Hirschsprung’s Disease—Recent Understanding of Embryonic Aspects, Etiopathogenesis and Future Treatment Avenues
Abstract
:1. Introduction
2. Neural Crest and Neurocristopathies
3. Normal Development of the Enteric Nervous System
4. Etiopathogenesis of Hirschsprung’s Disease
5. Hirschsprung’s Disease and Associated Conditions
6. Interstitial Cells of Cajal and Hirschsprung’s Disease
7. Mast Cells and Hirschsprung’s Disease
8. Diagnostic Dilemmas Associated with Hirschsprung’s Disease Evaluation
9. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- FIPAT. Terminologia Embryologica, 2nd ed.; Federative International Programme for Anatomical Terminology, 2017; p. 329. Available online: https://fipat.library.dal.ca/TE2/ (accessed on 6 June 2020).
- Torroglosa, A.; Alves, M.M.; Fernández, R.M.; Antiñolo, G.; Hofstra, R.M.; Borrego, S. Epigenetics in ENS development and Hirschsprung disease. Dev. Biol. 2016, 417, 209–216. [Google Scholar] [CrossRef]
- Bradnock, T.J.; Knight, M.; Kenny, S.; Nair, M.; Walker, G.M. British Association of Paediatric Surgeons Congenital Anomalies Surveillance, S. Hirschsprung’s disease in the UK and Ireland: Incidence and anomalies. Arch. Dis. Child. 2017, 102, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Henderson, D.; Zimmer, J.; Nakamura, H.; Puri, P. Hirschsprung’s disease in twins: A systematic review and meta-analysis. Pediatr. Surg. Int. 2017, 33, 855–859. [Google Scholar] [CrossRef] [PubMed]
- Gfroerer, S. Pediatr. intestinal motility disorders. World J. Gastroenterol. 2015, 21, 9683–9687. [Google Scholar] [CrossRef]
- Thakkar, H.S.; Bassett, C.; Hsu, A.; Manuele, R.; Kufeji, D.; Richards, C.A.; Agrawal, M.; Keshtgar, A.S. Functional outcomes in Hirschsprung disease: A single institution’s 12-year experience. J. Pediatr. Surg. 2017, 52, 277–280. [Google Scholar] [CrossRef]
- Roorda, D.; Surridge, T.J.; Visschers, R.G.J.; Derikx, J.P.M.; Van Heurn, L.W.E. Redo surgery with longitudinal resection for dilated bowel in Hirschsprung disease: An illustrative case series. Int. J. Color. Dis. 2019, 34, 1983–1987. [Google Scholar] [CrossRef] [Green Version]
- Ahmad Wani, S.; Nazir Mufti, G.; Abdul Rashid, K.; Ahmad Bhat, N.; Ahsan Baba, A. Short Term and Long term Outcome of Single-Stage Trans-anal Pull Through for Hirschsprung’s Disease in Neonates and Infants. J. Neonatal. Biol. 2020, 9, 277. [Google Scholar]
- Rintala, R.J.; Pakarinen, M.P. Long-term outcomes of Hirschsprung’s disease. Semin. Pediatr. Surg. 2012, 21, 336–343. [Google Scholar] [CrossRef]
- Sato, T.S.; Handa, A.; Priya, S.; Watal, P.; Becker, R.M.; Sato, Y. Neurocristopathies: Enigmatic Appearances of Neural Crest Cell-derived Abnormalities. RadioGraphics 2019, 39, 2085–2102. [Google Scholar] [CrossRef]
- Le Douarin, N.M.; Dupin, E. The neural crest in vertebrate evolution. Curr. Opin. Genet. Dev. 2012, 22, 381–389. [Google Scholar] [CrossRef]
- Cordero, D.R.; Brugmann, S.; Chu, Y.; Bajpai, R.; Jame, M.; Helms, J.A. Cranial neural crest cells on the move: Their roles in craniofacial development. Am. J. Med Genet. Part A 2011, 155, 270–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega-Lopez, G.A.; Cerrizuela, S.; Aybar, M.J. Trunk neural crest cells: Formation, migration and beyond. Int. J. Dev. Biol. 2017, 61, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Kuo, B.R.; Erickson, C.A. Vagal neural crest cell migratory behavior: A transition between the cranial and trunk crest. Dev. Dyn. 2011, 240, 2084–2100. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chan, A.K.; Sham, M.H.; Burns, A.J.; Chan, W.Y. Analysis of the Sacral Neural Crest Cell Contribution to the Hindgut Enteric Nervous System in the Mouse Embryo. Gastroenterology 2011, 141, 992–1002.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, W.Y.; Copp, A.J.; Cheung, C.S.; Yung, K.M. Cardiac neural crest of the mouse embryo: Axial level of origin, migratory pathway and cell autonomy of the splotch(Sp2H) mutant effect. Development 2004, 131, 3367–3379. [Google Scholar] [CrossRef] [Green Version]
- Bronner-Fraser, M.; LeDouarin, N.M. Development and evolution of the neural crest: An overview. Dev. Biol. 2012, 366, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Mayor, R.; Theveneau, E. The neural crest. Development 2013, 140, 2247–2251. [Google Scholar] [CrossRef] [Green Version]
- Shyamala, K.; Yanduri, S.; Girish, H.; Murgod, S. Neural crest: The fourth germ layer. J. Oral Maxillofac. Pathol. 2015, 19, 221–229. [Google Scholar] [CrossRef]
- Hall, B.K. The neural crest as a fourth germ layer and vertebrates as quadroblastic not triploblastic. Evol. Dev. 2001, 2, 3–5. [Google Scholar] [CrossRef] [Green Version]
- O’Rahilly, R.; Müller, F. The development of the neural crest in the human. J. Anat. 2007, 211, 335–351. [Google Scholar] [CrossRef]
- Bolande, R.P. The neurocristopathiesA unifying concept of disease arising in neural crest maldevelopment. Hum. Pathol. 1974, 5, 409–429. [Google Scholar] [CrossRef]
- Zhang, N.; Ighaniyan, S.; Stathopoulos, L.; Rollo, B.; Landman, K.; Hutson, J.M.; Newgreen, D.F. The neural crest: A versatile organ system. Birth Defects Res. Part C Embryo Today Rev. 2014, 102, 275–298. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.; Gershon, M.D. Enteric nervous system development: What could possibly go wrong? Nat. Rev. Neurosci. 2018, 19, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Mazzuoli-Weber, G.; Jb, F.; Mj, S. Faculty Opinions recommendation of the first brain: Species comparisons and evolutionary implications for the enteric and central nervous systems. Fac. Opin. Post-Publ. Peer Rev. Biomed. Lit. 2018, 30, 13234. [Google Scholar] [CrossRef]
- Yntema, C.L.; Hammond, W.S. The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J. Comp. Neurol. 1954, 101, 515–541. [Google Scholar] [CrossRef]
- Le Douarin, N.M.; Teillet, M.A. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J. Embryol. Exp. Morphol. 1973, 30, 31–48. [Google Scholar]
- Burns, A.J.; Le Douarin, N.M. Enteric nervous system development: Analysis of the selective developmental potentialities of vagal and sacral neural crest cells using quail-chick chimeras. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2001, 262, 16–28. [Google Scholar] [CrossRef]
- Druckenbrod, N.R.; Epstein, M.L. Behavior of enteric neural crest-derived cells varies with respect to the migratory wavefront. Dev. Dyn. 2006, 236, 84–92. [Google Scholar] [CrossRef]
- Simkin, J.E.; Zhang, D.; Rollo, B.N.; Newgreen, D.F. Retinoic Acid Upregulates Ret and Induces Chain Migration and Population Expansion in Vagal Neural Crest Cells to Colonise the Embryonic Gut. PLoS ONE 2013, 8, e64077. [Google Scholar] [CrossRef] [Green Version]
- Boer, L.; Radziun, A.B.; Oostra, R.-J. Frederik Ruysch (1638–1731): Historical perspective and contemporary analysis of his teratological legacy. Am. J. Med. Genet. Part A 2016, 173, 16–41. [Google Scholar] [CrossRef] [Green Version]
- Tam, P.K.H. Hirschsprung’s disease: A bridge for science and surgery. J. Pediatr. Surg. 2016, 51, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Skaba, R. Historic milestones of Hirschsprung’s disease (commemorating the 90th anniversary of Professor Harald Hirschsprung’s death). J. Pediatr. Surg. 2007, 42, 249–251. [Google Scholar] [CrossRef] [PubMed]
- Sergi, C. Hirschsprung’s disease: Historical notes and pathological diagnosis on the occasion of the 100(th) anniversary of Dr. Harald Hirschsprung’s death. World. J. Clin. Pediatr. 2015, 4, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Masiakos, P.T.; Ein, S.H. The History of Hirschsprung’s Disease: Then and Now. Semin. Colon Rectal Surg. 2006, 17, 10–19. [Google Scholar] [CrossRef]
- Goldstein, A.M.; Cox, N.J. Complex Simplicity and Hirschsprung’s Disease. N. Engl. J. Med. 2019, 380, 1478–1479. [Google Scholar] [CrossRef]
- Stamp, L.A.; Obermayr, F.; Pontell, L.; Young, H.M.; Xie, D.; Croaker, D.H.; Song, Z.-M.; Furness, J.B. Surgical Intervention to Rescue Hirschsprung Disease in a Rat Model. J. Neurogastroenterol. Motil. 2015, 21, 552–559. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, N.; Nakazawa-Tanaka, N.; Yamataka, A. Animal Models of Hirschsprung’s Disease: State of the Art in Translating Experimental Research to the Bedside. Eur. J. Pediatr. Surg. 2019, 29, 361–367. [Google Scholar] [CrossRef]
- Belknap, W.M. The pathogenesis of Hirschsprung disease. Curr. Opin. Gastroenterol. 2002, 18, 74–81. [Google Scholar] [CrossRef]
- Tjaden, N.E.B.; Trainor, P.A. The developmental etiology and pathogenesis of Hirschsprung disease. Transl. Res. 2013, 162, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Tansey, M.G.; Baloh, R.H.; Milbrandt, J.; Johnson, E.M., Jr. GFRalpha-mediated localization of RET to lipid rafts is required for effective downstream signaling, differentiation, and neuronal survival. Neuron 2000, 25, 611–623. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, D.; Marcos-Gutierrez, C.; Pachnis, V.; De Graaff, E. Requirement of signalling by receptor tyrosine kinase RET for the directed migration of enteric nervous system progenitor cells during mammalian embryogenesis. Development 2002, 129, 5151–5160. [Google Scholar] [PubMed]
- Elworthy, S.; Pinto, J.P.; Pettifer, A.; Cancela, M.L.; Kelsh, R.N. Phox2b function in the enteric nervous system is conserved in zebrafish and is sox10-dependent. Mech. Dev. 2005, 122, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Sato, Y.; Lyons-Warren, A.; Zhang, B.; Kane, M.A.; Napoli, J.L.; Heuckeroth, R.O. Vitamin A facilitates enteric nervous system precursor migration by reducing Pten accumulation. Development 2010, 137, 631–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uribe, R.A.; Hong, S.S.; Bronner, M.E. Retinoic acid temporally orchestrates colonization of the gut by vagal neural crest cells. Dev. Biol. 2018, 433, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Slavikova, T.; Zabojnikova, L.; Babala, J.; Varga, I. An embryological point of view on associated congenital anomalies of children with Hirschsprung disease. Bratisl. Lek. Listy 2015, 116, 640–647. [Google Scholar] [CrossRef] [Green Version]
- Amiel, J.; Sproat-Emison, E.; Garciabarcelo, M.; Lantieri, F.; Burzynski, G.; Borrego, S.; Pelet, A.; Arnold, S.; Miao, X.; Griseri, P.; et al. Hirschsprung disease, associated syndromes and genetics: A review. J. Med. Genet. 2007, 45, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Moore, S.W. Chromosomal and related Mendelian Syndromes associated with Hirschsprung’s disease. Pediatr. Surg. Int. 2012, 28, 1045–1058. [Google Scholar] [CrossRef]
- Moore, S.W. The contribution of associated congenital anomalies in understanding Hirschsprung’s disease. Pediatr. Surg. Int. 2006, 22, 305–315. [Google Scholar] [CrossRef]
- Kushch, N.L.; Grona, V.N.; Kimbarovskaia, E.M.; Evseeva, L.I. Clinico-immunologic comparisons of developmental defects of the large intestine in children. Klin. Khirurgiia 1988, 10–12. [Google Scholar]
- Itoi, M.; Tsukamoto, N.; Yoshida, H.; Amagai, T. Mesenchymal cells are required for functional development of thymic epithelial cells. Int. Immunol. 2007, 19, 953–964. [Google Scholar] [CrossRef] [Green Version]
- Foster, K.; Sheridan, J.; Veiga-Fernandes, H.; Roderick, K.; Pachnis, V.; Adams, R.; Blackburn, C.; Kioussis, D.; Coles, M. Contribution of Neural Crest-Derived Cells in the Embryonic and Adult Thymus. J. Immunol. 2008, 180, 3183–3189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ausó, E.; Lavado-Autric, R.; Cuevas, E.; Del Rey, F.E.; De Escobar, G.M.; Berbel, P. A Moderate and Transient Deficiency of Maternal Thyroid Function at the Beginning of Fetal Neocorticogenesis Alters Neuronal Migration. Endocrinology 2004, 145, 4037–4047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafin, A.A.; Sultanova, L.M. Differential diagnosis of Hirschsprung’s disease and congenital hypothyroidism in children. Vestn. Khir. Im. II Grek. 1985, 134, 89–91. [Google Scholar]
- Monroy-Santoyo, S.; Ibarra-González, I.; Fernández-Lainez, C.; Greenawalt-Rodríguez, S.; Chacón-Rey, J.; Calzada-León, R.; Vela-Amieva, M. Higher incidence of thyroid agenesis in Mexican newborns with congenital hypothyroidism associated with birth defects. Early Hum. Dev. 2012, 88, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Eren, M.; Celik, M.; Kinik, S.; Arda, I.S. A case of Hirschsprung disease: Does thyroid hormone have any effect? Turk. J. Pediatr. 2009, 51, 94–96. [Google Scholar] [PubMed]
- Kota, S.K.; Modi, K.D.; Rao, M.M. Hirschsprungs disease with congenital hypothyroidism. Indian Pediatr. 2012, 49, 245–246. [Google Scholar]
- Alnajar, H.; Murro, D.; Alsadi, A.; Jakate, S. Spectrum of Clinicopathological Deviations in Long-Segment Hirschsprung Disease Compared With Short-Segment Hirschsprung Disease: A Single-Institution Study. Int. J. Surg. Pathol. 2016, 25, 216–221. [Google Scholar] [CrossRef]
- Varga, I.; Pospisilova, V.; Gmitterova, K.; Gálfiová, P.; Polak, S.; Galbavy, S. The phylogenesis and ontogenesis of the human pharyngeal region focused on the thymus, parathyroid, and thyroid glands. Neuro Endocrinol. Lett. 2008, 29, 837–845. [Google Scholar]
- Gfroerer, S.; Rolle, U. Interstitial cells of Cajal in the normal human gut and in Hirschsprung disease. Pediatr. Surg. Int. 2013, 29, 889–897. [Google Scholar] [CrossRef]
- Al-Shboul, O.A. The importance of interstitial cells of cajal in the gastrointestinal tract. Saudi J. Gastroenterol. 2013, 19, 3–15. [Google Scholar] [CrossRef]
- Radenković, G.; Radenkovic, D.; Velickov, A. Development of interstitial cells of Cajal in the human digestive tract as the result of reciprocal induction of mesenchymal and neural crest cells. J. Cell. Mol. Med. 2017, 22, 778–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderwinden, J.M.; Rumessen, J.J.; Liu, H.; Descamps, D.; De Laet, M.H.; Vanderhaeghen, J.J. Interstitial cells of Cajal in human colon and in Hirschsprung’s disease. Gastroenterology 1996, 111, 901–910. [Google Scholar] [CrossRef]
- Rolle, U.; Piotrowska, A.P.; Nemeth, L.; Puri, P. Altered distribution of interstitial cells of Cajal in Hirschsprung disease. Arch. Pathol. Lab. Med. 2002, 126, 928–933. [Google Scholar] [PubMed]
- Newman, C.J.; Laurini, R.N.; Lesbros, Y.; Reinberg, O.; Meyrat, B.J. Interstitial cells of Cajal are normally distributed in both ganglionated and aganglionic bowel in Hirschsprung’s disease. Pediatr. Surg. Int. 2003, 19, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, B.; Liu, W.; Ma, R.; Wu, R.; Gao, Y. Cotransplantation of neuroepithelial stem cells with interstitial cells of Cajal improves neuronal differentiation in a rat aganglionic model. J. Pediatr. Surg. 2017, 52, 1188–1195. [Google Scholar] [CrossRef]
- Ravanbakhsh, N.; Kesavan, A. The role of mast cells in pediatric gastrointestinal disease. Ann. Gastroenterol. 2019, 32, 338–345. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Krämer, S. Human mast cells, bacteria, and intestinal immunity. Immunol. Rev. 2007, 217, 329–337. [Google Scholar] [CrossRef]
- Kobayashi, H.; Yamataka, A.; Fujimoto, T.; Lane, G.J.; Miyano, T. Mast cells and gut nerve development: Implications for hirschsprung’s disease and intestinal neuronal dysplasia. J. Pediatr. Surg. 1999, 34, 543–548. [Google Scholar] [CrossRef]
- Demirbilek, S.; Aydm, G. Mast-cells distribution and colonic mucin composition in Hirschsprung’s disease and intestinal neuronal dysplasia. Pediatr. Surg. Int. 2001, 17, 136–139. [Google Scholar] [CrossRef]
- Hermanowicz, A.; Debek, W.; Dzienis-Koronkiewicz, E.; Chyczewski, L. Topography and morphometry of intestinal mast cells in children with Hirschsprung’s disease. Folia Histochem. Cytobiol. 2008, 46, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Das, K.; Mohanty, S. Hirschsprung Disease—Current Diagnosis and Management. Indian J. Pediatr. 2017, 84, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.W. Advances in understanding functional variations in the Hirschsprung disease spectrum (variant Hirschsprung disease). Pediatr. Surg. Int. 2016, 33, 285–298. [Google Scholar] [CrossRef]
- Szylberg, L.; Marszałek, A. Diagnosis of Hirschsprung’s disease with particular emphasis on histopathology. A systematic review of current literature. Prz. Gastroenterol. 2014, 9, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Friedmacher, F.; Puri, P.L. Classification and diagnostic criteria of variants of Hirschsprung’s disease. Pediatr. Surg. Int. 2013, 29, 855–872. [Google Scholar] [CrossRef] [PubMed]
- Puri, P. Intestinal Dysganglionosis and Other Disorders of Intestinal Motility. In Pediatr. Surgery, 7th ed.; Coran, A.G., Ed.; Mosby: Philadelphia, PA, USA, 2012; Volume 102, pp. 1279–1287. [Google Scholar] [CrossRef]
- Ito, T.; Kimura, T.; Yagami, T.; Maeda, N.; Komura, M.; Ohnishi, N.; Fujita, N.; Arai, K.; Tomioka, H.; Miyatake, S.; et al. Megacolon in an adult case of hypoganglionosis, a pseudo-Hirschsprung’s disease: An autopsy study. Intern. Med. 2008, 47, 421–425. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, K.H.; Mestres, P. Human newborn and adult myenteric plexus grows in different patterns. Cell. Mol. Biol. 1997, 43, 1171–1180. [Google Scholar]
- Hanani, M.; Fellig, Y.; Udassin, R.; Freund, H.R. Age-related changes in the morphology of the myenteric plexus of the human colon. Auton. Neurosci. 2004, 113, 71–78. [Google Scholar] [CrossRef]
- Rollo, B.N.; Zhang, D.; Stamp, L.A.; Menheniott, T.R.; Stathopoulos, L.; Denham, M.; Dottori, M.; King, S.K.; Hutson, J.M.; Newgreen, D.F. Enteric Neural Cells From Hirschsprung Disease Patients Form Ganglia in Autologous Aneuronal Colon. Cell. Mol. Gastroenterol. Hepatol. 2016, 2, 92–109. [Google Scholar] [CrossRef] [Green Version]
- Schlieve, C.R.; Fowler, K.L.; Thornton, M.; Huang, S.; Hajjali, I.; Hou, X.; Grubbs, B.; Spence, J.R.; Grikscheit, T.C. Neural Crest Cell Implantation Restores Enteric Nervous System Function and Alters the Gastrointestinal Transcriptome in Human Tissue-Engineered Small Intestine. Stem Cell Rep. 2017, 9, 883–896. [Google Scholar] [CrossRef] [Green Version]
- Workman, M.J.; Mahe, M.M.; Trisno, S.; Poling, H.M.; Watson, C.L.; Sundaram, N.; Chang, C.-F.; Schiesser, J.; Aubert, P.; Stanley, E.G.; et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat. Med. 2017, 23, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Csobonyeiova, M.; Polak, S.; Koller, J.; Danisovic, L. Induced pluripotent stem cells and their implication for regenerative medicine. Cell Tissue Bank. 2014, 16, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Jaroy, E.G.; Acosta-Jimenez, L.; Hotta, R.; Goldstein, A.M.; Emblem, R.; Klungland, A.; Ougland, R. “Too much guts and not enough brains”: (epi)Genetic mechanisms and future therapies of Hirschsprung disease—A review. Clin. Epigenetics 2019, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
Gene/Locus | PubMed/MEDLINE Entries |
---|---|
RET | 597 |
EDNRB | 236 |
GDNF | 172 |
SOX10 | 144 |
PHOX2B | 98 |
EDN3 | 87 |
ZFHX1B | 43 |
RMRP | 37 |
NRG1 | 29 |
GFRA1 | 26 |
L1CAM | 25 |
SHH | 16 |
ECE1 | 15 |
NRTN | 10 |
KIAA1279 | 9 |
SEMA3D | 6 |
SEMA3C | 5 |
Gli1 | 5 |
9q31 | 4 |
DHCR7 | 3 |
3p21 | 3 |
PSPN | 2 |
NTF3 | 2 |
NTRK | 2 |
19q12 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klein, M.; Varga, I. Hirschsprung’s Disease—Recent Understanding of Embryonic Aspects, Etiopathogenesis and Future Treatment Avenues. Medicina 2020, 56, 611. https://doi.org/10.3390/medicina56110611
Klein M, Varga I. Hirschsprung’s Disease—Recent Understanding of Embryonic Aspects, Etiopathogenesis and Future Treatment Avenues. Medicina. 2020; 56(11):611. https://doi.org/10.3390/medicina56110611
Chicago/Turabian StyleKlein, Martin, and Ivan Varga. 2020. "Hirschsprung’s Disease—Recent Understanding of Embryonic Aspects, Etiopathogenesis and Future Treatment Avenues" Medicina 56, no. 11: 611. https://doi.org/10.3390/medicina56110611
APA StyleKlein, M., & Varga, I. (2020). Hirschsprung’s Disease—Recent Understanding of Embryonic Aspects, Etiopathogenesis and Future Treatment Avenues. Medicina, 56(11), 611. https://doi.org/10.3390/medicina56110611