Infracyanine Green vs. Brilliant Blue G in Inverted Flap Surgery for Large Macular Holes: A Long-Term Swept-Source OCT Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surgical Procedure
2.2. Outcome Measures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Imai, M.; Iijima, H.; Gotoh, T.; Tsukahara, S. Optical coherence tomography of successfully repaired idiopathic macular holes. Am. J. Ophthalmol. 1999, 128, 621–627. [Google Scholar] [CrossRef]
- Michalewska, Z.; Michalewski, J.; Cisiecki, S.; Adelman, R.; Nawrocki, J. Correlation between foveal structure and visual outcome following macular hole surgery: a spectral optical coherence tomography study. Graefes Arch. Clin. Exp. Ophthalmol. 2008, 246, 823–830. [Google Scholar] [CrossRef]
- Michalewska, Z.; Michalewski, J.; Adelman, R.A.; Nawrocki, J. Inverted internal limiting membrane flap technique for large macular holes. Ophthalmology 2010, 117, 2018–2025. [Google Scholar] [CrossRef]
- Kuriyama, S.; Hayashi, H.; Jingami, Y.; Kuramoto, N.; Akita, J.; Matsumoto, M. Efficacy of inverted internal limiting membrane flap technique for the treatment of macular hole in high myopia. Am. J. Ophthalmol. 2013, 156, 125–131.e1. [Google Scholar] [CrossRef]
- Michalewska, Z.; Michalewski, J.; Dulczewska-Cichecka, K.; Nawrocki, J. Inverted internal limiting membrane flap technique for surgical repair of myopic macular holes. Retina 2014, 34, 664–669. [Google Scholar] [CrossRef]
- Chen, S.N.; Yang, C.M. Inverted internal limiting membrane insertion for macular hole-associated retinal detachment in high myopia. Am. J. Ophthalmol. 2016, 166, 211. [Google Scholar] [CrossRef] [PubMed]
- Mete, M.; Alfano, A.; Guerriero, M.; Prigione, G.; Sartore, M.; Polito, A.; Pertile, G. Inverted internal limiting membrane flap technique versus complete internal limiting membrane removal in myopic macular hole surgery: A comparative study. Retina 2017, 37, 1923–1930. [Google Scholar] [CrossRef] [PubMed]
- Haritoglou, C.; Gandorfer, A.; Schaumberger, M.; Tadayoni, R.; Gandorfer, A.; Kampik, A. Light-absorbing properties and osmolarity of indocyanine-green depending on concentration and solvent medium. Investig. Ophthalmol. Vis. Sci. 2003, 44, 2722–2729. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, E.B.; Maia, M.; Meyer, C.H.; Penha, F.M.; Dib, E.; Farah, M.E. Vital dyes for chromovitrectomy. Curr. Opin. Ophthalmol. 2007, 18, 179–187. [Google Scholar] [CrossRef]
- Schmid-Kubista, K.E.; Lamar, P.D.; Schenk, A.; Stolba, U.; Binder, S. Comparison of macular function and visual fields after membrane blue or infracyanine green staining in vitreoretinal surgery. Graefes Arch. Clin. Exp. Ophthalmol. 2010, 248, 381–388. [Google Scholar] [CrossRef]
- Burk, S.E.; Da Mata, A.P.; Snyder, M.E.; Rosa, R.H., Jr.; Foster, R.E. Indocyanine green-assisted peeling of the retinal internal limiting membrane. Ophthalmology 2000, 107, 2010–2014. [Google Scholar] [CrossRef]
- Kadonosono, K.; Itoh, N.; Uchio, E.; Nakamura, S.; Ohno, S. Staining of internal limiting membrane in macular hole surgery. Arch. Ophthalmol. 2000, 118, 1116–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandorfer, A.; Haritoglou, C.; Gass, C.A.; Ulbig, M.W.; Kampik, A. Indocyanine green-assisted peeling of the internal limiting membrane may cause retinal damage. Am. J. Ophthalmol. 2001, 132, 431–433. [Google Scholar] [CrossRef]
- Enaida, H.; Sakamoto, T.; Hisatomi, T.; Goto, Y.; Ishibashi, T. Morphological and functional damage of the retina caused by intravitreous indocyanine green in rat eyes. Graefes Arch. Clin. Exp. Ophthalmol. 2002, 240, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Hirata, A.; Inomata, Y.; Kawaji, T.; Tanihara, H. Persistent subretinal indocyanine green induces retinal pigment epithelium atrophy. Am. J. Ophthalmol. 2003, 136, 353–355. [Google Scholar] [CrossRef]
- Uemura, A.; Kanda, S.; Sakamoto, Y.; Kita, H. Visual field defects after uneventful vitrectomy for epiretinal membrane with indocyanine green-assisted internal limiting membrane peeling. Am. J. Ophthalmol. 2003, 136, 252–257. [Google Scholar] [CrossRef]
- Iriyama, A.; Uchida, S.; Yanagi, Y.; Tamaki, Y.; Inoue, Y.; Matsuura, K.; Kadonosono, K.; Araie, M. Effects of indocyanine green on retinal ganglion cells. Investig. Ophthalmol. Vis. Sci. 2004, 45, 943–947. [Google Scholar] [CrossRef] [Green Version]
- Kodjikian, L.; Richter, T.; Halberstadt, M.; Beby, F.; Flueckiger, F.; Boehnke, M.; Garweg, J.G. Toxic effects of indocyanine green, infracyanine green, and trypan blue on the human retinal pigmented epithelium. Graefes Arch. Clin. Exp. Ophthalmol. 2005, 243, 917–925. [Google Scholar] [CrossRef] [Green Version]
- Stalmans, P.; Van Aken, E.H.; Veckeneer, M.; Feron, E.J.; Stalmans, I. Toxic effect of indocyanine green on retinal pigment epithelium related to osmotic effects of the solvent. Am. J. Ophthalmol. 2002, 134, 282–285. [Google Scholar] [CrossRef]
- Ullern, M.; Roman, S.; Dhalluin, J.F.; Lozato, P.; Grillon, S.; Bellefqih, S.; Cambourieu, C.; Baudouin, C. Contribution of intravitreal infracyanine green to macular hole and epimacular membrane surgery: preliminary study. J. Fr. Ophtalmol. 2002, 25, 915–920. [Google Scholar]
- Rivett, K.; Kruger, L.; Radloff, S. Infracyanine-assisted internal limiting membrane peeling in macular hole repair: does it make a difference? Graefes Arch. Clin. Exp. Ophthalmol. 2004, 242, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Lanzetta, P.; Polito, A.; Del Borrello, M.; Narayanan, R.; Shah, V.A.; Frattolillo, A.; Bandello, F. Idiopathic macular hole surgery with low-concentration infracyanine green-assisted peeling of the internal limiting membrane. Am. J. Ophthalmol. 2006, 142, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Penha, F.M.; Maia, M.; Farah, M.E.; Dib, E.; Príncipe, A.H.; Devin, F.; Rodrigues, E.B.; Duprat, J.P.; Freymüller, E. Morphologic and clinical effects of subretinal injection of indocyanine green and infracyanine green in rabbits. J. Ocul. Pharmacol. Ther. 2008, 24, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.C.; Freire, V.; Asumendi, A.; Araiz, J.; Herrera, I.; Castiella, G.; Corcóstegui, I.; Corcóstegui, G. Comparative effects of six intraocular vital dyes on retinal pigment epithelial cells. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6018–6029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, T.L.; Vote, B.; Knight, B.C.; El-Amir, A.; Stanford, M.R.; Marshall, J. Safety testing of infracyanine green using retinal pigment epithelium and glial cell cultures. Investig. Ophthalmol. Vis. Sci. 2004, 45, 3697–3703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scupola, A.; Mastrocola, A.; Sasso, P.; Fasciani, R.; Montrone, L.; Falsini, B.; Abed, E. Assessment of retinal function before and after idiopathic macular hole surgery. Am. J. Ophthalmol. 2013, 156, 132–139.e1. [Google Scholar] [CrossRef]
- Cervera, E.; Díaz-Llopis, M.; Salom, D.; Udaondo, P.; Amselem, L. Internal limiting membrane staining using intravitreal brilliant blue G: good help for vitreo-retinal surgeon in training [in Spanish]. Arch. Soc. Esp. Oftalmol. 2007, 82, 71–72. [Google Scholar]
- Balaiya, S.; Sambhav, K.; Cook, W.B.; Chalam, K.V. Osmolarity and spectrophotometric property of brilliant blue green define the degree of toxicity on retinal pigment epithelial cells exposed to surgical endoilluminator. Clin. Ophthalmol. 2016, 10, 1543–1551. [Google Scholar]
- Baba, T.; Hagiwara, A.; Sato, E.; Arai, M.; Oshitari, T.; Yamamoto, S. Comparison of vitrectomy with brilliant blue G or indocyanine green on retinal microstructure and function of eyes with macular hole. Ophthalmology 2012, 119, 2609–2615. [Google Scholar] [CrossRef]
- Baba, T.; Sato, E.; Oshitari, T.; Yamamoto, S. Regional reduction of ganglion cell complex after vitrectomy with internal limiting membrane peeling for idiopathic macular hole. J. Ophthalmol. 2014, 2014, 372589. [Google Scholar] [CrossRef]
- Sabater, A.L.; Velázquez-Villoria, Á.; Zapata, M.A.; Figueroa, M.S.; Suárez-Leoz, M.; Arrevola, L.; Teijeiro, M.Á.; García-Layana, A. Evaluation of macular retinal ganglion cell-inner plexiform layer thickness after vitrectomy with internal limiting membrane peeling for idiopathic macular holes. BioMed Res. Int. 2014, 47, 458631. [Google Scholar] [CrossRef] [PubMed]
- Ambiya, V.; Goud, A.; Khodani, M.; Chhablani, J. Inner retinal thinning after brilliant blue G-assisted internal limiting membrane peeling for vitreoretinal interface disorders. Int. Ophthalmol. 2017, 37, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Akahori, T.; Iwase, T.; Yamamoto, K.; Ra, E.; Kawano, K.; Ito, Y.; Terasaki, H. Macular displacement after vitrectomy in eyes with idiopathic macular hole determined by optical coherence tomography angiography. Am. J. Ophthalmol. 2018, 17, 217. [Google Scholar] [CrossRef]
- Wu, T.T.; Kung, Y.H.; Chang, C.Y.; Chang, S.P. Surgical outcomes in eyes with extremely high myopia for macular hole without retinal detachment. Retina 2018, 38, 2051–2055. [Google Scholar] [CrossRef] [PubMed]
- Cillino, S.; Cillino, G.; Ferraro, L.L.; Casuccio, A. Treatment of persistently open macular holes with heavy silicone oil (densiron 68) versus c2f6. a prospective randomized study. Retina 2016, 36, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Duker, J.S.; Kaiser, P.K.; Binder, S.; de Smet, M.D.; Gaudric, A.; Reichel, E.; Sadda, S.R.; Sebag, J.; Spaide, R.F.; Stalmans, P. The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 2013, 120, 2611–2619. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Lee, S.M.; Park, S.W.; Lee, J.E.; Byon, I.S. Comparative analysis of large macular hole surgeries using an internal limiting membrane: insertion technique versus inverted flap technique. Br. J. Ophthalmol. 2019, 103, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from stereoscopic color fundus photographs—An extension of the modified Airlie House classification. ETDRS report number 10. Ophthalmology 1999, 98 (Suppl. S5), 786–806. [Google Scholar]
- Huang, J.; Liu, X.; Wu, Z.; Xiao, H.; Dustin, L.; Sadda, S. Macular thickness measurements in normal eyes with time-domain and Fourier-domain optical coherence tomography. Retina 2009, 29, 980–987. [Google Scholar] [CrossRef]
- Michalewska, Z.; Michalewski, J.; Dulczewska-Cichecka, K.; Adelman, R.A.; Nawrocki, J. Temporal inverted internal limiting membrane flap technique versus classic inverted internal limiting membrane flap technique: A comparative study. Retina 2015, 35, 1844–1850. [Google Scholar] [CrossRef]
- Rossi, T.; Gelso, A.; Costagliola, C.; Trillo, C.; Costa, A.; Gesualdo, C.; Ripandelli, G. Macular hole closure patterns associated with different internal limiting membrane flap techniques. Graefes Arch. Clin. Exp. Ophthalmol. 2017, 255, 1073–1078. [Google Scholar] [CrossRef] [PubMed]
- Wollensak, G. Biomechanical changes of the internal limiting membrane after indocyanine green staining. Dev. Ophthalmol. 2008, 42, 82–90. [Google Scholar] [PubMed]
- Brockmann, T.; Steger, C.; Westermann, M.; Nietzsche, S.; Koenigsdoerffer, E.; Strobel, J.; Dawczynski, J. Ultrastructure of the membrana limitans interna after dye-assisted membrane peeling. Ophthalmologica 2011, 226, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Henrich, P.B.; Priglinger, S.G.; Haritoglou, C.; Josifova, T.; Ferreira, P.R.; Strauss, R.W.; Flammer, J.; Cattin, P.C. Quantification of contrast recognizability during brilliant blue g- and indocyanine green-assisted chromovitrectomy. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4345–4349. [Google Scholar] [CrossRef]
- Purtskhvanidze, K.; Treumer, F.; Junge, O.; Hedderich, J.; Roider, J.; Hillenkamp, J. Functional and anatomical recovery after macular hole surgery. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4882–4891. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, K.; Shiraga, F.; Yamaji, H.; Nomoto, H.; Shiragami, C.; Enaida, H.; Ishibashi, T. Morphologic and functional advantages of macular hole surgery with brilliant blue G-assisted internal limiting membrane peeling. Retina 2011, 31, 1720–1725. [Google Scholar] [CrossRef]
- Chan, A.; Duker, J.S.; Ko, T.H.; Fujimoto, J.D.; Schuman, J.S. Normal macular thickness measurements in healthy eyes using stratus optical coherence tomography. Arch. Ophthalmol. 2006, 124, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Baba, T.; Yamamoto, S.; Arai, M.; Arai, E.; Sugawara, T.; Mitamura, Y.; Mizunoya, S. Correlation of visual recovery and presence of photoreceptor inner/outer segment junction in optical coherence images after successful macular hole repair. Retina 2008, 28, 453–458. [Google Scholar] [CrossRef]
- Inoue, M.; Watanabe, Y.; Arakawa, A.; Sato, S.; Kobayashi, S.; Kadonosono, K. Spectral-domain optical coherence tomography images of inner/outer segment junctions and macular hole surgery outcomes. Graefes Arch. Clin. Exp. Ophthalmol. 2009, 247, 325–330. [Google Scholar] [CrossRef]
- Ooka, E.; Mitamura, Y.; Baba, T.; Kitahashi, M.; Oshitari, T.; Yamamoto, S. Foveal microstructure on spectral-domain optical coherence tomographic images and visual function after macular hole surgery. Am. J. Ophthalmol. 2011, 152, 283–290. [Google Scholar] [CrossRef]
- Haritoglou, C.; Tadayoni, R.; May, C.A.; Gass, C.A.; Freyer, W.; Priglinger, S.G.; Kampik, A. Short-term in vivo evaluation of novel vital dyes for intraocular surgery. Retina 2006, 26, 673–678. [Google Scholar] [PubMed]
IFCG | BBG | p | |
---|---|---|---|
No. of eyes | 19 | 20 | |
Age | 70.1 ± 7.1 years | 67.8 ± 8.4 years | 0.363 * |
Sex (M/F) | 7/12 | 9/11 | 0.747 |
Symptoms duration (Mo) | 6.8 ± 3.3 | 7.1 ± 3.5 | 0.784 * |
Minimum FTMH diameter | 555.4 ± 129.8 | 604.5 ± 133.4 | 0.251 * |
Base FTMH diameter | 1002.3 ± 143.6 | 988.3 ± 202.9 | 0.806 * |
Phakic/pseudophakic | 8/11 | 6/14 | 0.514 |
PREOPCDVA (logMAR) | 0.79 ± 0.23 | 0.89 ± 0.25 | 0.169 ^ |
IFCG (n = 19) | BBG (n = 20) | p | |
---|---|---|---|
CDVA (logMAR) 6months | 0.49 ± 0.33 § | 0.39 ± 0.19 § | 0.748 |
12months | 0.46 ± 0.29 § | 0.27 ± 0.1 9§ | 0.036 |
12th mo. CDVA: improved | 17 | 20 | 0.231/Fisher test) |
stable | 2 | 0 | |
worsened | 0 | 0 | |
Eyes with CDVA ≤ 0.3 log MAR (≥20/40 Snellen) at 12 mos. | 8 (42%) | 14 (70%) | 0.111 (Fisher exact test) |
IFCG | BBG | p Intergroup (Mann-Whitney U Test) | |
---|---|---|---|
12 months U-shaped closure | 12 (63.1%) | 15 (75%) | 0.501 |
V-shaped closure | 2 (10.5%) | 1 (5%) | 0.605 |
W-shaped closure | 5 (26.3%) | 4 (20%) | 0.716 |
EZ Defect (µm) 6 months | 206.8 ± 257.9 | 160.1 ± 170.4 | 0.893 |
12 months | 202.5 ± 251.1 | 119.2 ± 130 | 0.503 |
ELM Defect (µm) 6months | 74.3 ± 103.9 | 51.9 ± 67.9 | 0.630 |
12months | 72.3 ± 102.7 * | 40.8 ± 63.6 * | 0.294 |
CFT (C1, µm) 6months | 144.8 ± 43.7 | 152.4 ± 36.6 | 0.347 |
12 months | 150.9 ± 40.5 | 174.2 ± 34.9 * | 0.041 |
MT (µm): S3 6months | 294.8 ± 18.5 | 292.6 ± 17.6 | 0.573 |
12 months | 274.3 ± 27.5 * | 290.1 ± 118.7 * | 0.169 |
N3 6months | 296.3 ± 23.8 | 300.0 ± 24.5 | 0.936 |
12 months | 283.7 ± 22.8 * | 294.6 ± 23.6 * | 0.294 |
I3 6 months | 290.8 ± 14.9 | 289.5 ± 21.0 | 0.979 |
12 months | 279.9 ± 15.7 * | 284.5 ± 19.6 * | 0.361 |
T3 6 months | 283.3 ± 29.1 | 281.8 ± 20.2 | 0.748 |
12 months | 265.6 ± 28.9 * | 280.4 ± 19.5 | 0.124 |
GCL++(µm):S3 6 months | 107.3 ± 18.1 | 109.7 ± 13.9 | 0.810 |
12 months | 95.3 ± 15.1 * | 108.1 ± 13.8 * | 0.036 |
N3 6 months | 112.1 ± 24.9 | 118.0 ± 12.3 | 0.124 |
12 months | 108.8 ± 22.1 * | 116.6 ± 11.8 * | 0.088 |
I3 6 months | 108.6 ± 14.1 | 108.9 ± 11.6 | 0.708 |
12 months | 104.8 ± 12.2 * | 107.9 ± 11.2 * | 0.270 |
T3 6 months | 98.4 ± 15.5 | 105.6 ± 15.5 | 0.196 |
12 months | 91,1 ± 13.5 * | 100.5 ± 14.8* | 0.057 |
S6 6 months | 87.4 ± 8.4 | 92.5 ± 11.9 | 0.039 |
12 months | 85.1 ± 7.8 * | 91.9 ± 11.9 * | 0.011 |
N6 6 months | 104.4 ± 15.7 | 104.4 ± 16.1 | 0.573 |
12 months | 100.9 ± 14.6 * | 103.6 ± 16.1 * | 0.915 |
I6 6 months | 86.7 ± 10.6 | 96.7 ± 13.7 | 0.027 |
12 months | 84.4 ± 9.9 * | 95.6 ± 13.4 * | 0.009 |
T6 6 months | 75.7 ± 9.8 | 81.7 ± 12.1 | 0.130 |
12 months | 73.0 ± 9.4 * | 81.0 ± 12.0 * | 0.050 |
pRNFL(µm): pS 6 months | 110.9 ± 13.2 | 114.1 ± 18.8 | 0.390 |
12 months | 109.8 ± 11.3 | 113.7 ± 18.6 * | 0.477 |
pN 6 months | 82.7 ± 9.9 | 76.0 ± 15.8 | 0.215 |
12mo | 82.9 ± 9.9 | 75. 9 ± 15.9 | 0.109 |
pI 6 months | 117.7 ± 14.4 | 116.9 ± 15.2 | 0.979 |
12mo | 115.4 ± 14.4 * | 115.8 ± 14.7 * | 0.872 |
pT 6 months | 63.5 ± 8.6 | 68.5 ± 11.3 | 0.111 |
12 months | 62.2 ± 8.3 * | 68.2 ± 11.0 * | 0.069 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cillino, S.; Castellucci, M.; Cillino, G.; Sunseri, V.; Novara, C.; Di Pace, F.; Vadalà, M.; Bonfiglio, V.; Casuccio, A. Infracyanine Green vs. Brilliant Blue G in Inverted Flap Surgery for Large Macular Holes: A Long-Term Swept-Source OCT Analysis. Medicina 2020, 56, 43. https://doi.org/10.3390/medicina56010043
Cillino S, Castellucci M, Cillino G, Sunseri V, Novara C, Di Pace F, Vadalà M, Bonfiglio V, Casuccio A. Infracyanine Green vs. Brilliant Blue G in Inverted Flap Surgery for Large Macular Holes: A Long-Term Swept-Source OCT Analysis. Medicina. 2020; 56(1):43. https://doi.org/10.3390/medicina56010043
Chicago/Turabian StyleCillino, Salvatore, Massimo Castellucci, Giovanni Cillino, Valentina Sunseri, Costanza Novara, Francesco Di Pace, Maria Vadalà, Vincenza Bonfiglio, and Alessandra Casuccio. 2020. "Infracyanine Green vs. Brilliant Blue G in Inverted Flap Surgery for Large Macular Holes: A Long-Term Swept-Source OCT Analysis" Medicina 56, no. 1: 43. https://doi.org/10.3390/medicina56010043
APA StyleCillino, S., Castellucci, M., Cillino, G., Sunseri, V., Novara, C., Di Pace, F., Vadalà, M., Bonfiglio, V., & Casuccio, A. (2020). Infracyanine Green vs. Brilliant Blue G in Inverted Flap Surgery for Large Macular Holes: A Long-Term Swept-Source OCT Analysis. Medicina, 56(1), 43. https://doi.org/10.3390/medicina56010043