Irritable Bowel Syndrome between Molecular Approach and Clinical Expertise—Searching for Gap Fillers in the Oxidative Stress Way of Thinking
Abstract
:1. Introduction
2. Making Room for Molecular Approach
3. Molecularly Different, But Clinically the Same
4. It Is a Bug Situation
5. When Things Get Inflamed
6. Oxidative Way of Thinking
7. Is It Written in Our Genes?
8. The Future Is Now
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Endo, Y.; Shoji, T.; Fukudo, S. Epidemiology of irritable bowel syndrome. Ann. Gastroenterol. 2015, 28, 158–159. [Google Scholar]
- Forouhi, N.G.; Wareham, N.J. Epidemiology of diabetes. Medicine 2014, 42, 698–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adriani, A.; Ribaldone, D.G.; Astegiano, M.; Durazzo, M.; Saracco, G.M.; Pellicano, R. Irritable bowel syndrome: The clinical approach. Panminerva Med. 2018, 60, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Canavan, C.; West, J.; Card, T. The epidemiology of irritable bowel syndrome. Clin. Epidemiol. 2014, 6, 71–80. [Google Scholar] [PubMed] [Green Version]
- Lee, S.-Y.; Kim, J.H.; Sung, I.-K.; Park, H.-S.; Jin, C.-J.; Choe, W.H.; Kwon, S.Y.; Lee, C.H.; Choi, K.W. Irritable Bowel Syndrome Is More Common in Women Regardless of the Menstrual Phase: A Rome II-based Survey. J. Korean Med. Sci. 2007, 22, 851–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cozma-Petruţ, A.; Loghin, F.; Miere, D.; Dumitraşcu, D.L. Diet in irritable bowel syndrome: What to recommend, not what to forbid to patients! World J. Gastroenterol. 2017, 23, 3771–3783. [Google Scholar] [CrossRef] [PubMed]
- Lacy, B.; Patel, N. Rome Criteria and a Diagnostic Approach to Irritable Bowel Syndrome. J. Clin. Med. 2017, 6, 99. [Google Scholar] [CrossRef]
- Shih, D.Q.; Kwan, L.Y. All Roads Lead to Rome: Update on Rome III Criteria and New Treatment Options. Gastroenterol. Rep. 2007, 1, 56–65. [Google Scholar]
- Drossman, D.A. Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features and Rome IV. Gastroenterology 2016, 150, 1262–1279. [Google Scholar] [CrossRef] [Green Version]
- Mearin, F.; Lacy, B.E.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel Disorders. Gastroenterology 2016, 150, 1393–1407. [Google Scholar]
- Mujagic, Z.; Tigchelaar, E.F.; Zhernakova, A.; Ludwig, T.; Ramiro-Garcia, J.; Baranska, A.; Swertz, M.A.; Masclee, A.A.M.; Wijmenga, C.; van Schooten, F.J.; et al. A novel biomarker panel for irritable bowel syndrome and the application in the general population. Sci. Rep. 2016, 6, 26420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keohane, J.; O’Mahony, C.; O’Mahony, L.; O’Mahony, S.; Quigley, E.M.; Shanahan, F. Irritable bowel syndrome-type symptoms in patients with inflammatory bowel disease: A real association or reflection of occult inflammation? Am. J. Gastroenterol. 2010, 105, 1788, 1789–1794; quiz 1795. [Google Scholar] [CrossRef] [PubMed]
- Jansen, P.A.M.; Rodijk-Olthuis, D.; Hollox, E.J.; Kamsteeg, M.; Tjabringa, G.S.; de Jongh, G.J.; van Vlijmen-Willems, I.M.J.J.; Bergboer, J.G.M.; van Rossum, M.M.; de Jong, E.M.G.J.; et al. Beta-defensin-2 protein is a serum biomarker for disease activity in psoriasis and reaches biologically relevant concentrations in lesional skin. PLoS ONE 2009, 4, e4725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, T.; Sun, Z.; Chen, X.; Wang, Y.; Li, R.; Ji, S.; Zhao, Y. Serum Human Beta-Defensin-2 Is a Possible Biomarker for Monitoring Response to JAK Inhibitor in Psoriasis Patients. Dermatology 2017, 233, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Pang, T.; Leach, S.T.; Katz, T.; Day, A.S. Fecal Biomarkers of Intestinal Health and Disease in Children. Front. Pediatr. 2014, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Strekalova, T.; Spanagel, R.; Bartsch, D.; Henn, F.A.; Gass, P. Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 2004, 29, 2007–2017. [Google Scholar] [CrossRef]
- Zhuang, X.; Xiong, L.; Li, L.; Li, M.; Chen, M. Alterations of gut microbiota in patients with irritable bowel syndrome: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2017, 32, 28–38. [Google Scholar] [CrossRef]
- Vaiopoulou, A.; Karamanolis, G.; Psaltopoulou, T.; Karatzias, G.; Gazouli, M. Molecular basis of the irritable bowel syndrome. World J. Gastroenterol. 2014, 20, 376–383. [Google Scholar] [CrossRef]
- Camilleri, M.; Piessevaux, H.; Yiannakou, Y.; Tack, J.; Kerstens, R.; Quigley, E.M.M.; Ke, M.; Da Silva, S.; Levine, A. Efficacy and Safety of Prucalopride in Chronic Constipation: An Integrated Analysis of Six Randomized, Controlled Clinical Trials. Dig. Dis. Sci. 2016, 61, 2357–2372. [Google Scholar] [CrossRef] [Green Version]
- Chumpitazi, B.P.; Shulman, R.J. Underlying molecular and cellular mechanisms in childhood irritable bowel syndrome. Mol. Cell. Pediatr. 2016, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Halpert, A. Irritable Bowel Syndrome: Patient-Provider Interaction and Patient Education. J. Clin. Med. 2018, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surdea-Blaga, T.; Băban, A.; Dumitrascu, D.L. Psychosocial determinants of irritable bowel syndrome. World J. Gastroenterol. 2012, 18, 616–626. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, S.; Tatewaki, M.; Yamada, T.; Fujimiya, M.; Mantyh, C.; Voss, M.; Eubanks, S.; Harris, M.; Pappas, T.; Takahashi, T. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R1269–R1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camilleri, M.; Madsen, K.; Spiller, R.; Greenwood-Van Meerveld, B.; Verne, G.N. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol. Motil. 2012, 24, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Iovino, P.; Tremolaterra, F.; Boccia, G.; Miele, E.; Ruju, F.M.; Staiano, A. Irritable bowel syndrome in childhood: Visceral hypersensitivity and psychosocial aspects. Neurogastroenterol. Motil. 2009, 21, 940-e74. [Google Scholar] [CrossRef]
- Farmer, A.D.; Aziz, Q. Mechanisms and management of functional abdominal pain. J. R. Soc. Med. 2014, 107, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Ponnusamy, K.; Choi, J.N.; Kim, J.; Lee, S.-Y.; Lee, C.H. Microbial community and metabolomic comparison of irritable bowel syndrome faeces. J. Med. Microbiol. 2011, 60 Pt 6, 817–827. [Google Scholar] [CrossRef] [Green Version]
- Rivière, A.; Selak, M.; Lantin, D.; Leroy, F.; De Vuyst, L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front. Microbiol. 2016, 7, 979. [Google Scholar] [CrossRef] [Green Version]
- Lyra, A.; Rinttilä, T.; Nikkilä, J.; Krogius-Kurikka, L.; Kajander, K.; Malinen, E.; Mättö, J.; Mäkelä, L.; Palva, A. Diarrhoea-predominant irritable bowel syndrome distinguishable by 16S rRNA gene phylotype quantification. World J. Gastroenterol. 2009, 15, 5936–5945. [Google Scholar] [CrossRef]
- Malinen, E.; Rinttilä, T.; Kajander, K.; Mättö, J.; Kassinen, A.; Krogius, L.; Saarela, M.; Korpela, R.; Palva, A. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Am. J. Gastroenterol. 2005, 100, 373–382. [Google Scholar] [CrossRef]
- Kerckhoffs, A.P.M.; Samsom, M.; van der Rest, M.E.; de Vogel, J.; Knol, J.; Ben-Amor, K.; Akkermans, L.M.A. Lower Bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients. World J. Gastroenterol. 2009, 15, 2887–2892. [Google Scholar] [CrossRef]
- Kim, G.; Deepinder, F.; Morales, W.; Hwang, L.; Weitsman, S.; Chang, C.; Gunsalus, R.; Pimentel, M. Methanobrevibacter smithii is the predominant methanogen in patients with constipation-predominant IBS and methane on breath. Dig. Dis. Sci. 2012, 57, 3213–3218. [Google Scholar] [CrossRef]
- Carroll, I.M.; Ringel-Kulka, T.; Siddle, J.P.; Ringel, Y. Alterations in composition and diversity of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol. Motil. 2012, 24, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Carroll, I.M.; Chang, Y.-H.; Park, J.; Sartor, R.B.; Ringel, Y. Luminal and mucosal-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Gut Pathog. 2010, 2, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, A.C.; Quigley, E.M.M.; Lacy, B.E.; Lembo, A.J.; Saito, Y.A.; Schiller, L.R.; Soffer, E.E.; Spiegel, B.M.R.; Moayyedi, P. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: Systematic review and meta-analysis. Am. J. Gastroenterol. 2014, 109, 1547. [Google Scholar] [CrossRef] [PubMed]
- Graff, E.C.; Fang, H.; Wanders, D.; Judd, R.L. Anti-inflammatory effects of the hydroxycarboxylic acid receptor 2. Metabolism 2016, 65, 102–113. [Google Scholar] [CrossRef]
- Kaplan, H.; Hutkins, R.W. Fermentation of fructooligosaccharides by lactic acid bacteria and Bifidobacteria. Appl. Environ. Microbiol. 2000, 66, 2682–2684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, N.; Guo, P.; Zhang, J.; He, T.; Kim, S.W.; Zhang, G.; Ma, X. Nutrients Mediate Intestinal Bacteria-Mucosal Immune Crosstalk. Front. Immunol. 2018, 9, 5. [Google Scholar] [CrossRef]
- Duboc, H.; Rainteau, D.; Rajca, S.; Humbert, L.; Farabos, D.; Maubert, M.; Grondin, V.; Jouet, P.; Bouhassira, D.; Seksik, P.; et al. Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol. Motil. 2012, 24, 513–520. [Google Scholar] [CrossRef]
- Dey, N.; Wagner, V.E.; Blanton, L.V.; Cheng, J.; Fontana, L.; Haque, R.; Ahmed, T.; Gordon, J.I. Regulators of gut motility revealed by a gnotobiotic model of diet-microbiome interactions related to travel. Cell 2015, 163, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Ghoshal, U.; Shukla, R.; Ghoshal, U.; Gwee, K.-A.; Ng, S.; Quigley, E. The Gut Microbiota and Irritable Bowel Syndrome: Friend or Foe? Int. J. Inflam. 2012, 2012, 151085. [Google Scholar] [CrossRef] [PubMed]
- McKendrick, M.W.; Read, N.W. Irritable bowel syndrome-post Salmonella infection. J. Infect. 1994, 29, 1–3. [Google Scholar] [CrossRef]
- Zhuang, X.; Tian, Z.; Li, L.; Zeng, Z.; Chen, M.; Xiong, L. Fecal Microbiota Alterations Associated With Diarrhea-Predominant Irritable Bowel Syndrome. Front. Microbiol. 2018, 9, 1600. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-N.; Wu, H.; Chen, Y.-Z.; Chen, Y.-J.; Shen, X.-Z.; Liu, T.-T. Altered molecular signature of intestinal microbiota in irritable bowel syndrome patients compared with healthy controls: A systematic review and meta-analysis. Dig. Liver Dis. 2017, 49, 331–337. [Google Scholar] [CrossRef]
- Casén, C.; Vebø, H.C.; Sekelja, M.; Hegge, F.T.; Karlsson, M.K.; Ciemniejewska, E.; Dzankovic, S.; Frøyland, C.; Nestestog, R.; Engstrand, L.; et al. Deviations in human gut microbiota: A novel diagnostic test for determining dysbiosis in patients with IBS or IBD. Aliment. Pharmacol. Ther. 2015, 42, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Tap, J.; Derrien, M.; Tornblom, H.; Brazeilles, R.; Cools-Portier, S.; Dore, J.; Storsrud, S.; Le Neve, B.; Ohman, L.; Simren, M. Identification of an Intestinal Microbiota Signature Associated With Severity of Irritable Bowel Syndrome. Gastroenterology 2017, 152, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Kerckhoffs, A.P.M.; Ben-Amor, K.; Samsom, M.; Van Der Rest, M.E.; De Vogel, J.; Knol, J.; Akkermans, L.M.A. Molecular analysis of faecal and duodenal samples reveals significantly higher prevalence and numbers of Pseudomonas aeruginosa in irritable bowel syndrome. J. Med. Microbiol. 2011, 60 Pt 2, 236–245. [Google Scholar] [CrossRef]
- Shukla, R.; Ghoshal, U.; Dhole, T.N.; Ghoshal, U.C. Fecal Microbiota in Patients with Irritable Bowel Syndrome Compared with Healthy Controls Using Real-Time Polymerase Chain Reaction: An Evidence of Dysbiosis. Dig. Dis. Sci. 2015, 60, 2953–2962. [Google Scholar] [CrossRef]
- Manichanh, C.; Rigottier-Gois, L.; Bonnaud, E.; Gloux, K.; Pelletier, E.; Frangeul, L.; Nalin, R.; Jarrin, C.; Chardon, P.; Marteau, P.; et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 2006, 55, 205–211. [Google Scholar] [CrossRef] [Green Version]
- McMurtry, V.E.; Gupta, R.W.; Tran, L.; Blanchard EEt, P.D.; Taylor, C.M. Bacterial diversity and Clostridia abundance decrease with increasing severity of necrotizing enterocolitis. Microbiome 2015, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Michail, S.; Durbin, M.; Turner, D.; Griffiths, A.M.; Mack, D.R.; Hyams, J.; Leleiko, N.; Kenche, H.; Stolfi, A.; Wine, E. Alterations in the gut microbiome of children with severe ulcerative colitis. Inflamm. Bowel Dis. 2012, 18, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A core gut microbiome in obese and lean twins. Nature 2009, 457, 480–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malinen, E.; Krogius-Kurikka, L.; Lyra, A.; Nikkila, J.; Jaaskelainen, A.; Rinttila, T.; Vilpponen-Salmela, T.; von Wright, A.J.; Palva, A. Association of symptoms with gastrointestinal microbiota in irritable bowel syndrome. World J. Gastroenterol. 2010, 16, 4532–4540. [Google Scholar] [CrossRef]
- Beatty, J.K.; Akierman, S.V.; Motta, J.P.; Muise, S.; Workentine, M.L.; Harrison, J.J.; Bhargava, A.; Beck, P.L.; Rioux, K.P.; McKnight, G.W.; et al. Giardia duodenalis induces pathogenic dysbiosis of human intestinal microbiota biofilms. Int. J. Parasitol. 2017, 47, 311–326. [Google Scholar] [CrossRef] [PubMed]
- Pozuelo, M.; Panda, S.; Santiago, A.; Mendez, S.; Accarino, A.; Santos, J.; Guarner, F.; Azpiroz, F.; Manichanh, C. Reduction of butyrate- and methane-producing microorganisms in patients with Irritable Bowel Syndrome. Sci. Rep. 2015, 5, 12693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourdu, S.; Dapoigny, M.; Chapuy, E.; Artigue, F.; Vasson, M.P.; Dechelotte, P.; Bommelaer, G.; Eschalier, A.; Ardid, D. Rectal instillation of butyrate provides a novel clinically relevant model of noninflammatory colonic hypersensitivity in rats. Gastroenterology 2005, 128, 1996–2008. [Google Scholar] [CrossRef]
- Padurariu, M.; Antioch, I.; Balmus, I.; Ciobica, A.; El-Lethey, H.S.; Kamel, M.M. Describing some behavioural animal models of anxiety and their mechanistics with special reference to oxidative stress and oxytocin relevance. Int. J. Vet. Sci. Med. 2017, 5, 98–104. [Google Scholar] [CrossRef]
- Kelly, J.R.; Borre, Y.; O’ Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 2016, 82, 109–118. [Google Scholar] [CrossRef]
- Desbonnet, L.; Garrett, L.; Clarke, G.; Bienenstock, J.; Dinan, T.G. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J. Psychiatr. Res. 2008, 43, 164–174. [Google Scholar] [CrossRef]
- Zheng, P.; Zeng, B.; Zhou, C.; Liu, M.; Fang, Z.; Xu, X.; Zeng, L.; Chen, J.; Fan, S.; Du, X.; et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 2016, 21, 786–796. [Google Scholar] [CrossRef]
- Clarke, G.; Grenham, S.; Scully, P.; Fitzgerald, P.; Moloney, R.D.; Shanahan, F.; Dinan, T.G.; Cryan, J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 2013, 18, 666–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botschuijver, S.; Roeselers, G.; Levin, E.; Jonkers, D.M.; Welting, O.; Heinsbroek, S.E.M.; de Weerd, H.H.; Boekhout, T.; Fornai, M.; Masclee, A.A.; et al. Intestinal Fungal Dysbiosis Is Associated With Visceral Hypersensitivity in Patients With Irritable Bowel Syndrome and Rats. Gastroenterology 2017, 153, 1026–1039. [Google Scholar] [CrossRef] [PubMed]
- Mete, R.; Tulubas, F.; Oran, M.; Yilmaz, A.; Avci, B.A.; Yildiz, K.; Turan, C.B.; Gurel, A. The role of oxidants and reactive nitrogen species in irritable bowel syndrome: A potential etiological explanation. Med. Sci. Monit. 2013, 19, 762–766. [Google Scholar] [PubMed]
- Sharma, J.N.; Al-Omran, A.; Parvathy, S.S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 2007, 15, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Oran, M.; Tulubas, F.; Mete, R.; Aydin, M.; Sarikaya, H.G.; Gurel, A. Evaluation of paraoxonase and arylesterase activities in patients with irritable bowel syndrome. J. Pak. Med. Assoc. 2014, 64, 820–822. [Google Scholar]
- Mesika, R.; Reichmann, D. When safeguarding goes wrong: Impact of oxidative stress on protein homeostasis in health and neurodegenerative disorders. Adv. Protein Chem. Struct. Biol. 2019, 114, 221–264. [Google Scholar]
- Chandar, A.K. Diagnosis and treatment of irritable bowel syndrome with predominant constipation in the primary-care setting: Focus on linaclotide. Int. J. Gen. Med. 2017, 10, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Stanisic, V.; Quigley, E.M.M. The overlap between IBS and IBD: What is it and what does it mean? Expert Rev. Gastroenterol. Hepatol. 2014, 8, 139–145. [Google Scholar] [CrossRef]
- Waugh, N.; Cummins, E.; Royle, P.; Kandala, N.-B.; Shyangdan, D.; Arasaradnam, R.; Clar, C.; Johnston, R. Faecal calprotectin testing for differentiating amongst inflammatory and non-inflammatory bowel diseases: Systematic review and economic evaluation. Health Technol. Assess. 2013, 17, 1–211. [Google Scholar] [CrossRef]
- Klem, F.; Wadhwa, A.; Prokop, L.J.; Sundt, W.J.; Farrugia, G.; Camilleri, M.; Singh, S.; Grover, M. Prevalence, Risk Factors, and Outcomes of Irritable Bowel Syndrome After Infectious Enteritis: A Systematic Review and Meta-analysis. Gastroenterology 2017, 152, 1042–1054. [Google Scholar] [CrossRef] [Green Version]
- Thabane, M.; Kottachchi, D.; Marshall, J. Systematic review and meta-analysis: The incidence and prognosis of post-infectious irritable bowel syndrome. Aliment. Pharmacol. Ther. 2007, 26, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Zamani, M.; Sharifzadeh, M.; Rezaie, A.; Mashayekhi, F.; Abdollahi, M. Effects of sildenafil on rat irritable bowel syndrome. Therapy 2005, 2, 237–242. [Google Scholar] [CrossRef]
- Zhang, L.; Gong, J.T.; Zhang, H.Q.; Song, Q.H.; Xu, G.H.; Cai, L.; Tang, X.D.; Zhang, H.F.; Liu, F.-E.; Jia, Z.S.; et al. Melatonin Attenuates Noise Stress-induced Gastrointestinal Motility Disorder and Gastric Stress Ulcer: Role of Gastrointestinal Hormones and Oxidative Stress in Rats. J. Neurogastroenterol. Motil. 2015, 21, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Thornley, J.P.; Jenkins, D.; Neal, K.; Wright, T.; Brough, J.; Spiller, R.C. Relationship of Campylobacter toxigenicity in vitro to the development of postinfectious irritable bowel syndrome. J. Infect. Dis. 2001, 184, 606–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, S.; Park, H.; Lee, D.; Song, Y.K.; Choi, J.P.; Lee, S.-I. Post-infectious irritable bowel syndrome in patients with Shigella infection. J. Gastroenterol. Hepatol. 2005, 20, 381–386. [Google Scholar] [CrossRef]
- Anitha, M.; Vijay-Kumar, M.; Sitaraman, S.V.; Gewirtz, A.T.; Srinivasan, S. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 2012, 143, 1006–1016.e4. [Google Scholar] [CrossRef] [Green Version]
- Choghakhori, R.; Abbasnezhad, A.; Hasanvand, A.; Amani, R. Inflammatory cytokines and oxidative stress biomarkers in irritable bowel syndrome: Association with digestive symptoms and quality of life. Cytokine 2017, 93, 34–43. [Google Scholar] [CrossRef]
- Jalanka-Tuovinen, J.; Salojarvi, J.; Salonen, A.; Immonen, O.; Garsed, K.; Kelly, F.M.; Zaitoun, A.; Palva, A.; Spiller, R.C.; de Vos, W.M. Faecal microbiota composition and host-microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome. Gut 2014, 63, 1737–1745. [Google Scholar] [CrossRef]
- Smith, E.A.; Macfarlane, G.T. Dissimilatory amino Acid metabolism in human colonic bacteria. Anaerobe 1997, 3, 327–337. [Google Scholar] [CrossRef]
- Rajilic-Stojanovic, M. Function of the microbiota. Best Pract. Res. Clin. Gastroenterol. 2013, 27, 5–16. [Google Scholar] [CrossRef]
- Schicho, R.; Krueger, D.; Zeller, F.; Von Weyhern, C.W.H.; Frieling, T.; Kimura, H.; Ishii, I.; De Giorgio, R.; Campi, B.; Schemann, M. Hydrogen sulfide is a novel prosecretory neuromodulator in the Guinea-pig and human colon. Gastroenterology 2006, 131, 1542–1552. [Google Scholar] [CrossRef] [PubMed]
- Jelsness-Jorgensen, L.-P.; Bernklev, T.; Moum, B. Calprotectin Is a Useful Tool in Distinguishing Coexisting Irritable Bowel-Like Symptoms from That of Occult Inflammation among Inflammatory Bowel Disease Patients in Remission. Gastroenterol. Res. Pract. 2013, 2013, 620707. [Google Scholar] [CrossRef] [PubMed]
- Barbara, G.; Wang, B.; Stanghellini, V.; de Giorgio, R.; Cremon, C.; Di Nardo, G.; Trevisani, M.; Campi, B.; Geppetti, P.; Tonini, M.; et al. Mast Cell-Dependent Excitation of Visceral-Nociceptive Sensory Neurons in Irritable Bowel Syndrome. Gastroenterology 2007, 132, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Garcia Rodriguez, L.A.; Ruigomez, A.; Wallander, M.A.; Johansson, S.; Olbe, L. Detection of colorectal tumor and inflammatory bowel disease during follow-up of patients with initial diagnosis of irritable bowel syndrome. Scand. J. Gastroenterol. 2000, 35, 306–311. [Google Scholar] [CrossRef]
- Camilleri, M.; Lasch, K.; Zhou, W. Irritable bowel syndrome: Methods, mechanisms, and pathophysiology. The confluence of increased permeability, inflammation, and pain in irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G775–G785. [Google Scholar] [CrossRef] [Green Version]
- Norgaard, M.; Farkas, D.K.; Pedersen, L.; Erichsen, R.; de la Cour, Z.D.; Gregersen, H.; Sorensen, H.T. Irritable bowel syndrome and risk of colorectal cancer: A Danish nationwide cohort study. Br. J. Cancer 2011, 104, 1202–1206. [Google Scholar] [CrossRef]
- Hsiao, C.-W.; Huang, W.-Y.; Ke, T.-W.; Muo, C.-H.; Chen, W.T.-L.; Sung, F.-C.; Kao, C.-H. Association between irritable bowel syndrome and colorectal cancer: A nationwide population-based study. Eur. J. Intern. Med. 2014, 25, 82–86. [Google Scholar] [CrossRef]
- Chang, H.-C.; Yen, A.M.-F.; Fann, J.C.-Y.; Chiu, S.Y.-H.; Liao, C.-S.; Chen, H.-H.; Yang, K.-C.; Chen, L.-S.; Lin, Y.-M. Irritable bowel syndrome and the incidence of colorectal neoplasia: A prospective cohort study with community-based screened population in Taiwan. Br. J. Cancer 2015, 112, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Caviglia, G.P.; Ribaldone, D.G.; Rosso, C.; Saracco, G.M.; Astegiano, M.; Pellicano, R. Fecal calprotectin: Beyond intestinal organic diseases. Panminerva Med. 2018, 60, 29–34. [Google Scholar]
- Hod, K.; Ringel-Kulka, T.; Martin, C.F.; Maharshak, N.; Ringel, Y. High-sensitive C-Reactive Protein as a Marker for Inflammation in Irritable Bowel Syndrome. J. Clin. Gastroenterol. 2016, 50, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Vivinus-Nebot, M.; Frin-Mathy, G.; Bzioueche, H.; Dainese, R.; Bernard, G.; Anty, R.; Filippi, J.; Saint-Paul, M.C.; Tulic, M.K.; Verhasselt, V.; et al. Functional bowel symptoms in quiescent inflammatory bowel diseases: Role of epithelial barrier disruption and low-grade inflammation. Gut 2014, 63, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Ogura, Y.; Bonen, D.K.; Inohara, N.; Nicolae, D.L.; Chen, F.F.; Ramos, R.; Britton, H.; Moran, T.; Karaliuskas, R.; Duerr, R.H.; et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001, 411, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Caviglia, G.P.; Rosso, C.; Ribaldone, D.G.; Dughera, F.; Fagoonee, S.; Astegiano, M.; Pellicano, R. Physiopathology of intestinal barrier and the role of zonulin. Minerva Biotecnol. 2019, 31, 83–92. [Google Scholar] [CrossRef]
- Singh, P.; Silvester, J.; Chen, X.; Xu, H.; Sawhney, V.; Rangan, V.; Iturrino, J.; Nee, J.; Duerksen, D.R.; Lembo, A. Serum zonulin is elevated in IBS and correlates with stool frequency in IBS-D. United Eur. Gastroenterol. J. 2019, 7, 709–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fagoonee, S.; Pellicano, R. Does the Microbiota Play a Pivotal Role in the Pathogenesis of Irritable Bowel Syndrome? J. Clin. Med. 2019, 8, 1808. [Google Scholar] [CrossRef] [Green Version]
- Hauser, G.; Tkalcic, M.; Pletikosic, S.; Grabar, N.; Stimac, D. Erythrocyte sedimentation rate-possible role in determining the existence of the low grade inflammation in Irritable Bowel Syndrome patients. Med. Hypotheses 2012, 78, 818–820. [Google Scholar] [CrossRef]
- Lembo, A.J.; Neri, B.; Tolley, J.; Barken, D.; Carroll, S.; Pan, H. Use of serum biomarkers in a diagnostic test for irritable bowel syndrome. Aliment. Pharmacol. Ther. 2009, 29, 834–842. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Y.R. Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: Updated experimental and clinical evidence. Exp. Biol. Med. 2012, 237, 474–480. [Google Scholar] [CrossRef]
- Ohman, L.; Stridsberg, M.; Isaksson, S.; Jerlstad, P.; Simren, M. Altered levels of fecal chromogranins and secretogranins in IBS: Relevance for pathophysiology and symptoms? Am. J. Gastroenterol. 2012, 107, 440–447. [Google Scholar] [CrossRef]
- Eriksson, B.; Oberg, K. Peptide Hormones as Tumor Markers in Neuroendocrine Gastrointestinal Tumors. Acta Oncol. 1991, 30, 477–483. [Google Scholar] [CrossRef]
- Hugot, J.P.; Chamaillard, M.; Zouali, H.; Lesage, S.; Cezard, J.P.; Belaiche, J.; Almer, S.; Tysk, C.; O’Morain, C.A.; Gassull, M.; et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001, 411, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Van Oudenhove, L.; Crowell, M.D.; Drossman, D.A.; Halpert, A.D.; Keefer, L.; Lackner, J.M.; Murphy, T.B.; Naliboff, B.D.; Levy, R.L. Biopsychosocial Aspects of Functional Gastrointestinal Disorders. Gastroenterology 2016, 150, 1355–1367. [Google Scholar] [CrossRef] [PubMed]
- Fond, G.; Loundou, A.; Hamdani, N.; Boukouaci, W.; Dargel, A.; Oliveira, J.; Roger, M.; Tamouza, R.; Leboyer, M.; Boyer, L. Anxiety and depression comorbidities in irritable bowel syndrome (IBS): A systematic review and meta-analysis. Eur. Arch. Psychiatry Clin. Neurosci. 2014, 264, 651–660. [Google Scholar] [CrossRef]
- Mudyanadzo, T.A.; Hauzaree, C.; Yerokhina, O.; Architha, N.N.; Ashqar, H.M. Irritable Bowel Syndrome and Depression: A Shared Pathogenesis. Cureus 2018, 10, e3178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Bi, Z.; Wang, E.; Sun, B.; Zheng, Y.; Zhong, L.; Yuan, J. Rodent Model of Irritable Bowel Syndrome. Int. J. Gastroenterol. Disord. Ther. 2017, 4, 131. [Google Scholar] [CrossRef] [PubMed]
- Preidis, G.A.; Versalovic, J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: Gastroenterology enters the metagenomics era. Gastroenterology 2009, 136, 2015–2031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asadi-Shahmirzadi, A.; Mozaffari, S.; Sanei, Y.; Baeeri, M.; Hajiaghaee, R.; Monsef-Esfahani, H.R.; Abdollahi, M. Benefit of Aloe vera and Matricaria recutita mixture in rat irritable bowel syndrome: Combination of antioxidant and spasmolytic effects. Chin. J. Integr. Med. 2012. [Google Scholar] [CrossRef]
- Balmus, I.M.; Lefter, R.; Ciobica, A.; Cojocaru, S.; Guenne, S.; Timofte, D.; Stanciu, C.; Trifan, A.; Hritcu, L. Preliminary Biochemical Description of Brain Oxidative Stress Status in Irritable Bowel Syndrome Contention-Stress Rat Model. Medicina 2019, 55, 776. [Google Scholar] [CrossRef] [Green Version]
- Colares, J.R.; Schemitt, E.G.; Hartmann, R.M.; Moura, R.M.; Morgan-Martins, M.I.; Fillmann, H.S.; Fillmann, L.; Marroni, N.P. Effect of lecithin on oxidative stress in an experimental model of rats colitis induced by acetic acid. J. Coloproctol. Rio De Janeiro 2016, 36, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.H. The genetics and immunopathogenesis of inflammatory bowel disease. Nat. Rev. Immunol. 2008, 8, 458–466. [Google Scholar] [CrossRef]
- Saito, Y.A.; Petersen, G.M.; Larson, J.J.; Atkinson, E.J.; Fridley, B.L.; De Andrade, M.; Locke, I.I.I.G.R.; Zimmerman, J.M.; Almazar-Elder, A.E.; Talley, N.J. Familial aggregation of irritable bowel syndrome: A family case-control study. Am. J. Gastroenterol. 2010, 105, 833–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, C.K.Y.; Wu, J.C.Y. Genetic polymorphism in pathogenesis of irritable bowel syndrome. World J. Gastroenterol. 2014, 20, 17693–17698. [Google Scholar] [CrossRef] [PubMed]
- Hammer, C.; Cichon, S.; Muhleisen, T.W.; Haenisch, B.; Degenhardt, F.; Mattheisen, M.; Breuer, R.; Witt, S.H.; Strohmaier, J.; Oruc, L.; et al. Replication of functional serotonin receptor type 3A and B variants in bipolar affective disorder: A European multicenter study. Transl. Psychiatry 2012, 2, e103. [Google Scholar] [CrossRef] [Green Version]
- Wong, B.S.; Camilleri, M.; Carlson, P.J.; Guicciardi, M.E.; Burton, D.; McKinzie, S.; Rao, A.S.; Zinsmeister, A.R.; Gores, G.J. A Klotho-beta Variant Mediates Protein Stability and Associates With Colon Transit in Irritable Bowel Syndrome With Diarrhea. Gastroenterology 2011, 140, 1934–1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villani, A.-C.; Lemire, M.; Thabane, M.; Belisle, A.; Geneau, G.; Garg, A.X.; Clark, W.F.; Moayyedi, P.; Collins, S.M.; Franchimont, D.; et al. Genetic risk factors for post-infectious irritable bowel syndrome following a waterborne outbreak of gastroenteritis. Gastroenterology 2010, 138, 1502–1513. [Google Scholar] [CrossRef]
- Beyder, A.; Mazzone, A.; Strege, P.R.; Tester, D.J.; Saito, Y.A.; Bernard, C.E.; Enders, F.T.; Ek, W.E.; Schmidt, P.T.; Dlugosz, A.; et al. Loss-of-function of the voltage-gated sodium channel NaV1.5 (channelopathies) in patients with irritable bowel syndrome. Gastroenterology 2014, 146, 1659–1668. [Google Scholar] [CrossRef] [Green Version]
- Zucchelli, M.; Camilleri, M.; Andreasson, A.N.; Bresso, F.; Dlugosz, A.; Halfvarson, J.; Torkvist, L.; Schmidt, P.T.; Karling, P.; Ohlsson, B.; et al. Association of TNFSF15 polymorphism with irritable bowel syndrome. Gut 2011, 60, 1671–1677. [Google Scholar] [CrossRef]
- Ek, W.E.; Reznichenko, A.; Ripke, S.; Niesler, B.; Zucchelli, M.; Rivera, N.V.; Schmidt, P.T.; Pedersen, N.L.; Magnusson, P.; Talley, N.J.; et al. Exploring the genetics of irritable bowel syndrome: A GWA study in the general population and replication in multinational case-control cohorts. Gut 2015, 64, 1774–1782. [Google Scholar] [CrossRef] [Green Version]
- Kapeller, J.; Houghton, L.A.; Monnikes, H.; Walstab, J.; Moller, D.; Bonisch, H.; Burwinkel, B.; Autschbach, F.; Funke, B.; Lasitschka, F.; et al. First evidence for an association of a functional variant in the microRNA-510 target site of the serotonin receptor-type 3E gene with diarrhea predominant irritable bowel syndrome. Hum. Mol. Genet. 2008, 17, 2967–2977. [Google Scholar] [CrossRef] [Green Version]
- Wouters, M.M.; Lambrechts, D.; Knapp, M.; Cleynen, I.; Whorwell, P.; Agréus, L.; Dlugosz, A.; Schmidt, P.T.; Halfvarson, J.; Simrén, M.; et al. Genetic variants in CDC42 and NXPH1 as susceptibility factors for constipation and diarrhoea predominant irritable bowel syndrome. Gut 2014, 63, 1103–1111. [Google Scholar] [CrossRef]
- Villani, A.-C.; Saito, Y.A.; Lemire, M.; Thabane, M.; Larson, J.J.; Atkinson, E.J.; Zimmerman, J.; Elder, A.E.A.; Collins, S.M.; Franchimont, D.; et al. 404 Validation of Genetic Risk Factors for Post-Infectious Irritable Bowel Syndrome (IBS) in Patients with Sporadic IBS. Gastroenterology 2009, 136, A68. [Google Scholar] [CrossRef]
- Almazar, A.E.; Chang, J.; Locke, G.; Talley, N.; Almazar, A.; Larson, J.; Atkinson, E.; Ryu, E.; Saito, Y. Comparison of Lactase Variant MCM6-13910C>T Testing and Self-Report of Dairy Sensitivity in Patients with Irritable Bowel Syndrome: 2010 ACG/AstraZeneca Fellow Award: 1350. J. Clin. Gastroenterol. 2019, 53, e227–e231. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.C.; Brandt, L.J.; Young, C.; Chey, W.D.; Foxx-Orenstein, A.E.; Moayyedi, P. Efficacy of 5-HT3 antagonists and 5-HT4 agonists in irritable bowel syndrome: Systematic review and meta-analysis. Am. J. Gastroenterol. 2009, 104, 1831. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.A.; Larson, J.J.; Atkinson, E.J.; Ryu, E.; Almazar, A.E.; Petersen, G.M.; Talley, N.J. The role of 5-HTT LPR and GNbeta3 825C>T polymorphisms and gene-environment interactions in irritable bowel syndrome (IBS). Dig. Dis. Sci. 2012, 57, 2650–2657. [Google Scholar] [CrossRef] [Green Version]
- Fukudo, S.; Ozaki, N.; Watanabe, S.; Kano, M.; Sagami, Y.; Shoji, T.; Endo, Y.; Kanazawa, M.; Hongo, M. 1101 Impact of Serotonin-3 Receptor Gene Polymorphism On Brain Activation By Rectal Distention in Human. Gastroenterology 2009, 20, 376–383. [Google Scholar] [CrossRef]
- Domschke, K.; Deckert, J.; O’donovan, M.C.; Glatt, S.J. Meta-analysis of COMT val158met in panic disorder: Ethnic heterogeneity and gender specificity. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007, 144, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Pecina, M.; Love, T.; Stohler, C.S.; Goldman, D.; Zubieta, J.-K. Effects of the Mu opioid receptor polymorphism (OPRM1 A118G) on pain regulation, placebo effects and associated personality trait measures. Neuropsychopharmacology 2015, 40, 957–965. [Google Scholar] [CrossRef] [Green Version]
- Frielingsdorf, H.; Bath, K.G.; Soliman, F.; Difede, J.; Casey, B.J.; Lee, F.S. Variant brain-derived neurotrophic factor Val66Met endophenotypes: Implications for posttraumatic stress disorder. Ann. N. Y. Acad. Sci. 2010, 1208, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Tan, E.; Lim, E.C.P.; Teo, Y.; Lim, Y.; Law, H.; Sia, A.T. Ethnicity and OPRM variant independently predict pain perception and patient-controlled analgesia usage for post-operative pain. Mol. Pain 2009, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Grudell, A.B.M.; Camilleri, M.; Carlson, P.; Gorman, H.; Ryks, M.; Burton, D.; Baxter, K.; Zinsmeister, A.R. An exploratory study of the association of adrenergic and serotonergic genotype and gastrointestinal motor functions. Neurogastroenterol. Motil. 2008, 20, 213–219. [Google Scholar] [CrossRef]
- Camilleri, M.; Busciglio, I.; Carlson, P.; McKinzie, S.; Burton, D.; Baxter, K.; Ryks, M.; Zinsmeister, A.R. Candidate genes and sensory functions in health and irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 295, G219–G225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Microbiota Diversity | Microbiota Alterations | IBS Subtypes | References |
---|---|---|---|
Clostridiales/Bacteroides, Prevotella | ↑/↓ | IBS-C | [55] |
Ruminococcus bromii-like phylotype | ↑ | IBS-C | [29] |
Veilonella and Lactobacillus spp. | ↑ | IBS-C | [30] |
Bifidobacterium catenulatum | ↓ | IBS-C | [31] |
Methanobrevibacter smithii | ↑ | IBS-C | [32] |
unknown Ruminococcaceae and Christensenellaceae, Akkermansia, Methanobrevibacter | ↑ | IBS-C | [56] |
Lachnospira, Parasutterella, Lactobacillus, Turicibacter, Enterococcus, Weissella, Oxalobacter, Oceanobacillus, Lachnospiraceae_UCG-010/NK4A136_group and Ruminococcaceae_UCG-003/Faecalitalea and Prevotella | ↓/↑ | IBS-D | [43] |
Clostridiales and Bacteroides/Prevotella | ↑/↓ | IBS-D | [55] |
Clostridium thermosuccinogenes and Ruminococcus torques/Collinsella aerofaciens, Bacteroides intestinalis | 85% and 94% phylotype ↑/↓ | IBS-D | [29] |
Lactobacillus spp. | ↓ | IBS-D | [30] |
Bifidobacterium catenulatum | ↓ | IBS-D | [31] |
Enterobacteriaceae | ↑ | IBS-D | [33] |
Lactobacillus spp. | ↑ | IBS-D | [34] |
Ruminococcaceae, unknown Clostridiales, Erysipelotrichaceae and Methanobacteriaceae | ↓ | ISB-D | [56] |
Gene | Gene Name | Region | Chromosome | Phenotype | References |
---|---|---|---|---|---|
KLB | Klotho Beta-Like Protein | Coding polymorphism | 4p14 | IBS-D | [114] |
TLR-9 | Toll-like receptor 9 | Intron and upstream | 3p21.3 | PI-IBS | [115] |
SCN5A | Sodium channel protein, cardiac muscle alpha-subunit | Rare coding mutations | 3p21 | IBS, IBS-C | [116] |
TNFSF15 | Tumor Necrosis Factor Ligand Superfamily, Member 15 | Intron | 9p32 | IBS, IBS-C | [117] |
KDELR2 | (Lys-Asp-Glu-Leu) Endoplasmic Reticulum Protein Retention Receptor 2 | Intron | 7p22.1 | IBS | [118] |
HTR3E | 5-Hydroxytryptamine (Serotonin) Receptor 3, Family Member E | 3’-untranslated region (3’-UTR) | 3q27.1 | IBS-D | [119] |
CDC42 | Cell division control protein 42 homolog | Intron | 1p36.1 | IBS-C | [120] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balmus, I.-M.; Ilie, O.-D.; Ciobica, A.; Cojocariu, R.-O.; Stanciu, C.; Trifan, A.; Cimpeanu, M.; Cimpeanu, C.; Gorgan, L. Irritable Bowel Syndrome between Molecular Approach and Clinical Expertise—Searching for Gap Fillers in the Oxidative Stress Way of Thinking. Medicina 2020, 56, 38. https://doi.org/10.3390/medicina56010038
Balmus I-M, Ilie O-D, Ciobica A, Cojocariu R-O, Stanciu C, Trifan A, Cimpeanu M, Cimpeanu C, Gorgan L. Irritable Bowel Syndrome between Molecular Approach and Clinical Expertise—Searching for Gap Fillers in the Oxidative Stress Way of Thinking. Medicina. 2020; 56(1):38. https://doi.org/10.3390/medicina56010038
Chicago/Turabian StyleBalmus, Ioana-Miruna, Ovidiu-Dumitru Ilie, Alin Ciobica, Roxana-Oana Cojocariu, Carol Stanciu, Anca Trifan, Mirela Cimpeanu, Cristian Cimpeanu, and Lucian Gorgan. 2020. "Irritable Bowel Syndrome between Molecular Approach and Clinical Expertise—Searching for Gap Fillers in the Oxidative Stress Way of Thinking" Medicina 56, no. 1: 38. https://doi.org/10.3390/medicina56010038
APA StyleBalmus, I. -M., Ilie, O. -D., Ciobica, A., Cojocariu, R. -O., Stanciu, C., Trifan, A., Cimpeanu, M., Cimpeanu, C., & Gorgan, L. (2020). Irritable Bowel Syndrome between Molecular Approach and Clinical Expertise—Searching for Gap Fillers in the Oxidative Stress Way of Thinking. Medicina, 56(1), 38. https://doi.org/10.3390/medicina56010038