Food Allergies: Current and Future Treatments
Abstract
:1. Introduction
2. Methods
2.1. Research Strategy
2.2. Study Selection
3. Allergen Specific Immunotherapy
4. Allergen Nonspecific Immunotherapy
4.1. Anti-Cytokines Therapy
4.2. Toll-Like Receptors (TLRs)
4.3. Cellular Targets
4.4. Anti-IgE Therapy
4.5. Probiotics
4.6. Gene Therapy
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boyce, J.A.; Assa’ad, A.; Burks, A.W.; Jones, S.M.; Sampson, H.A.; Wood, R.A.; Plaut, M.; Cooper, S.F.; Fenton, M.J.; Arshad, S.H.; et al. Guidelines for the diagnosis and management of food allergy in the United States: Summary of the NIAID-sponsored Expert Panel Report. J. Allergy Clin. Immunol. 2010, 126, 1105–1118. [Google Scholar] [CrossRef]
- Osborne, N.J.; Koplin, J.J.; Martin, P.E.; Gurrin, L.C.; Lowe, A.J.; Ponsonby, A.L.; Wake, M.; Tang, M.L.; Dharmage, S.C.; Allen, K.J.; et al. Prevalence of challenge-proven IgE-mediated food allergy using population-based sampling and predetermined challenge criteria in infants. J. Allergy Clin. Immunol. 2011, 127, 668–676. [Google Scholar] [CrossRef]
- Loke, P.; Koplin, J.; Beck, C.; Field, M.; Dharmage, S.C.; Tang, M.L.; Allen, K.J. Statewide prevalence of school children at risk of anaphylaxis and rate of adrenaline auto-injector activation in Victorian government schools, Australia. J. Allergy Clin. Immunol. 2016, 138, 529–535. [Google Scholar] [CrossRef]
- Jackson, K.D.; Howie, L.D.; Akinbami, L.J. Trends in Allergic Conditions among Children: United States 1997–2011; NCHS Data Brief; DHHS Publication: Atlanta, GA, USA, 2013; pp. 1–8. [Google Scholar]
- Sicherer, S.H.; Munoz-Furlong, A.; Godbold, J.H.; Sampson, H.A. US prevalence of self-reported peanut, tree nut, and sesame allergy: 11-year follow-up. J. Allergy Clin. Immunol. 2010, 125, 1322–1326. [Google Scholar] [CrossRef]
- Herbert, L.; Shemesh, E.; Bender, B. Clinical management of psychosocial concerns related to food allergy. J. Allergy Clin. Immunol. Pract. 2016, 4, 205–213. [Google Scholar] [CrossRef]
- Jones, C.J.; Llewellyn, C.D.; Frew, A.J.; Du Toit, G.; Mukhopadhyay, S.; Smith, H. Factors associated with good adherence to self-care behaviors amongst adolescents with food allergy. Pediatr. Allergy Immunol. 2015, 26, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Nurmatov, U.; Dhami, S.; Arasi, S.; Pajno, G.B.; Fernandez-Rivas, M.; Muraro, A.; Roberts, G.; Akdis, C.; Alvaro-Lozano, M.; Beyer, K.; et al. Allergen immunotherapy for IgE-mediated food allergy: A systematic review and meta-analysis. Allergy 2017, 72, 1133–1147. [Google Scholar] [CrossRef] [PubMed]
- Arasi, S.; Caminiti, L.; Crisafulli, G.; Pajno, G.B. A general strategy for de novo immunotherapy design: The active treatment of food allergy. Expert Rev. Clin. Immunol. 2018, 14, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Gernez, Y.; Nowak-Węgrzyn, A. Immunotherapy for Food Allergy: Are We There Yet? J. Allergy Clin. Immunol. Pract. 2017, 5, 250–272. [Google Scholar] [CrossRef] [PubMed]
- Pajno, G.B.; Castagnoli, R.; Muraro, A.; Alvaro-Lozano, M.; Akdis, C.A.; Akdis, M.; Arasi, S. Allergen immunotherapy for IgE-mediated food allergy: There is a measure in everything to a proper proportion of therapy. Pediatr. Allergy Immunol. 2019. [Google Scholar] [CrossRef]
- Jones, S.M.; Burks, A.W.; Dupont, C. State of the art on food allergen immunotherapy: Oral, sublingual, and epicutaneous. J. Allergy Clin. Immunol. 2014, 133, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Pajno, G.B.; Fernandez-Rivas, M.; Arasi, S.; Roberts, G.; Akdis, C.A.; Alvaro-Lozano, M.; Beyer, K.; Bindslev-Jensen, C.; Burks, W.; Ebisawa, M.; et al. EAACI Guidelines on allergen immunotherapy: IgE-mediated food allergy. Allergy 2018, 73, 799–815. [Google Scholar] [CrossRef] [PubMed]
- Vickery, B.P.; Vereda, A.; Casale, T.B.; Beyer, K.; du Toit, G.; Hourihane, J.O.; Jones, S.M.; Shreffler, W.G.; Marcantonio, A.; Zawadzki, R.; et al. AR101 Oral Immunotherapy for Peanut Allergy. N. Engl. J. Med. 2018, 379, 1991–2001. [Google Scholar] [PubMed]
- Fauquert, J.L.; Michaud, E.; Pereira, B.; Bernard, L.; Gourdon-Dubois, N.; Rouzaire, P.O.; Rochette, E.; Merlin, E.; Evrard, B.; PITA Group. Peanut gastrointestinal delivery oral immunotherapy in adolescents: Results of the build-up phase of a randomized, double-blind, placebo-controlled trial (PITA study). Clin. Exp. Allergy 2018, 48, 862–874. [Google Scholar] [CrossRef] [PubMed]
- Tordesillas, L.; Mondoulet, L.; Blazquez, A.B.; Benhamou, P.H.; Sampson, H.A.; Berin, M.C. Epicutaneous immunotherapy induces gastrointestinal LAP. J. Allergy Clin. Immunol. 2017, 139, 189–201.e4. [Google Scholar] [CrossRef] [PubMed]
- Dioszeghy, V.; Mondoulet, L.; Dhelft, V.; Ligouis, M.; Puteaux, E.; Plaquet, C.; Dupont, C.; Benhamou, P.H. Epicutaneous Immunotherapy-Induced Regulatory T Cells Could Migrate to More Various Sites of Allergen Exposure Compared to Sublingual or Subcutaneous Immunotherapy in Mice Sensitized to Peanut. J. Allergy Clin. Immunol. 2014, 133, AB48. [Google Scholar] [CrossRef]
- Jones, S.M.; Sicherer, S.H.; Burks, A.W.; Leung, D.Y.; Lindblad, R.W.; Dawson, P.; Henning, A.K.; Berin, M.C.; Chiang, D.; Vickery, B.P.; et al. Epicutaneous immunotherapy for the treatment of peanut allergy in children and young adults. J. Allergy Clin. Immunol. 2017, 139, 1242–1252.e9. [Google Scholar] [CrossRef]
- Safety Study of Viaskin Peanut to Treat Peanut Allergy (REALISE). Available online: https://clinicaltrials.gov/ct2/show/NCT02916446 (accessed on 30 April 2019).
- Cuppari, C.; Leonardi, S.; Manti, S.; Filippelli, M.; Alterio, T.; Spicuzza, L.; Rigoli, L.; Arrigo, T.; Lougaris, V.; Salpietro, C. Allergen immunotherapy, routes of administration and cytokine networks: An update. Immunotherapy 2014, 6, 775–786. [Google Scholar] [CrossRef]
- Alterio, T.; Manti, S.; Colavita, L.; Marseglia, L.; Sturiale, M.; Miraglia Del Giudice, M.; Salpietro, A.; Cuppari, C. Sublingual immunotherapy in children: State of art. J. Biol. Regul. Homeost. Agents 2015, 29 (Suppl. 1), 120–124. [Google Scholar]
- Wood, R.A.; Kim, J.S.; Lindblad, R.; Nadeau, K.; Henning, A.K.; Dawson, P.; Plaut, M.; Sampson, H.A. A randomized, double-blind, placebo-controlled study of omalizumab combined with oral immunotherapy for the treatment of cow’s milk allergy. J. Allergy Clin. Immunol. 2016, 137, 1103–1110.e11. [Google Scholar] [CrossRef]
- Bégin, P.; Dominguez, T.; Wilson, S.P.; Bacal, L.; Mehrotra, A.; Kausch, B.; Trela, A.; Tavassoli, M.; Hoyte, E.; O’Riordan, G.; et al. Phase 1 results of safety and tolerability in a rush oral immunotherapy protocol to multiple foods using Omalizumab. Allergy Asthma Clin. Immunol. 2014, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Berin, M.C.; Shreffler, W.G. T(H)2 adjuvants: Implications for food allergy. J. Allergy Clin. Immunol. 2008, 121, 1311–1320. [Google Scholar] [CrossRef]
- Frossard, C.P.; Steidler, L.; Eigenmann, P.A. Oral administration of an IL-10-secreting Lactococcus lactis strain prevents food-induced IgE sensitization. J. Allergy Clin. Immunol. 2007, 119, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Kishida, T.; Hiromura, Y.; Shin-Ya, M.; Asada, H.; Kuriyama, H.; Sugai, M.; Shimizu, A.; Yokota, Y.; Hama, T.; et al. IL-21 induces inhibitor of differentiation 2 and leads to complete abrogation of anaphylaxis in mice. J. Immunol. 2007, 179, 8554–8561. [Google Scholar] [CrossRef] [PubMed]
- Ando, T.; Hatsushika, K.; Wako, M.; Ohba, T.; Koyama, K.; Ohnuma, Y.; Katoh, R.; Ogawa, H.; Okumura, K.; Luo, J.; et al. Orally administered TGF-beta is biologically active in the intestinal mucosa and enhances oral tolerance. J. Allergy Clin. Immunol. 2007, 120, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Placebo-Controlled Study to Investigate ANB020 Activity in Adult Patients with Peanut Allergy. Available online: https://clinicaltrials.gov/ct2/show/NCT02920021 (accessed on 30 April 2019).
- Bauer, R.N.; Manohar, M.; Singh, A.M.; Jay, D.C.; Nadeau, K.C. The future of biologics: Applications for food allergy. J. Allergy Clin. Immunol. 2015, 135, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Keet, C.A.; Wood, R.A. Emerging therapies for food allergy. J. Clin. Investig. 2014, 124, 1880–1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grela, F.; Aumeunier, A.; Bardel, E.; Van, L.P.; Bourgeois, E.; Vanoirbeek, J.; Leite-de-Moraes, M.; Schneider, E.; Dy, M.; Herbelin, A.; et al. The TLR7 Agonist R848 Alleviates Allergic Inflammation by Targeting Invariant NKT Cells to Produce IFN-γ. J. Immun. 2011, 186, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Creticos, P.S.; Schroeder, J.T.; Hamilton, R.G.; Balcer-Whaley, S.L.; Khattignavong, A.P.; Lindblad, R.; Li, H.; Coffman, R.; Seyfert, V.; Eiden, J.J.; et al. Immunotherapy with a ragweed-toll-like receptor 9 agonist vaccine for allergic rhinitis. N. Engl. J. Med. 2006, 355, 1445–1455. [Google Scholar] [CrossRef]
- Rosewich, M.; Schulze, J.; Eickmeier, O.; Telles, T.; Rose, M.A.; Schubert, R.; Zielen, S. Tolerance induction after specific immunotherapy with pollen allergoids adjuvanted by monophosphoryl lipid A in children. Clin. Exp. Immunol. 2010, 160, 403–410. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.G.; Kandimalla, E.R.; Yu, D.; Agrawal, S. Oral administration of a synthetic agonist of Toll-like receptor 9 potently modulates peanut-induced allergy in mice. J. Allergy Clin. Immunol. 2007, 120, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Salazar, F.; Ghaemmaghami, A.M. Allergen recognition by innate immune cells: Critical role of dendritic and epithelial cells. Front. Immunol. 2013, 4, 356. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.Y.; Sampson, H.A.; Yunginger, J.W.; Burks, A.W., Jr.; Schneider, L.C.; Wortel, C.H.; Davis, F.M.; Hyun, J.D.; Shanahan, W.R. Jr; Avon Longitudinal Study of Parents and Children Study Team. Effect of anti-IgE therapy in patients with peanut allergy. N. Engl. J. Med. 2003, 348, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Sampson, H.A. A phase II, randomized, double-blind, parallel group, placebo-controlled oral food challenge trial of Xolair (omalizumab) in peanut allergy. J. Allergy Clin. Immunol. 2007, 119, S117. [Google Scholar] [CrossRef]
- Savage, J.H.; Courneya, J.P.; Sterba, P.M.; Macglashan, D.W.; Saini, S.S.; Wood, R.A. Kinetics of mast cell, basophil, and oral food challenge responses in omalizumab-treated adults with peanut allergy. J. Allergy Clin. Immunol. 2012, 130, 1123–1129.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, L.C.; Rachid, R.; LeBovidge, J.; Blood, E.; Mittal, M.; Umetsu, DT. A pilot study of omalizumab to facilitate rapid oral desensitization in high-risk peanut-allergic patients. J. Allergy Clin. Immunol. 2013, 132, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Nadeau, K.C.; Schneider, L.C.; Hoyte, L.; Borras, I.; Umetsu, D.T. Rapid oral desensitization in combination with omalizumab therapy in patients with cow’s milk allergy. J. Allergy Clin. Immunol. 2011, 127, 1622–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andorf, S.; Purington, N.; Block, W.M.; Long, A.J.; Tupa, D.; Brittain, E.; Rudman Spergel, A.; Desai, M.; Galli, S.J.; Nadeau, K.C.; et al. Anti-IgE treatment with oral immunotherapy in multifood allergic participants: A double-blind, randomised, controlled trial. Lancet Gastroenterol. Hepatol. 2018, 3, 85–94. [Google Scholar] [CrossRef]
- Martorell-Calatayud, C.; Michavila-Gomez, A.; Martorell-Aragone’s, A.; Molini-Menchón, N.; Cerdá-Mir, J.C.; Félix-Toledo, R.; De Las Marinas-Álvarez, M.D. Anti-IgE assisted desensitization to egg and cow’s milk in patients refractory to conventional oral immunotherapy. Pediatr. Allergy Immunol. 2016, 27, 544–546. [Google Scholar] [CrossRef] [PubMed]
- Bedoret, D.; Singh, A.K.; Shaw, V.; Hoyte, E.G.; Hamilton, R.; DeKruyff, R.H.; Schneider, L.C.; Nadeau, K.C.; Umetsu, D.T. Changes in antigen-specific T-cell number and function during oral desensitization in cow’s milk allergy enabled with omalizumab. Mucosal Immunol. 2012, 5, 267–276. [Google Scholar] [CrossRef]
- Licari, A.; Marseglia, A.; Caimmi, S.; Castagnoli, R.; Foiadelli, T.; Barberi, S.; Marseglia, G.L. Omalizumab in children. Paediatr Drugs 2014, 16, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Brandstrom, J.; Vetander, M.; Lilja, G.; Johansson, S.G.; Sundqvist, A.C.; Kalm, F.; Nilsson, C.; Nopp, A. Individually dosed omalizumab: An effective treatment for severe peanut allergy. Clin. Exp. Allergy 2017, 47, 540–550. [Google Scholar] [CrossRef]
- Iannitti, T.; Palmieri, B. Therapeutical use of probiotic formulations in clinical practice. Clin. Nutr. 2010, 29, 701–725. [Google Scholar] [CrossRef] [PubMed]
- Zuercher, A.W.; Weiss, M.; Holvoet, S.; Moser, M.; Moussu, H.; van Overtvelt, L.; Horiot, S.; Moingeon, P.; Nutten, S.; Prioult, G.; et al. Lactococcus lactis NCC 2287 alleviates food allergic manifestations in sensitized mice by reducing IL-13 expression specifically in the ileum. Clin. Dev. Immunol. 2012, 2012, 485750. [Google Scholar] [CrossRef]
- Schiavi, E.; Barletta, B.; Butteroni, C.; Corinti, S.; Boirivant, M.; Di Felice, G. Oral therapeutic administration of a probiotic mixture suppresses established Th2 responses and systemic anaphylaxis in a murine model of food allergy. Allergy 2011, 66, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Castellazzi, A.M.; Valsecchi, C.; Caimmi, S.; Licari, A.; Marseglia, A.; Leoni, M.C.; Caimmi, D.; Miraglia del Giudice, M.; Leonardi, S.; La Rosa, M.; et al. Probiotics and food allergy. Ital. J. Pediatr. 2013, 39, 47. [Google Scholar] [CrossRef]
- Schultz, M.; Young, R.J.; Iwen, P.; Bilyeu, D.; Vanderhoof, J.A. Maternal administration of probiotic during pregnancy results in infantile colonization. J. Pediatr. Gastroenterol. Nutr. 2001, 33, 403. [Google Scholar]
- Kalliomaki, M.; Salminen, S.; Poussa, T.; Arvilommi, H.; Isolauri, E. Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet 2003, 361, 1869–1871. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Hu, H.J.; Liu, C.Y.; Zhang, Q.; Shakya, S.; Li, ZY. Probiotics for Prevention of Atopy and Food Hypersensitivity in Early Childhood: A PRISMA-Compliant Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicine (Baltimore) 2016, 95, e2562. [Google Scholar] [CrossRef]
- Majamaa, H.; Isolauri, E. Probiotics: A novel approach in the management of food allergy. J. Allergy Clin. Immunol. 1997, 99, 179–185. [Google Scholar] [CrossRef]
- Berni Canani, R.; Nocerino, R.; Terrin, G.; Coruzzo, A.; Cosenza, L.; Leone, L.; Troncone, R. Effect of Lactobacillus GG on tolerance acquisition in infants with cow’s milk allergy: A randomized trial. J. Allergy Clin. Immunol. 2012, 129, 580–582. [Google Scholar] [CrossRef] [PubMed]
- Hol, J.; van Leer, E.H.; Elink Schuurman, B.E.; de Ruiter, L.F.; Samsom, J.N.; Hop, W.; de Jongste, J.C.; Nieuwenhuis, E.E. Cow’s Milk Allergy Modified by Elimination and Lactobacilli study group. The acquisition of tolerance toward cow’s milk through probiotic supplementation: A randomized, controlled trial. J. Allergy Clin. Immunol. 2008, 121, 1448–1454. [Google Scholar] [CrossRef]
- Berni Canani, R.; Sangwan, N.; Stefka, A.T.; Nocerino, R.; Paparo, L.; Aitoro, R.; Calignano, A.; Khan, A.A.; Gilbert, J.A.; Nagler, C.R. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. ISME J. 2016, 10, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Mennini, M.; Reddel, S.; Arasi, S.; Del Chierico, F.; Napolitano, T.; Riccardi, C.; Fierro, V.; Vernocchi, P.; Putignani, L.; Fiocchi, A. Colonization and persistence capacity of a multi-strain probiotic in food allergy. J. Allergy Clin. Immunol. 2019, 143, AB229. [Google Scholar] [CrossRef]
- Tang, M.L.; Ponsonby, A.L.; Orsini, F.; Tey, D.; Robinson, M.; Su, E.L.; Licciardi, P.; Burks, W.; Donath, S. Administration of a probiotic with peanut oral immunotherapy: A randomized trial. J. Allergy Clin. Immunol. 2015, 135, 737–744.e8. [Google Scholar] [CrossRef] [PubMed]
- Cuello-Garcia, C.A.; Brozek, J.L.; Fiocchi, A.; Pawankar, R.; Yepes-Nuñez, J.J.; Terracciano, L.; Gandhi, S.; Agarwal, A.; Zhang, Y.; Schünemann, H.J. Probiotics for the prevention of allergy: A systematic review and meta-analysis of randomized controlled trials. J Allergy Clin Immunol 2015, 136, 952–961. [Google Scholar] [CrossRef] [PubMed]
- Fiocchi, A.; Pawankar, R.; Cuello-Garcia, C.; Ahn, K.; Al-Hammadi, S.; Agarwal, A.; Beyer, K.; Burks, W.; Canonica, G.W.; Ebisawa, M.; et al. World Allergy Organization-McMaster University Guidelines for Allergic Disease Prevention (GLAD-P): Probiotics. World Allergy Organ. J. 2015, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Osborn, D.A.; Sinn, JK. Probiotics in infants for prevention of allergic disease and food hypersensitivity. Cochrane Database Syst. Rev. 2007, CD006475. [Google Scholar] [CrossRef]
- Pagovich, O.E.; Wang, B.; Chiuchiolo, M.J.; Kaminsky, S.M.; Sondhi, D.; Jose, C.L.; Price, C.C.; Brooks, S.F.; Mezey, J.G.; Crystal, R.G. Anti-hIgE gene therapy of peanut-induced anaphylaxis in a humanized murine model of peanut allergy. J. Allergy Clin. Immunol. 2016, 138, 1652–1662.e7. [Google Scholar] [CrossRef] [PubMed]
Therapy | Mechanism of Action | Population | Status |
---|---|---|---|
Allergen specific | |||
Allergy immunotherapy OIT * SLIT * EPIT * | Prolonged exposure to antigen restores the Th1/Th2 * balance, promoting Treg * activity | Pediatric Adult | Clinical trials (Phase 3) |
Allergen non specific | |||
Cytokines | Influence with inflammatory pathways | NA * | Murine models Clinical trials (Phase 2) |
Toll Like receptors | Activate the immune response Enhance the tolerogenic response Restore the Th1/Th2 balance | NA | Murine models |
Cellular target | Trigger immune tolerance Inhibition IgE transport Reduction in Th2-driven inflammation | NA | Murine models |
Anti-IgE | Inactivaction IgE * Prevention of stimulation of high affinity IgE-receptor | Pediatric Adult | Clinical trials (Phase 2) |
Anti-IgE with OIT | Improve efficacy OIT Improve safety OIT | Pediatric Adult | Clinical trials (Phase 2) |
Probiotics | Immune-modulation Competitive exclusion Release of gut mucin secretion Production of compounds inhibiting the growth of other bacteria | Pediatric Adult | Clinical trials |
Gene therapy | Persistent release of anti-human IgE | NA | Murine models |
Clinical Trial Identifier | Study Title | Status | Phase | Estimated Enrollment (N. pts) * | Ages Eligible for Study | Primary Outcome Measures | Interventions | Drug Dosage | Preliminary Results | |
---|---|---|---|---|---|---|---|---|---|---|
1 | NCT02879006 | E-B-FAHF-2, Multi OIT * and Omalizumab for Food Allergy | Recruiting | 2 | 34 | 6 to 40 y * | Sustained unresponsiveness | Chinese Herbal Medication Placebo Omalizumab Multi OIT | Not applicable | Not applicable |
2 | NCT02643862 | Study Using Omalizumab in Rush Multi Oral Immunotherapy in Multi Food Allergic Patients (MAP-X) | Completed | 2 | 48 | 4 to 55 y | Desensitization measured by proportion of FA * participants who pass a DBPCFC * to 2000 mg protein for each of 2 allergens at week 36 | Omalizumab Placebo | Not applicable | Not applicable |
3 | NCT03181009 | Multi OIT to Test Immune Markers After Minimum Maintenance Dose | Recruiting | 2 | 60 | 2 to 25 y | Change in allergen-specific serum IgG4 * and IgE | Omalizumab Food Flour Allergens | Omalizumab: subjects ≥ 4 yrs receive 150 mg *. Subjects ≤ 4 yrs receive 75 mg Food Flour Allergens: 300 to 1200 mg | Not applicable |
4 | NCT02626611 | Multi Immunotherapy to Test Tolerance and Omalizumab | Completed | 2 | 70 | 4 to 55 y | The number of participants able to tolerate an oral food challenge to 2000 mg at least of 2 allergens at week 36 | Omalizumab Food Flour Buildup | Omalizumab: not applicable Food Flour Buildup: up to 2000 mg | Not applicable |
5 | NCT01510626 | Omalizumab With Oral Food Immunotherapy With Food Allergies Open Label Safety Study in a Single Center | Completed | 1 | 35 | 4 to 55 y | Number of adverse events in the treatment population | Omalizumab Food protein | Not applicable | Not applicable |
6 | NCT00949078 | Omalizumab in the Treatment of Peanut Allergy | Completed | 2 | 51 | 18 to 50 y |
| Omalizumab Food allergen | Not applicable | Not applicable |
7 | NCT01781637 | Peanut Reactivity Reduced by Oral Tolerance in an Anti-IgE Clinical Trial | Active, not yet recruiting | 1, 2 | 36 | 7 to 25 y | Tolerance of 2000 mg 6 weeks after last dose of omalizumab/placebo | Omalizumb Placebo | Not applicable | Not applicable |
8 | NCT03881696 | Omalizumab as Monotherapy and as Adjunct Therapy to Multi-Allergen OIT in Food Allergic Participants | Not yet recruiting | 3 | 225 | 2 to 55 y | Number of participants by stage 1 treatment group, omalizumab versus placebo, who successfully consume ≥600 mg of peanut protein without dose-limiting symptoms during the DBPCFC conducted at the end of treatment stage 1 | Omalizumab Placebo Multi-Allergen Oral Immunotherapy | Omalizumab: 75 to 150 mg | Not applicable |
9 | NCT02402231 | Treatment of Severe Peanut Allergy With Omalizumab and Oral Immunotherapy (FASTX) | Active, not recruiting | 2 | 23 | 12 to 22 y | Peanut challenge | Omalizumab Immunotherapy | Not applicable | Not applicable |
10 | NCT01157117 | OIT and Omalizumab in Cow’s Milk Allergy | Completed | 2 | 77 | 7 to 35 y | Percentage of Subjects in the Omalizumab Group vs. Placebo Group Developing Clinical Tolerance to Milk | Omalizumab Milk powder | Omalizumab: not applicable: Milk powder: up to 3.84 g * | Omalizumab vs * Milk powder: p = 0.42 |
11 | NCT03679676 | Clinical Study Using Biologics to Improve Multi OIT Outcomes | Not yet recruiting | 2 | 200 | 6 to 21 y | Successful food challenges to two or more FA at week 38 between cohort omalizumab and cohort placebo | Omalizumab Placebo Dupilumab | Not applicable | Not applicable |
12 | NCT00968110 | Omalizumab Treatment for Milk Allergic Children | Completed | 1 | 10 | 4 to 18 y | The major goal of this study is to assess the safety of Omalizumab in young children, and the safety of oral desensitization in patients pretreated with Omalizumab | Omalizumab | Not applicable | Not applicable |
13 | NCT00086606 | A Safety and Efficacy Study of Omalizumab in Peanut Allergy | Terminated | 2 | 150 | 6 to 75 y | Not applicable | Omalizumab | Not applicable | Not applicable |
14 | NCT00932282 | Peanut Oral Immunotherapy and Anti-IgE for Peanut Allergy (PAIE/Omalizumab) | Terminated | 1, 2 | 13 | 12 y and older | The percentage of subjects who pass the 20 mg peanut flour (~50% peanut protein) OFC 2–4 weeks after discontinuing peanut OIT therapy | Peanut Oral Immunotherapy Omalizumab | Peanut Oral Immunotherapy: 0.2 mg of peanut flour to 8000 mg Omalizumab: not applicable | Not applicable |
15 | NCT00382148 | A Study of Omalizumab in Peanut-Allergic Subjects Previously Enrolled in Study Q2788g | Completed | 2 | 10 | 6 to 75 y | Serious Adverse Events | Omalizumab | Not applicable | Not applicable |
16 | Omalizumab Enhances Oral Desensitization in Peanut Allergic Patients | Completed | 1, 2 | 13 | 7 to 25 y | Number of participants that tolerated rapid oral peanut desensitization to a dose of 500 mg peanut flour | Omalizumab | Not applicable | Not applicable |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Licari, A.; Manti, S.; Marseglia, A.; Brambilla, I.; Votto, M.; Castagnoli, R.; Leonardi, S.; Marseglia, G.L. Food Allergies: Current and Future Treatments. Medicina 2019, 55, 120. https://doi.org/10.3390/medicina55050120
Licari A, Manti S, Marseglia A, Brambilla I, Votto M, Castagnoli R, Leonardi S, Marseglia GL. Food Allergies: Current and Future Treatments. Medicina. 2019; 55(5):120. https://doi.org/10.3390/medicina55050120
Chicago/Turabian StyleLicari, Amelia, Sara Manti, Alessia Marseglia, Ilaria Brambilla, Martina Votto, Riccardo Castagnoli, Salvatore Leonardi, and Gian Luigi Marseglia. 2019. "Food Allergies: Current and Future Treatments" Medicina 55, no. 5: 120. https://doi.org/10.3390/medicina55050120
APA StyleLicari, A., Manti, S., Marseglia, A., Brambilla, I., Votto, M., Castagnoli, R., Leonardi, S., & Marseglia, G. L. (2019). Food Allergies: Current and Future Treatments. Medicina, 55(5), 120. https://doi.org/10.3390/medicina55050120