The Role of Cardiac T-Cadherin in the Indicating Heart Failure Severity of Patients with Non-Ischemic Dilated Cardiomyopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Biochemical Assays of APN and Other Serological Markers
2.3. Echocardiography
2.4. Cardiac Catheterization and EMB
2.5. Histological and Immunohistochemical Assessment of EMBs
2.6. Estimation of T-Cad in Myocardial Biopsies
2.7. Statistical Analysis
2.8. Ethical Approval
3. Results
3.1. Baseline Patient Characteristics
3.2. Relationship Between T-Cad Expression and Other Biomarkers, and the Parameters of Chronic HF
3.3. T-Cad Levels Are Reduced in Patients with More Severe Heart Failure
3.4. Cardiac T-Cad Levels and Clinical Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burchfield, J.S.; Xie, M.; Hill, J.A. Pathological ventricular remodeling: Mechanisms: Part 1 of 2. Circulation 2013, 128, 388–400. [Google Scholar] [CrossRef] [Green Version]
- Tromp, J.; Westenbrink, B.D.; Ouwerkerk, W.; van Veldhuisen, D.J.; Samani, N.J.; Ponikowski, P.; Metra, M.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; et al. Identifying pathophysiological mechanisms in heart failure with reduced versus preserved ejection fraction. J. Am. Coll. Cardiol. 2018, 72, 1081–1090. [Google Scholar] [CrossRef]
- Nauta, J.F.; Hummel, Y.M.; Tromp, J.; Ouwerkerk, W.; van der Meer, P.; Jin, X.; Lam, C.S.P.; Bax, J.J.; Metra, M.; Samani, N.J.; et al. Concentric vs. Eccentric remodelling in heart failure with reduced ejection fraction: Clinical characteristics, pathophysiology and response to treatment. Eur. J. Heart Fail. 2019. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Rzucidlo, E.M.; Davey, J.C.; Xie, Y.; Liu, R.; Jin, Y.; Stavola, L.; Martin, K.A. Adiponectin in the heart and vascular system. Vitam. Horm. 2012, 90, 289–319. [Google Scholar] [PubMed]
- Sente, T.; Gevaert, A.; Van Berendoncks, A.; Vrints, C.J.; Hoymans, V.Y. The evolving role of adiponectin as an additive biomarker in hfref. Heart Fail. Rev. 2016, 21, 753–769. [Google Scholar] [CrossRef] [PubMed]
- Turer, A.T.; Scherer, P.E. Adiponectin: Mechanistic insights and clinical implications. Diabetologia 2012, 55, 2319–2326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margaritis, M.; Antonopoulos, A.S.; Digby, J.; Lee, R.; Reilly, S.; Coutinho, P.; Shirodaria, C.; Sayeed, R.; Petrou, M.; De Silva, R.; et al. Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation 2013, 127, 2209–2221. [Google Scholar] [CrossRef] [Green Version]
- Holland, W.L.; Miller, R.A.; Wang, Z.V.; Sun, K.; Barth, B.M.; Bui, H.H.; Davis, K.E.; Bikman, B.T.; Halberg, N.; Rutkowski, J.M.; et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 2011, 17, 55–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, M.B.; Philippova, M.; Ivanov, D.; Allenspach, R.; Erne, P.; Resink, T.J. T-cadherin protects endothelial cells from oxidative stress-induced apoptosis. FASEB J. 2005, 19, 1737–1739. [Google Scholar] [CrossRef]
- Shibata, R.; Sato, K.; Pimentel, D.R.; Takemura, Y.; Kihara, S.; Ohashi, K.; Funahashi, T.; Ouchi, N.; Walsh, K. Adiponectin protects against myocardial ischemia-reperfusion injury through ampk- and cox-2-dependent mechanisms. Nat. Med. 2005, 11, 1096–1103. [Google Scholar] [CrossRef]
- Mitsuhashi, H.; Yatsuya, H.; Tamakoshi, K.; Matsushita, K.; Otsuka, R.; Wada, K.; Sugiura, K.; Takefuji, S.; Hotta, Y.; Kondo, T.; et al. Adiponectin level and left ventricular hypertrophy in japanese men. Hypertension 2007, 49, 1448–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, H. Can adiponectin be a novel metabolic biomarker for heart failure? Circ. J. 2009, 73, 1012–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biolo, A.; Shibata, R.; Ouchi, N.; Kihara, S.; Sonoda, M.; Walsh, K.; Sam, F. Determinants of adiponectin levels in patients with chronic systolic heart failure. Am. J. Cardiol. 2010, 105, 1147–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankel, D.S.; Vasan, R.S.; D’Agostino, R.B., Sr.; Benjamin, E.J.; Levy, D.; Wang, T.J.; Meigs, J.B. Resistin, adiponectin, and risk of heart failure the framingham offspring study. J. Am. Coll. Cardiol. 2009, 53, 754–762. [Google Scholar] [CrossRef] [Green Version]
- Kistorp, C.; Faber, J.; Galatius, S.; Gustafsson, F.; Frystyk, J.; Flyvbjerg, A.; Hildebrandt, P. Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation 2005, 112, 1756–1762. [Google Scholar] [CrossRef] [Green Version]
- Tsutamoto, T.; Tanaka, T.; Sakai, H.; Ishikawa, C.; Fujii, M.; Yamamoto, T.; Horie, M. Total and high molecular weight adiponectin, haemodynamics, and mortality in patients with chronic heart failure. Eur. Heart J. 2007, 28, 1723–1730. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, X.L.; Lau, W.B. Cardiovascular adiponectin resistance: The critical role of adiponectin receptor modification. Trends Endocrinol. Metab. 2017, 28, 519–530. [Google Scholar] [CrossRef]
- Van Linthout, S.; Tschope, C. Inflammation—Cause or consequence of heart failure or both? Curr. Heart Fail. Rep. 2017, 14, 251–265. [Google Scholar] [CrossRef] [Green Version]
- Villarreal-Molina, M.T.; Antuna-Puente, B. Adiponectin: Anti-inflammatory and cardioprotective effects. Biochimie 2012, 94, 2143–2149. [Google Scholar] [CrossRef]
- Tishinsky, J.M.; Dyck, D.J.; Robinson, L.E. Lifestyle factors increasing adiponectin synthesis and secretion. Vitam. Horm. 2012, 90, 1–30. [Google Scholar]
- Pischon, T.; Girman, C.J.; Hotamisligil, G.S.; Rifai, N.; Hu, F.B.; Rimm, E.B. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 2004, 291, 1730–1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasso, F.C.; Pafundi, P.C.; Marfella, R.; Calabro, P.; Piscione, F.; Furbatto, F.; Esposito, G.; Galiero, R.; Gragnano, F.; Rinaldi, L.; et al. Adiponectin and insulin resistance are related to restenosis and overall new pci in subjects with normal glucose tolerance: The prospective aire study. Cardiovasc. Diabetol. 2019, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Fantuzzi, G. Adiponectin in inflammatory and immune-mediated diseases. Cytokine 2013, 64, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frystyk, J.; Berne, C.; Berglund, L.; Jensevik, K.; Flyvbjerg, A.; Zethelius, B. Serum adiponectin is a predictor of coronary heart disease: A population-based 10-year follow-up study in elderly men. J. Clin. Endocrinol. Metab. 2007, 92, 571–576. [Google Scholar] [CrossRef] [Green Version]
- Haugen, E.; Furukawa, Y.; Isic, A.; Fu, M. Increased adiponectin level in parallel with increased nt-pro bnp in patients with severe heart failure in the elderly: A hospital cohort study. Int. J. Cardiol. 2008, 125, 216–219. [Google Scholar] [CrossRef]
- Nakamura, T.; Funayama, H.; Kubo, N.; Yasu, T.; Kawakami, M.; Saito, M.; Momomura, S.; Ishikawa, S.E. Association of hyperadiponectinemia with severity of ventricular dysfunction in congestive heart failure. Circ. J. 2006, 70, 1557–1562. [Google Scholar] [CrossRef] [Green Version]
- Sokhanvar, S.; Sheykhi, M.; Mazlomzade, S.; Taran, L.; Golmohammadi, Z. The relationship between serum adiponectin and prognosis in patients with heart failure. Bratisl. Lek. Listy 2013, 114, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Hug, C.; Wang, J.; Ahmad, N.S.; Bogan, J.S.; Tsao, T.S.; Lodish, H.F. T-cadherin is a receptor for hexameric and high-molecular-weight forms of acrp30/adiponectin. Proc. Natl. Acad. Sci. USA 2004, 101, 10308–10313. [Google Scholar] [CrossRef] [Green Version]
- Philippova, M.; Joshi, M.B.; Pfaff, D.; Kyriakakis, E.; Maslova, K.; Erne, P.; Resink, T.J. T-cadherin attenuates insulin-dependent signalling, enos activation, and angiogenesis in vascular endothelial cells. Cardiovasc. Res. 2012, 93, 498–507. [Google Scholar] [CrossRef] [Green Version]
- Frismantiene, A.; Philippova, M.; Erne, P.; Resink, T.J. Smooth muscle cell-driven vascular diseases and molecular mechanisms of vsmc plasticity. Cell Signal. 2018, 52, 48–64. [Google Scholar] [CrossRef]
- Parker-Duffen, J.L.; Nakamura, K.; Silver, M.; Kikuchi, R.; Tigges, U.; Yoshida, S.; Denzel, M.S.; Ranscht, B.; Walsh, K. T-cadherin is essential for adiponectin-mediated revascularization. J. Biol. Chem. 2013, 288, 24886–24897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denzel, M.S.; Scimia, M.-C.; Zumstein, P.M.; Walsh, K.; Ruiz-Lozano, P.; Ranscht, B. T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J. Clin. Investig. 2010, 120, 4342–4352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obata, Y.; Kita, S.; Koyama, Y.; Fukuda, S.; Takeda, H.; Takahashi, M.; Fujishima, Y.; Nagao, H.; Masuda, S.; Tanaka, Y.; et al. Adiponectin/t-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release. JCI Insight 2018, 3, 99680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, K.; Fujishima, Y.; Maeda, N.; Mori, T.; Hirata, A.; Sekimoto, R.; Tsushima, Y.; Masuda, S.; Yamaoka, M.; Inoue, K.; et al. Positive feedback regulation between adiponectin and t-cadherin impacts adiponectin levels in tissue and plasma of male mice. Endocrinology 2015, 156, 934–946. [Google Scholar] [CrossRef]
- Jee, S.H.; Sull, J.W.; Lee, J.E.; Shin, C.; Park, J.; Kimm, H.; Cho, E.Y.; Shin, E.S.; Yun, J.E.; Park, J.W.; et al. Adiponectin concentrations: A genome-wide association study. Am. J. Hum. Genet. 2010, 87, 545–552. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Kim, Y.M.; Chen, P.; Igase, M.; Kawamoto, R.; Kim, M.K.; Kohara, K.; Lee, J.; Miki, T.; Ong, R.T.; et al. Genetic variation in cdh13 is associated with lower plasma adiponectin levels but greater adiponectin sensitivity in east asian populations. Diabetes 2013, 62, 4277–4283. [Google Scholar] [CrossRef] [Green Version]
- Marfella, R.; Di Filippo, C.; Potenza, N.; Sardu, C.; Rizzo, M.R.; Siniscalchi, M.; Musacchio, E.; Barbieri, M.; Mauro, C.; Mosca, N.; et al. Circulating microrna changes in heart failure patients treated with cardiac resynchronization therapy: Responders vs. Non-responders. Eur. J. Heart Fail. 2013, 15, 1277–1288. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Cai, J. The role of micrornas in heart failure. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 2019–2030. [Google Scholar] [CrossRef]
- Kreth, S.; Ledderose, C.; Schütz, S.; Beiras, A.; Heyn, J.; Weis, F.; Beiras-Fernandez, A. Microrna-150 inhibits expression of adiponectin receptor 2 and is a potential therapeutic target in patients with chronic heart failure. J. Heart Lung Transplant. 2014, 33, 252–260. [Google Scholar] [CrossRef]
- Skurk, C.; Wittchen, F.; Suckau, L.; Witt, H.; Noutsias, M.; Fechner, H.; Schultheiss, H.P.; Poller, W. Description of a local cardiac adiponectin system and its deregulation in dilated cardiomyopathy. Eur. Heart J. 2008, 29, 1168–1180. [Google Scholar] [CrossRef] [Green Version]
- Khan, R.S.; Kato, T.S.; Chokshi, A.; Chew, M.; Yu, S.; Wu, C.; Singh, P.; Cheema, F.; Takayama, H.; Harris, C.; et al. Adipose tissue inflammation and adiponectin resistance in patients with advanced heart failure: Correction after ventricular assist device implantation. Circ. Heart Fail. 2012, 5, 340–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charron, P.; Elliott, P.M.; Gimeno, J.R.; Caforio, A.L.P.; Kaski, J.P.; Tavazzi, L.; Tendera, M.; Maupain, C.; Laroche, C.; Rubis, P.; et al. The cardiomyopathy registry of the eurobservational research programme of the european society of cardiology: Baseline data and contemporary management of adult patients with cardiomyopathies. Eur. Heart J. 2018, 39, 1784–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasaityte, R.; Dandel, M.; Lehmkuhl, H.; Hetzer, R. Prediction of short-term outcomes in patients with idiopathic dilated cardiomyopathy referred for transplantation using standard echocardiography and strain imaging. Transplant. Proc. 2009, 41, 277–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMurray, J.J.; Adamopoulos, S.; Anker, S.D.; Auricchio, A.; Bohm, M.; Dickstein, K.; Falk, V.; Filippatos, G.; Fonseca, C.; Gomez-Sanchez, M.A.; et al. Esc guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the european society of cardiology. Developed in collaboration with the heart failure association (hfa) of the esc. Eur. Heart J. 2012, 33, 1787–1847. [Google Scholar]
- Baltruniene, V.; Bironaite, D.; Kazukauskiene, I.; Bogomolovas, J.; Vitkus, D.; Rucinskas, K.; Zurauskas, E.; Augulis, R.; Grabauskiene, V. The role of serum adiponectin for outcome prediction in patients with dilated cardiomyopathy and advanced heart failure. BioMed Res. Int. 2017, 2017, 3818292. [Google Scholar] [CrossRef] [Green Version]
- Caforio, A.L.; Pankuweit, S.; Arbustini, E.; Basso, C.; Gimeno-Blanes, J.; Felix, S.B.; Fu, M.; Helio, T.; Heymans, S.; Jahns, R.; et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the european society of cardiology working group on myocardial and pericardial diseases. Eur. Heart J. 2013, 34, 2636–2648. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, E.; Lau, W.B.; Wang, Y.; Liu, G.; Li, J.J.; Wang, X.; Yuan, Y.; Koch, W.J.; Ma, X.L. G-protein-coupled receptor kinase 2-mediated desensitization of adiponectin receptor 1 in failing heart. Circulation 2015, 131, 1392–1404. [Google Scholar] [CrossRef] [Green Version]
- Caselli, C.; Lionetti, V.; Cabiati, M.; Prescimone, T.; Aquaro, G.D.; Ottaviano, V.; Bernini, F.; Mattii, L.; Del Ry, S.; Giannessi, D. Regional evidence of modulation of cardiac adiponectin level in dilated cardiomyopathy: Pilot study in a porcine animal model. Cardiovasc. Diabetol. 2012, 11, 143. [Google Scholar] [CrossRef] [Green Version]
- Van Berendoncks, A.M.; Garnier, A.; Beckers, P.; Hoymans, V.Y.; Possemiers, N.; Fortin, D.; Martinet, W.; Van Hoof, V.; Vrints, C.J.; Ventura-Clapier, R.; et al. Functional adiponectin resistance at the level of the skeletal muscle in mild to moderate chronic heart failure. Circ. Heart Fail. 2010, 3, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Sente, T.; Van Berendoncks, A.M.; Hoymans, V.Y.; Vrints, C.J. Adiponectin resistance in skeletal muscle: Pathophysiological implications in chronic heart failure. J. Cachexia Sarcopenia Muscle 2016, 7, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Schoenenberger, A.W.; Pfaff, D.; Dasen, B.; Frismantiene, A.; Erne, P.; Resink, T.J.; Philippova, M. Gender-specific associations between circulating t-cadherin and high molecular weight-adiponectin in patients with stable coronary artery disease. PLoS ONE 2015, 10, e0131140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuda, S.; Kita, S.; Obata, Y.; Fujishima, Y.; Nagao, H.; Masuda, S.; Tanaka, Y.; Nishizawa, H.; Funahashi, T.; Takagi, J.; et al. The unique prodomain of t-cadherin plays a key role in adiponectin binding with the essential extracellular cadherin repeats 1 and 2. J. Biol. Chem. 2017, 292, 7840–7849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sternberg, J.; Wankell, M.; Subramaniam, V.N.; Hebbard, L.W. The functional roles of t-cadherin in mammalian biology. AIMS Mol. Sci. 2017, 4, 62–81. [Google Scholar] [CrossRef]
- Kindermann, I.; Kindermann, M.; Kandolf, R.; Klingel, K.; Bultmann, B.; Muller, T.; Lindinger, A.; Bohm, M. Predictors of outcome in patients with suspected myocarditis. Circulation 2008, 118, 639–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Value | No. of Patients |
---|---|---|
Age (years) | 53 ± 8 | 29 |
Male/gender, n (%) | 22 (75.9) | 29 |
BMI (kg/m2) | 28.8 ± 5.6 | 29 |
GFR (ml/min) | 104.2 ± 32 | 25 |
Duration of symptoms before enrollment (months) | 12 (6–60) * | 29 |
NYHA class, n (%) | 29 | |
II | 4 (13.79) | |
III | 19 (65.52) | |
IV | 6 (20.69) | |
iDCM, n (%) | 13 (46.4) | 28 |
Cardiac parameters | ||
Permanent atrial fibrillation, n (%) | 8 (27.59) | 29 |
LVEF (%) | 28.28 ± 11.44 | 29 |
LVEDD (cm) | 6.5 (6.2–7.3) * | 29 |
Average global strain | −9.97 ± 3.67 | 17 |
Mean AoP (mmHg) | 100 ± 13 | 27 |
Mean RAP (mmHg) | 11 (7–14) * | 29 |
Mean PCWP (mmHg) | 19 (15–30) * | 29 |
Mean PAP (mmHg) | 28 (21–38) * | 28 |
Serum biomarkers | ||
BNP (pg/mL) | 305 (56.8–1496.2) * | 28 |
Adiponectin (µg/mL) | 10.6 (5.30–27.54) * | 28 |
Markers of inflammation in serum | ||
CRP (µg/mL) | 2.4 (1.3–11.5) * | 27 |
TNF-α (pg/mL) | 8.73 (6.62–9.82) * | 28 |
Il-6 (pg/mL) | 2.38 (2–5.14)* | 28 |
Markers of myocardial immune infiltration (cells/mm2) | ||
CD3+ | 9 (7–15) * | 28 |
CD4+ | 4 (4–6) * | 28 |
CD45ro | 6 (5–8) * | 28 |
CD68+ | 4 (3–5) * | 28 |
Myocardial adiponectin receptors (ng/mg) | ||
T-cadherin | 41.160 (22.747–54.338) * | 29 |
Medications used | ||
Beta blockers, n (%) | 28 (96.5%) | 29 |
ACE inhibitors, ARB blockers n (%) | 24 (82.8%) | 29 |
Diuretics and mineralocorticoids receptor blockers, n (%) | 27 (93.1%) | 29 |
Anticoagulation (atrial fibrillation, EF < 40%), n (%) | 16 (55.2%) | 29 |
Antiarrhythmic (class III: amiodarone), n (%) | 4 (13.8%) | 29 |
Cardiac resynchronization therapy | ||
CRT | 5 (17.2%) | 29 |
CRTd | 1 (3.4%) | 29 |
Variable | Rho | p Value | No. of Patients |
---|---|---|---|
Serum biomarkers | |||
BNP (pg/mL) | −0.013 | 0.947 | 27 |
CRP (μg/mL) | 0.354 | 0.076 | 26 |
Adiponectin (μg/mL) | −0.027 | 0.892 | 27 |
IL-6 (pg/mL) | 0.185 | 0.356 | 27 |
TNF α (pg/mL) | 0.124 | 0.537 | 27 |
Echocardiographic and hemodynamic parameters | |||
LVEF (%) | −0.098 | 0.621 | 28 |
LVEDD (cm) | −0.079 | 0.689 | 28 |
Average global strain | −0.297 | 0.247 | 17 |
Mean AoP (mmHg) | 0.015 | 0.943 | 26 |
Mean PCWP (mmHg) | −0.397 | 0.037 | 28 |
Mean PAP (mmHg) | −0.221 | 0.257 | 28 |
Mean RAP (mmHg) | −0.047 | 0.813 | 28 |
Markers of immune infiltration (cells/mm2) | |||
CD3+ | −0.423 | 0.028 | 27 |
CD4+ | 0.032 | 0.874 | 27 |
CD45ro | −0.144 | 0.474 | 27 |
CD68+ | 0.189 | 0.344 | 27 |
Differences in Patient Groups Based on the Mean PCWP | |||||
---|---|---|---|---|---|
Mean PCWP ≤ 19 mmHg | Mean PCWP > 19 mmHg | ||||
Variable | Median (IQR) | No. of Patients | Median (IQR) | No. of Patients | p Value |
Age (years) | 52 (48–54) | 15 | 53 (48–58) | 13 | 0.474 |
Male gender, n (%) | 11 (73.3) | 15 | 10 (76.9) | 13 | 1 |
BMI (kg/m2) | 28 (25.3–34.9) | 15 | 28 (25.2–31.8) | 13 | 0.872 |
GFR (ml/min) | 103.7 (91.5–119.7) | 14 | 104 (74.8–132.9) | 10 | 0.931 |
NYHA class, n (%) | 15 | 13 | 0.731 | ||
II | 3 (20.0) | 1 (7.7) | |||
III | 10 (66.7) | 9 (69.2) | |||
IV | 2 (13.3) | 3 (23.1) | |||
iDCM, n (%) | 6 (46.2) | 14 | 6 (42.9) | 13 | 1 |
Echocardiographic parameters | |||||
LVEF (%) | 35 (30–42) | 15 | 20 (17-30 | 13 | 0.003 |
Average global strain | −12.46 (−13.377–9.583) | 10 | −8.54 (−9.45–5.15) | 7 | 0.007 |
Serum biomarkers | |||||
BNP (pg/mL) | 75 (30.75–304.7) | 15 | 1134 (335.8–2653.4) | 12 | 0.005 |
CRB (µg/mL) | 3.0 (1.2–13.3) | 14 | 3.3 (1.4–9.45) | 12 | 0.959 |
Adiponectin (μg/mL) | 6.6 (5.1–16.3) | 15 | 14.9 (7.73–27.57) | 12 | 0.217 |
IL-6 (pg/mL) | 2.00 (2–3.3) | 15 | 4.83 (2–14.44) | 12 | 0.056 |
TNF-α (pg/mL) | 6.72 (6.01–9.6) | 15 | 9.21 (8.65–10.61) | 12 | 0.075 |
Cardiac inflammatory infiltration markers (cells/mm2) | |||||
CD3+ | 9 (7–11) | 14 | 8 (7–17) | 13 | 0.450 |
CD4+ | 5 (4–6) | 14 | 4 (3–6) | 13 | 0.472 |
CD45ro | 6 (4–8) | 14 | 6 (5–7) | 13 | 0.961 |
CD68+ | 5 (2–5) | 14 | 3 (3–5) | 13 | 0.920 |
Myocardial adiponectin receptors (ng/mg) | |||||
T-cadherin | 45.654 (32.184–65.583) | 15 | 26.805 (15.926–50.362) | 13 | 0.058 |
Medications used | |||||
Beta blockers, n (%) | 15 (100) | 15 | 13 (100) | 13 | |
ACE inhibitors, ARB blockers n (%) | 13 (86.7) | 15 | 10 (76.9) | 13 | 0.639 |
Diuretics and mineralocorticoids receptor blockers, n (%) | 14 (93.3) | 15 | 12 (92.3) | 13 | 1 |
Anticoagulation (atrial fibrillation, EF < 40%), n (%) | 6 (40) | 15 | 10 (76.9) | 13 | 0.049 |
Antiarrhythmic (class III: amiodarone), n (%) | 1 (6.7) | 15 | 3 (23.1) | 13 | 0.311 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baltrūnienė, V.; Rinkūnaitė, I.; Bogomolovas, J.; Bironaitė, D.; Kažukauskienė, I.; Šimoliūnas, E.; Ručinskas, K.; Puronaitė, R.; Bukelskienė, V.; Grabauskienė, V. The Role of Cardiac T-Cadherin in the Indicating Heart Failure Severity of Patients with Non-Ischemic Dilated Cardiomyopathy. Medicina 2020, 56, 27. https://doi.org/10.3390/medicina56010027
Baltrūnienė V, Rinkūnaitė I, Bogomolovas J, Bironaitė D, Kažukauskienė I, Šimoliūnas E, Ručinskas K, Puronaitė R, Bukelskienė V, Grabauskienė V. The Role of Cardiac T-Cadherin in the Indicating Heart Failure Severity of Patients with Non-Ischemic Dilated Cardiomyopathy. Medicina. 2020; 56(1):27. https://doi.org/10.3390/medicina56010027
Chicago/Turabian StyleBaltrūnienė, Vaida, Ieva Rinkūnaitė, Julius Bogomolovas, Daiva Bironaitė, Ieva Kažukauskienė, Egidijus Šimoliūnas, Kęstutis Ručinskas, Roma Puronaitė, Virginija Bukelskienė, and Virginija Grabauskienė. 2020. "The Role of Cardiac T-Cadherin in the Indicating Heart Failure Severity of Patients with Non-Ischemic Dilated Cardiomyopathy" Medicina 56, no. 1: 27. https://doi.org/10.3390/medicina56010027
APA StyleBaltrūnienė, V., Rinkūnaitė, I., Bogomolovas, J., Bironaitė, D., Kažukauskienė, I., Šimoliūnas, E., Ručinskas, K., Puronaitė, R., Bukelskienė, V., & Grabauskienė, V. (2020). The Role of Cardiac T-Cadherin in the Indicating Heart Failure Severity of Patients with Non-Ischemic Dilated Cardiomyopathy. Medicina, 56(1), 27. https://doi.org/10.3390/medicina56010027