari, R.; Rajender, S.; Natu, S.M.; Goel, A.; Dalela, D.; Goel, M.M.; Tondon, P. Significance of obesity markers and adipocytokines in high grade and high stage prostate cancer in North Indian men—A cross-sectional study. Cytokine 2013, 63, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Bai, P.D.; Hu, M.B.; Xu, H.; Zhu, W.H.; Hu, J.M.; Yang, T.; Jiang, H.W.; Ding, Q. Body mass index is associated with higher Gleason score and biochemical recurrence risk following radical prostatectomy in Chinese men: A retrospective cohort study and meta-analysis. World J. Surg. Oncol. 2015, 13, 311. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Cai, J.; Nielsen, M.E.; Troester, M.A.; Mohler, J.L.; Fontham, E.T.; Hendrix, L.H.; Farnan, L.; Olshan, A.F.; Bensen, J.T. The association of diabetes and obesity with prostate cancer aggressiveness among Black Americans and White Americans in a population-based study. Cancer Causes Control 2016, 27, 1475–1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Sebastiano, K.M.; Pinthus, J.H.; Duivenvoorden, W.C.; Patterson, L.; Dubin, J.A.; Mourtzakis, M. Elevated C-Peptides, Abdominal Obesity, and Abnormal Adipokine Profile are Associated With Higher Gleason Scores in Prostate Cancer. Prostate 2017, 77, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Pruthi, R.S.; Swords, K.; Schultz, H.; Carson, C.C., 3rd; Wallen, E.M. The impact of obesity on the diagnosis of prostate cancer using a modern extended biopsy scheme. J. Urol. 2009, 181, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Gallina, A.; Karakiewicz, P.I.; Hutterer, G.C.; Chun, F.K.; Briganti, A.; Walz, J.; Antebi, E.; Shariat, S.F.; Suardi, N.; Graefen, M.; et al. Obesity does not predispose to more aggressive prostate cancer either at biopsy or radical prostatectomy in European men. Int. J. Cancer 2007, 121, 791–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiffmann, J.; Karakiewicz, P.I.; Rink, M.; Manka, L.; Salomon, G.; Tilki, D.; Budäus, L.; Pompe, R.; Leyh-Bannurah, S.R.; Haese, A.; et al. Obesity paradox in prostate cancer: Increased body mass index was associated with decreased risk of metastases after surgery in 13,667 patients. World J. Urol. 2018, 36, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Hoda, M.R.; Popken, G. Mitogenic and anti-apoptotic actions of adipocyte-derived hormone leptin in prostate cancer cells. BJU Int. 2008, 102, 383–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deo, D.D.; Rao, A.P.; Bose, S.S.; Ouhtit, A.; Baliga, S.B.; Rao, S.A.; Trock, B.J.; Thouta, R.; Raj, M.H.; Rao, P.N. Differential effects of leptin on the invasive potential of androgen dependent and independent prostate carcinoma cells. J. Biomed. Biotechnol. 2008, 2008, 163902. [Google Scholar] [CrossRef] [PubMed]
- Bub, J.D.; Miyazaki, T.; Iwamoto, Y. Adiponectin as a growth inhibitor in prostate cancer cells. Biochem. Biophys. Res. Commun. 2006, 340, 1158–1166. [Google Scholar] [CrossRef] [PubMed]
- Macciò, A.; Madeddu, C.; Massa, D.; Astara, G.; Farci, D.; Melis, G.B.; Mantovani, G. Interleukin-6 and leptin as markers of energy metabolic changes in advanced ovarian cancer patients. J. Cell Mol. Med. 2009, 13, 3951–3959. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, C.A.; Slingerland, J.M. Cytokines, obesity, and cancer: New insights on mechanisms linking obesity to cancer risk and progression. Annu. Rev. Med. 2013, 64, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Beebe-Dimmer, J.L.; Dunn, R.L.; Sarma, A.V.; Montie, J.E.; Cooney, K.A. Features of the metabolic syndrome and prostate cancer in African-American men. Cancer 2007, 109, 875–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.H.; Choi, N.Y.; Bang, S.H.; Kwon, O.J.; Jin, Y.W.; Myung, S.C.; Chang, I.H.; Kim, T.H.; Ahn, S.H. Relationship between serum prostate-specific antigen levels and components of metabolic syndrome in healthy men. Urology 2008, 72, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Ohwaki, K.; Endo, F.; Hattori, K. Abdominal obesity, hypertension, antihypertensive medication use and biochemical recurrence of prostate cancer after radical prostatectomy. Eur. J. Cancer 2015, 51, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Asmar, R.; Beebe-Dimmer, J.L.; Korgavkar, K.; Keele, G.R.; Cooney, K.A. Hypertension, obesity and prostate cancer biochemical recurrence after radical prostatectomy. Prostate Cancer Prostatic Dis. 2013, 16, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Hammarsten, J.; Högstedt, B. Clinical haemodynamic, anthropometric, metabolic and insulin profile of men with high-stage and high-grade clinical prostate cancer. Blood Press. 2004, 13, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Post, J.M.; Beebe-Dimmer, J.L.; Morgenstern, H.; Neslund-Dudas, C.; Bock, C.H.; Nock, N.; Rundle, A.; Jankowski, M.; Rybicki, B.A. The metabolic syndrome and biochemical recurrence following radical prostatectomy. Prostate Cancer 2012, 2011, 245642. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, L.M.; Liu, J.; Ding, G.X.; Ding, Q.; Jiang, H.W. The association between overall survival of prostate cancer patients and hypertension, hyperglycemia, and overweight in Southern China: A prospective cohort study. J. Cancer Res. Clin. Oncol. 2013, 139, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Palm, D.; Lang, K.; Niggemann, B.; Drell, T.L., 4th; Masur, K.; Zaenker, K.S.; Entschladen, F. The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by beta-blockers. Int. J. Cancer 2006, 118, 2744–2749. [Google Scholar] [CrossRef] [PubMed]
- Fernández, E.V.; Price, D.K.; Figg, W.D. Prostate cancer progression attributed to autonomic nerve development: Potential for therapeutic prevention of localized and metastatic disease. Cancer Biol. Ther. 2013, 14, 1005–1006. [Google Scholar] [CrossRef] [PubMed]
- Benish, M.; Bartal, I.; Goldfarb, Y.; Levi, B.; Avraham, R.; Raz, A.; Ben-Eliyahu, S. Perioperative use of beta-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Ann. Surg. Oncol. 2008, 15, 2042–2052. [Google Scholar] [CrossRef] [PubMed]
- Grytli, H.H.; Fagerland, M.W.; Fosså, S.D.; Taskén, K.A. Association Between Use of β-Blockers and Prostate Cancer-Specific Survival: A Cohort Study of 3561 Prostate Cancer Patients with High-Risk or Metastatic Disease. Eur. Urol. 2014, 65, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Liu, X.; Guo, F.; Tan, S.; Wang, G.; Liu, H.; Wang, J.; He, X.; Mo, Y.; Shi, B. Impact of beta-blockers on prostate cancer mortality: A meta-analysis of 16,825 patients. OncoTargets Ther. 2015, 8, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Di Francesco, S.; Tenaglia, R.L. Obesity, diabetes and aggressive prostate cancer hormone-naïve at initial diagnosis. Cent. Eur. J. Urol. 2013, 66, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Di Francesco, S.; Tenaglia, R.L. Obesity, Diabetes Mellitus and Vascular Disease: A Complex Relationship with Prostate Cancer. J. Cancer Ther. 2014, 5, 442–447. [Google Scholar] [CrossRef]
- Di Francesco, S.; Tenaglia, R.L. The Association of Obesity and Sistemic Arterial Hypertension With High-Grade Prostate Cancer: Our Experience. J. Cancer Res. Updates 2014, 3, 191–195. [Google Scholar] [CrossRef]
- Piątkiewicz, P.; Czech, A. Glucose metabolism disorders and the risk of cancer. Arch. Immunol. Ther. Exp. 2011, 59, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Ahima, R.S. Metabolic actions of adipocyte hormones: Focus on adiponectin. Obesity 2006, 14, 9S–15S. [Google Scholar] [CrossRef] [PubMed]
- Bråkenhielm, E.; Veitonmäki, N.; Cao, R.; Kihara, S.; Matsuzawa, Y.; Zhivotovsky, B.; Funahashi, T.; Cao, Y. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc. Natl. Acad. Sci. USA 2004, 101, 2476–2481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, W.; Wang, L.; Ma, Q.; Qi, M.; Lu, N.; Zhang, L.; Han, B. Adiponectin as a potential tumor suppressor inhibiting epithelial-to-mesenchymal transition but frequently silenced in prostate cancer by promoter methylation. Prostate 2015, 75, 1197–1205. [Google Scholar] [CrossRef] [PubMed]
- Colli, S.; Cavalcante, F.S.; Martins, M.P.; Sampaio, F.J.; da Fonte Ramos, C. Leptin role in the rat prostate ventral lobe. Fertil. Steril. 2011, 95, 1490–1493. [Google Scholar] [CrossRef] [PubMed]
- Saglam, K.; Aydur, E.; Yilmaz, M.; Göktaş, S. Leptin influences cellular differentiation and progression in prostate cancer. J. Urol. 2003, 169, 1308–1311. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, C.; Surmacz, E. Leptin and cancer. J. Cell Physiol. 2006, 207, 12–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noda, T.; Kikugawa, T.; Tanji, N.; Miura, N.; Asai, S.; Higashiyama, S.; Yokoyama, M. Long-term exposure to leptin enhances the growth of prostate cancer cells. Int. J. Oncol. 2015, 46, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Hursting, S.D.; Contois, J.H.; Strom, S.S.; Yamamura, Y.; Babaian, R.J.; Troncoso, P.; Scardino, P.S.; Wheeler, T.M.; Amos, C.I.; et al. Leptin and prostate cancer. Prostate 2001, 46, 62–67. [Google Scholar] [CrossRef]
- Hu, M.B.; Xu, H.; Hu, J.M.; Zhu, W.H.; Yang, T.; Jiang, H.W.; Ding, Q. Genetic polymorphisms in leptin, adiponectin and their receptors affect risk and aggressiveness of prostate cancer: Evidence from a meta-analysis and pooled-review. Oncotarget 2016, 7, 81049–81061. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Moreira, D.M.; Gerber, L.; Rittmaster, R.S.; Andriole, G.L.; Freedland, S.J. Diabetes and prostate cancer risk in the REDUCE trial. Prostate Cancer Prostatic Dis. 2011, 14, 326–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margel, D.; Urbach, D.; Lipscombe, L.L.; Bell, C.M.; Kulkarni, G.; Austin, P.C.; Fleshner, N. Association Between Metformin Use and Risk of Prostate Cancer and Its Grade. J. Natl. Cancer Inst. 2013, 105, 1123–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franciosi, M.; Lucisano, G.; Lapice, E.; Strippoli, G.F.; Pellegrini, F.; Nicolucci, A. Metformin therapy and risk of cancer in patients with type 2 diabetes: Systematic review. PLoS ONE 2013, 8, 71583. [Google Scholar]
- Zhang, P.; Li, H.; Tan, X.; Chen, L.; Wang, S. Association of metformin use with cancer incidence and mortality: A meta-analysis. Cancer Epidemiol. 2013, 37, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Spratt, D.E.; Zhang, C.; Zumsteg, Z.S.; Pei, X.; Zhang, Z.; Zelefsky, M.J. Metformin and prostate cancer: Reduced development of castration resistant disease and prostate cancer mortality. Eur. Urol. 2013, 63, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.L.; Stanford, J.L. Metformin use and prostate cancer in Caucasian men: Results from a population-based case–control study. Cancer Causes Control 2009, 20, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Murtola, T.J.; Tammela, T.L.; Lahtela, J.; Auvinen, A. Anti-diabetic medication and prostate cancer risk: A population-based case-control study. Am. J. Epidemiol. 2008, 168, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Azoulay, L.; Dell’Aniello, S.; Gagnon, B.; Pollak, M.; Suissa, S. Metformin and the incidence of prostate cancer in patients with type 2 diabetes. Cancer Epidemiol. Biomark. Prev. 2011, 20, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Mayer, M.J.; Klotz, L.H.; Venkateswaran, V. The Effect of Metformin Use during Docetaxel Chemotherapy on Prostate Cancer Specific and Overall Survival of Diabetic Patients with Castration Resistant Prostate Cancer. J. Urol. 2017, 197, 1068–1075. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tong, D.; Liu, G.; Xu, J.; Do, K.; Geary, K.; Zhang, D.; Zhang, J.; Zhang, Y.; Li, Y.; et al. Metformin reverses prostate cancer resistance to enzalutamide by targeting TGF-β1/STAT3 axis-regulated EMT. Cell Death Dis. 2017, 8, e3007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konijeti, R.; Koyama, S.; Gray, A.; Barnard, R.J.; Said, J.W.; Castor, B.; Elashoff, D.; Wan, J.; Beltran, P.J.; Calzone, F.J.; et al. Effect of a low-fat diet combined with IGF-1 receptor blockade on 22Rv1 prostate cancer xenografts. Mol. Cancer Ther. 2012, 11, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Giovannucci, E.; Michaud, D. The role of obesity and related metabolic disturbances in cancers of the colon, prostate, and pancreas. Gastroenterology 2007, 132, 2208–2225. [Google Scholar] [CrossRef] [PubMed]
- Duman, B.S.; Turkoglu, C.; Gunay, D.; Cagatay, P.; Demiroglu, C.; Buyukdevrim, A.S. The interrelationship between insulin secretion and action in type 2 diabetes mellitus with different degrees of obesity: Evidence supporting central obesity. Diabetes Nutr. Metab. 2003, 16, 243–250. [Google Scholar] [PubMed]
- Prabhat, P.; Tewari, R.; Natu, S.M.; Dalela, D.; Goel, A.; Tandon, P.; Goel, M.M.; Singh, K. Is central obesity, hyperinsulinemia and dyslipidemia associated with high-grade prostate cancer? A descriptive cross-sectional study. Indian J. Urol. 2010, 26, 502–506. [Google Scholar] [PubMed]
- Xylinas, E.; Ploussard, G.; Durand, X.; Fabre, A.; Salomon, L.; Allory, Y.; Vordos, D.; Hoznek, A.; Abbou, C.C.; de la Taille, A. Low pretreatment total testosterone (3 ng/mL) predicts extraprostatic disease in prostatectomy specimens from patients with preoperative localized prostate cancer. BJU Int. 2011, 107, 1400–1403. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Yonese, J.; Kawakami, S.; Ohkubo, Y.; Tatokoro, M.; Komai, Y.; Takeshita, H.; Ishikawa, Y.; Fukui, I. Preoperative serum testosterone level as an independent predictor of treatment failure following radical prostatectomy. Eur. Urol. 2007, 52, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, G.A.; Guglielmetti, G.B.; Barbosa, J.A.; Pontes, J., Jr.; Fazoli, A.J.; Cordeiro, M.D.; Coelho, R.F.; Carvalho, P.A.; Gallucci, F.P.; Padovani, G.P.; et al. Low serum testosterone is a predictor of high-grade disease in patients with prostate cancer. Rev. Assoc. Med. Bras. 2017, 63, 704–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llukani, E.; Katz, B.F.; Agalliu, I.; Lightfoot, A.; Yu, S.S.; Kathrins, M.; Lee, Z.; Su, Y.K.; Monahan Agnew, K.; McGill, A.; et al. Low levels of serum testosterone in middle-aged men impact pathological features of prostate cancer. Prostate Int. 2017, 5, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Eltzschig, H.K.; Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 2011, 364, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.J.; Lho, Y.; Connelly, L.; Wang, Y.; Yu, X.; Saint Jean, L.; Case, T.C.; Ellwood-Yen, K.; Sawyers, C.L.; Bhowmick, N.A.; et al. The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-independent growth. Cancer Res. 2008, 68, 6762–6769. [Google Scholar] [CrossRef] [PubMed]
- Di Francesco, S.; Castellan, P.; Manco, R.; Tenaglia, R.L. Reciprocal cross-talk between Prostaglandin E2 and bone in prostate cancer: A current Review. Cent. Eur. J. Urol. 2011, 4, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Forte, V.; Pandey, A.; Abdelmessih, R.; Forte, G.; Whaley-Connell, A.; Sowers, J.R.; McFarlane, S.I. Obesity, Diabetes, the Cardiorenal Syndrome, and Risk for Cancer. Cardiorenal Med. 2012, 2, 143–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossmann, M.; Zajac, J.D. Androgen deprivation therapy in men with prostate cancer: How should the side effects be monitored and treated? Clin. Endocrinol. 2011, 74, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Di Francesco, S.; Tenaglia, R.L. Metabolic alterations, vascular disease and advanced prostate cancer. New Players for Metastatic Advanced Prostate Cancer? J. Anal. Oncol. 2014, 3, 33–35. [Google Scholar] [CrossRef]
- Goyal, J.; Pond, G.R.; Galsky, M.D.; Hendricks, R.; Small, A.; Tsao, C.K.; Sonpavde, G. Association of the Charlson comorbidity index and hypertension with survival in men with metastatic castration-resistant prostate cancer. Urol. Oncol. 2014, 32, e27–e34. [Google Scholar] [CrossRef] [PubMed]
- Häggström, C.; Stocks, T.; Ulmert, D.; Bjørge, T.; Ulmer, H.; Hallmans, G.; Manjer, J.; Engeland, A.; Nagel, G.; Almqvist, M.; et al. Prospective study on metabolic factors and risk of prostate cancer. Cancer 2012, 118, 6199–6206. [Google Scholar] [CrossRef] [PubMed]
- Martini, L.A.; Wood, R.J. Milk intake and the risk of type 2 diabetes mellitus, hypertension and prostate cancer. Arq. Bras. Endocrinol. Metabol. 2009, 53, 688–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assayag, J.; Pollak, M.N.; Azoulay, L. Post-diagnostic use of beta-blockers and the risk of death in patients with prostate cancer. Eur. J. Cancer 2014, 50, 2838–2845. [Google Scholar] [CrossRef] [PubMed]
- Santala, E.E.; Rannikko, A.; Murtola, T.J. Antihypertensive drugs and prostate cancer survival after radical prostatectomy in Finland-A nationwide cohort study. Int. J. Cancer 2019, 144, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.Y.; Huang, W.Y.; Lin, C.L.; Huang, T.C.; Wu, Y.Y.; Chen, J.H.; Kao, C.H. Propranolol Reduces Cancer Risk: A Population-Based Cohort Study. Medicine 2015, 94, e1097. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.; Burke, S.L.; Head, G.A. Obesity-related hypertension and the role of insulin and leptin in high-fat-fed rabbits. Hypertension 2013, 61, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Touyz, R.M. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: What is the clinical significance? Hypertension 2004, 44, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.R. Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? Urol. Res. 2012, 40, 95–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virdis, A.; Neves, M.F.; Duranti, E.; Bernini, G.; Taddei, S. Microvascular endothelial dysfunction in obesity and hypertension. Curr. Pharm. Des. 2013, 19, 2382–2389. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, C.N.; Baskin-Bey, E.S.; Watson, M.; Worsfold, A.; Rider, A.; Tombal, B. Treatment patterns and characteristics of European patients with castration-resistant prostate cancer. BMC Urol. 2013, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Chiodini, P.; Capuano, A.; Bellastella, G.; Maiorino, M.I.; Parretta, E.; Lenzi, A.; Giugliano, D. Effect of metabolic syndrome and its components on prostate cancer risk: Meta-analysis. J. Endocrinol. Investig. 2013, 36, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Kurata, S.; Tateishi, U.; Shizukuishi, K.; Yoneyama, T.; Hino, A.; Kaida, H.; Fujimoto, K.; Ishibashi, M.; Inoue, T. Assessment of atherosclerosis in oncologic patients using F-fluoride PET/CT. Ann. Nucl. Med. 2013, 27, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.H.; Taylor, M.G.; Robinet, P.; Smith, J.D.; Schweitzer, J.; Sehayek, E.; Falzarano, S.M.; Magi-Galluzzi, C.; Klein, E.A.; Ting, A.H. Dysregulation of cholesterol homeostasis in human prostate cancer through loss of ABCA1. Cancer Res. 2013, 733, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Thysell, E.; Surowiec, I.; Hörnberg, E.; Crnalic, S.; Widmark, A.; Johansson, A.I.; Stattin, P.; Bergh, A.; Moritz, T.; Antti, H.; et al. Metabolomic characterization of human prostate cancer bone metastases reveals increased levels of cholesterol. PLoS ONE 2010, 5, e14175. [Google Scholar] [CrossRef] [PubMed]
- Jeon, K.P.; Jeong, T.Y.; Lee, S.Y.; Hwang, S.W.; Shin, J.H.; Kim, D.S. Prostate cancer in patients with metabolic syndrome is associated with low grade Gleason score when diagnosed on biopsy. Korean J. Urol. 2012, 53, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Morote, J.; Ropero, J.; Planas, J.; Bastarós, J.M.; Delgado, G.; Placer, J.; Celma, A.; de Torres, I.M.; Carles, J.; Reventós, J.; et al. Metabolic syndrome increases the risk of aggressive prostate cancer detection. BJU Int. 2013, 111, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- De Nunzio, C.; Freedland, S.J.; Miano, R.; Trucchi, A.; Cantiani, A.; Carluccini, A.; Tubaro, A. Metabolic syndrome is associated with high grade gleason score when prostate cancer is diagnosed on biopsy. Prostate 2011, 71, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Kheterpal, E.; Sammon, J.D.; Diaz, M.; Bhandari, A.; Trinh, Q.D.; Pokala, N.; Sharma, P.; Menon, M.; Agarwal, P.K. Effect of metabolic syndrome on pathologic features of prostate cancer. Urol. Oncol. 2013, 31, 1054–1059. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, J.; Gray, P.K.; Hahn, N.; Hayes, J.; Myers, L.J.; Carney-Doebbeling, C.; Sweeney, C.J. Presence of the metabolic syndrome is associated with shorter time to castration-resistant prostate cancer. Ann. Oncol. 2011, 22, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Di Francesco, S.; Tenaglia, R.L. Metabolic Syndrome and Aggressive Prostate Cancer at Initial Diagnosis. Horm. Metab. Res. 2017, 49, 507–509. [Google Scholar] [CrossRef] [PubMed]
- Satariano, W.A.; Ragland, K.E.; Van Den Eeden, S.K. Cause of death in men diagnosed with prostate carcinoma. Cancer 1998, 83, 1180–1188. [Google Scholar] [CrossRef] [Green Version]
- Fouad, M.N.; Mayo, C.P.; Funkhouser, E.M.; Hall, H.I.; Urban, D.A.; Kiefe, C.I. Comorbidity independently predicted death in older prostate cancer patients, more of whom died with than from their disease. J. Clin. Epidemiol. 2004, 57, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Groome, P.A.; Rohland, S.L.; Siemens, D.R.; Brundage, M.D.; Heaton, J.; Mackillop, W.J. Assessing the impact of comorbid illnesses on death within 10 years in prostate cancer treatment candidates. Cancer 2011, 117, 3943–3952. [Google Scholar] [CrossRef] [PubMed]
- Di Francesco, S.; Tenaglia, R.l. Vascular Disease and Prostate Cancer: A Conflicting Association. J. Cancer Res. Updates 2014, 3, 81–84. [Google Scholar] [CrossRef]
- Zöller, B.; Ji, J.; Sundquist, J.; Sundquist, K. Risk of coronary heart disease in patients with cancer: A nationwide follow-up study from Sweden. Eur. J. Cancer 2012, 48, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Omalu, B.I.; Hammers, J.L.; Parwani, A.V.; Balani, J.; Shakir, A.; Ness, R.B. Is there an association between coronary atherosclerosis and carcinoma of the prostate in men aged 50 years and older? An autopsy and coroner based post-mortem study. J. Clin. Pract. 2013, 16, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, L.; Olsen, J.H. Risk for non-smoking-related cancer in atherosclerotic patients. Cancer Epidemiol. Biomark. Prev. 1999, 8, 915–918. [Google Scholar]
- Stamatiou, K.N.; Alevizos, A.G.; Mihas, K.; Mariolis, A.D.; Michalodimitrakis, E.; Sofras, F. Associations between coronary heart disease, obesity and histological prostate cancer. Int. Urol. Nephrol. 2007, 39, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Heron, M.; Hoyert, D.L.; Murphy, S.L.; Xu, J.; Kochanek, K.D.; Tejada-Vera, B. Deaths: Final data for 2006. Natl. Vital Stat. Rep. 2009, 57, 1–134. [Google Scholar] [PubMed]
- Cheung, A.S.; Pattison, D.; Bretherton, I.; Hoermann, R.; Lim Joon, D.; Ho, E.; Jenkins, T.; Hamilton, E.J.; Bate, K.; Chan, I.; et al. Cardiovascular risk and bone loss in men undergoing androgen deprivation therapy for non-metastatic prostate cancer: Implementation of standardized management guidelines. Andrology 2013, 1, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.A.; Gerber, L.; Bañez, L.L.; Moreira, D.M.; Rittmaster, R.S.; Andriole, G.L.; Freedland, S.J. Prostate cancer risk in men with baseline history of coronary artery disease: Results from the REDUCE Study. Cancer Epidemiol. Biomark. Prev. 2012, 21, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.M.N.; Biolo, A.; Foppa, M.; da Rosa, P.R.; Rohde, L.E.; Clausell, N. A prospective, comparative study on the early effects of local and remote radiation therapy on carotid intima-media thickness and vascular cellular adhesion molecule-1 in patients with head and neck and prostate tumors. Radiother. Oncol. 2011, 101, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Touvier, M.; Fezeu, L.; Ahluwalia, N.; Julia, C.; Charnaux, N.; Sutton, A.; Méjean, C.; Latino-Martel, P.; Hercberg, S.; Galan, P.; et al. Association between prediagnostic biomarkers of inflammation and endothelial function and cancer risk: A nested case-control study. Am. J. Epidemiol. 2013, 177, 3–13. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Francesco, S.; Robuffo, I.; Caruso, M.; Giambuzzi, G.; Ferri, D.; Militello, A.; Toniato, E. Metabolic Alterations, Aggressive Hormone-Naïve Prostate Cancer and Cardiovascular Disease: A Complex Relationship. Medicina 2019, 55, 62. https://doi.org/10.3390/medicina55030062
Di Francesco S, Robuffo I, Caruso M, Giambuzzi G, Ferri D, Militello A, Toniato E. Metabolic Alterations, Aggressive Hormone-Naïve Prostate Cancer and Cardiovascular Disease: A Complex Relationship. Medicina. 2019; 55(3):62. https://doi.org/10.3390/medicina55030062
Chicago/Turabian StyleDi Francesco, Simona, Iole Robuffo, Marika Caruso, Giulia Giambuzzi, Deborah Ferri, Andrea Militello, and Elena Toniato. 2019. "Metabolic Alterations, Aggressive Hormone-Naïve Prostate Cancer and Cardiovascular Disease: A Complex Relationship" Medicina 55, no. 3: 62. https://doi.org/10.3390/medicina55030062
APA StyleDi Francesco, S., Robuffo, I., Caruso, M., Giambuzzi, G., Ferri, D., Militello, A., & Toniato, E. (2019). Metabolic Alterations, Aggressive Hormone-Naïve Prostate Cancer and Cardiovascular Disease: A Complex Relationship. Medicina, 55(3), 62. https://doi.org/10.3390/medicina55030062