Neurodevelopmental Outcome in Extremely Low Birth Weight Infants at 2–3 Years of Age
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. Association between Hammersmith Infant Neurological Examination Testing and Bayley-III Scales Scores
3.2.1. Cognitive Performance
3.2.2. Language Performance
3.2.3. Motor Performance
3.3. Factors Associated with Bayley-III Scales
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jefferies, A.L.; Kirpalani, H.M.; Canadian Paediatric Society Fetus; Newborn Committee. Counselling and management for anticipated extremely preterm birth. Paediatr. Child Health 2012, 17, 443–446. [Google Scholar] [CrossRef] [Green Version]
- Hack, M.; Wright, L.L.; Shankaran, S.; Tyson, J.E.; Horbar, J.D.; Bauer, C.R.; Younes, N.; National Institute of Child Health and Human Development Neonatal Research Network. Very-low-birth-weight outcomes of the National Institute of Child Health and Human Development Neonatal Network, November 1989 to October 1990. Am. J. Obstet. Gynecol. 1995, 172 Pt 1, 457–464. [Google Scholar] [CrossRef]
- La Pine, T.R.; Jackson, J.C.; Bennett, F.C. Outcome of infants weighing less than 800 grams at birth: 15 years’ experience. Pediatrics 1995, 96 Pt 1, 479–483. [Google Scholar] [CrossRef]
- Vohr, B.R.; Wright, L.L.; Dusick, A.M.; Mele, L.; Verter, J.; Steichen, J.J.; Simon, N.P.; Wilson, D.C.; Broyles, S.; Bauer, C.R.; et al. Neurodevelopmental and Functional Outcomes of Extremely Low Birth Weight Infants in the National Institute of Child Health and Human Development Neonatal Research Network, 1993–1994. Pediatrics 2000, 105, 1216–1226. [Google Scholar] [CrossRef] [Green Version]
- Singh, L.; Das, S.; Bhat, V.B.; Plakkal, N. Early Neurodevelopmental Outcome of Very Low Birthweight Neonates with Culture-positive Blood Stream Infection: A Prospective Cohort Study. Cureus 2018, 10, e3492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoll, B.J.; Hansen, N.I.; Adams-Chapman, I.; Fanaroff, A.A.; Hintz, S.R.; Vohr, B.R.; Higgins, R.D.; National Institute of Child Health and Human Development Neonatal Research Network. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA 2004, 292, 2357–2365. [Google Scholar] [CrossRef] [Green Version]
- Costeloe, K.L.; Hennessy, E.M.; Haider, S.; Stacey, F.; Marlow, N.; Draper, E.S. Short term outcomes after extreme preterm birth in England: Comparison of two birth cohorts in 1995 and 2006 (the EPICure studies). BMJ 2012, 345, e7976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, S.; Marlow, N. Early and long-term outcome of infants born extremely preterm. Arch. Dis. Child. 2017, 102, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Wusthoff, C.J. How to use: The neonatal neurological examination. Arch. Dis. Child. Educ. Pr. Ed. 2013, 98, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Gardon, L.; Picciolini, O.; Squarza, C.; Frigerio, A.; Gianni, M.L.; Gangi, S.; Fumagalli, M.; Mosca, F. Neurodevelopmental outcome and adaptive behaviour in extremely low birth weight infants at 2 years of corrected age. Early Hum. Dev. 2019, 128, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Maitre, N.L.; Chorna, O.; Romeo, D.M.; Guzzetta, A. Implementation of the Hammersmith Infant Neurological Examination in a High-Risk Infant Follow-Up Program. Pediatr. Neurol. 2016, 65, 31–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayley, N. Bayley Scales of Infant and Toddler Development, 3rd ed.; Harcourt Assessment: San Antonio, TX, USA, 2005. [Google Scholar]
- Moore, T.; Hennessy, E.M.; Myles, J.; Johnson, S.J.; Draper, E.S.; Costeloe, K.L.; Marlow, N. Neurological and developmental outcome in extremely preterm children born in England in 1995 and 2006: The EPICure studies. BMJ 2012, 345, e7961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vohr, B.R.; Stephens, B.E.; Higgins, R.D.; Bann, C.M.; Hintz, S.R.; Das, A.; Newman, J.E.; Peralta-Carcelen, M.; Yolton, K.; Dusick, A.M.; et al. Are Outcomes of Extremely Preterm Infants Improving? Impact of Bayley Assessment on Outcomes. J. Pediatr. 2012, 161, 222–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milne, S.; McDonald, J.; Comino, E.J. The use of the bayley scales of infant and toddler development III with clinical populations: A preliminary exploration. Phys. Occup. Ther. Pediatr. 2012, 32, 24–33. Available online: http://www.ncbi.nlm.nih.gov/pubmed/21812743 (accessed on 28 June 2020). [CrossRef] [PubMed]
- Fenton, T.R.; Kim, J.H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013, 13, 59. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.J.; Ternberg, J.L.; Feigin, R.D.; Keating, J.P.; Marshall, R.; Barton, L.; Brotherton, T. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann. Surg. 1978, 187, 1–7. [Google Scholar] [CrossRef]
- Frisone, M.F.; Mercuri, E.; Laroche, S.; Foglia, C.; Maalouf, E.F.; Haataja, L.; Cowan, F.; Dubowitz, L. Prognostic value of the neurologic optimality score at 9 and 18 months in preterm infants born before 31 weeks’ gestation. J. Pediatr. 2002, 140, 57–60. [Google Scholar] [CrossRef]
- Romeo, D.M.M.; Cioni, M.; Scoto, M.; Pizzardi, A.; Romeo, M.G.; Guzzetta, A. Prognostic value of a scorable neurological examination from 3 to 12 months post-term age in very preterm infants: A longitudinal study. Early Hum. Dev. 2009, 85, 405–408. [Google Scholar] [CrossRef]
- Haataja, L.; Mercuri, E.; Regev, R.; Cowan, F.; Rutherford, M.; Dubowitz, V.; Dubowitz, L. Optimality score for the neurologic examination of the infant at 12 and 18 months of age. J. Pediatr. 1999, 135 Pt 1, 153–161. [Google Scholar] [CrossRef]
- Palisano, R.J.; Hanna, S.E.; Rosenbaum, P.L.; Russell, D.J.; Walter, S.D.; Wood, E.P.; Raina, P.S.; Galuppi, B.E. Validation of a model of gross motor function for children with cerebral palsy. Phys. Ther. 2000, 80, 974–985. [Google Scholar] [CrossRef] [Green Version]
- Hadders-Algra, M.; Tacke, U.; Pietz, J.; Rupp, A.; Philippi, H. Reliability and predictive validity of the Standardized Infant NeuroDevelopmental Assessment neurological scale. Dev. Med. Child Neurol. 2019, 61, 654–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romeo, D.M.M.; Cioni, M.; Palermo, F.; Cilauro, S.; Romeo, M.G. Neurological assessment in infants discharged from a neonatal intensive care unit. Eur. J. Paediatr. Neurol. 2013, 17, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Romeo, D.M.; Ricci, D.; Brogna, C.; Mercuri, E. Use of the Hammersmith Infant Neurological Examination in infants with cerebral palsy: A critical review of the literature. Dev. Med. Child Neurol. 2016, 58, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Benasich, A.A.; Thomas, J.J.; Choudhury, N. The importance of rapid auditory processing abilities to early language development. Brain Behav. Immun. 2008, 22, 629. [Google Scholar]
- De Groot, L. Posture and motility in preterm infants. Dev. Med. Child Neurol. 2000, 42, 65–68. [Google Scholar] [CrossRef]
- Georgieff, M.K.; Bernbaum, J.C.; Hoffman-Williamson, M.; Daft, A. Abnormal truncal muscle tone as a useful early marker for developmental delay in low birth weight infants. Pediatrics 1986, 77, 659–663. [Google Scholar]
- Hadders-Algra, M. General movements in early infancy: What do they tell us about the nervous system? Early Hum. Dev. 1993, 34, 29–37. [Google Scholar] [CrossRef]
- Shore, R. Rethinking the Brain: New Insights into Early Development; Families and Work Institute: New York, NY, USA, 1997. [Google Scholar]
- Als, H.; McAnulty, G.B. The Newborn Individualized Developmental Care and Assessment Program (NIDCAP) with Kangaroo Mother Care (KMC): Comprehensive Care for Preterm Infants. Curr. Womens Health Rev. 2011, 7, 288–301. [Google Scholar] [CrossRef] [Green Version]
- NeuroDevelopmental Treatment Association. Available online: https://www.ndta.org (accessed on 21 July 2020).
- Spencer-Smith, M.M.; Spittle, A.J.; Lee, K.J.; Doyle, L.W.; Anderson, P.J. Bayley-III cognitive and language scales in preterm children. Pediatrics 2015, 135, e1258–e1265. [Google Scholar] [CrossRef] [Green Version]
- Spittle, A.J.; Spencer-Smith, M.M.; Eeles, A.L.; Lee, K.J.; Lorefice, L.E.; Anderson, P.J.; Doyle, L.W. Does the Bayley-III Motor Scale at 2 years predict motor outcome at 4 years in very preterm children? Dev. Med. Child Neurol. 2013, 55, 448–452. [Google Scholar] [CrossRef]
Characteristics of Study Participants | Examined (n = 49) | Not-Examined (n = 12) | p-Value |
---|---|---|---|
Gestational age (weeks) a | 27.7 (1.85) | 27.9 (2.4) | ns |
Birthweight (g) b | 870 (530–1000) | 870 (590–1000) | ns |
Head Circumference (cm) b | 25 (21–28) | 25 (20–26.5) | ns |
Gender (male), n(%) c | 26 (53.1) | 5 (41.7) | ns |
Multiparity (n) c | 15 (30.6) | 1 (8.3) | ns |
Multiple gestation, n (%) c | 19 (38.8) | 1 (8.3) | 0.083 |
Mode of delivery (caesarean section), (n%) c | 45 (91.8) | 10 (83.3) | ns |
Chorioamnionitis, n (%) c | 3 (6.1) | 1 (8.3) | ns |
Preeclampsia/Eclampsia, n(%) c | 6 (12.2) | 1 (8.3) | ns |
Gestational diabetes, n(%) c | 3 (6.1) | 1 (8.3) | ns |
APGAR scores 5min b | 8 (1–9) | 8 (3–9) | ns |
Prenatal corticosteroids, n(%) c | 40 (81.6) | 8 (66.7) | ns |
Small for gestational age, n(%) c | 14 (28.6) | 5 (41.7) | ns |
Intrauterine Growth Retardation, n (%) c | 13 (26.5) | 4 (33.3) | ns |
Respiratory distress syndrome, n(%) c | 43 (87.8) | 8 (66.7) | 0.096 |
Surfactant administration n(%) c | 35 (71.4) | 7 (58.3) | ns |
Patent ductus arteriosus, n(%) c | 10 (20.4) | 4 (33.3) | ns |
Nosocomial sepsis, n(%) c | 37 (75.5) | 8 (66.7) | ns |
Ventilation days (n) b | 5 (0–44) | 9.5 (0–67) | ns |
O2 days (n) a | 37.8 (26.6) | 33.9 (30.2) | ns |
Bronchopulmonary Dysplasia | 28 (57.1) | 6 (50) | ns |
Necrotizing Enterocolitis | 3 (6.1) | 2 (16.7) | ns |
Intraventricular Hemorrhage ΙΙI-IV | 6 (12.5) | 1 (8.3) | ns |
Periventricular Leucomalacia | 1 (2) | 0 | ns |
Cerebral Palsy | 4 (8.2) | 0 | ns |
Hospital stay (days) b | 67 (31–154) | 74.5 (43–120) | ns |
Composite Scores | n | Mean | Range | SD |
---|---|---|---|---|
Cognitive | 49 | 96.3 | 75–115 | 9.8 |
Language | 48 | 99.9 | 74–135 | 11.9 |
Motor | 49 | 93.2 | 70–112 | 9.9 |
Bayley III | Composite Scores | Cognitive Scores, n(%) | Language Scores, n(%) | Motor Scores, n(%) |
---|---|---|---|---|
Above average (+1SD) | >116 | 0 | 3 (6.3) | 0 |
Average | 86–115 | 39 (79.6) | 40 (83.3) | 39 (79.6) |
Low average (−1SD) | 71–85 | 10 (20.4) | 5 (10.4) | 8 (16.3) |
Extremely low (−2SD) | 56–70 | 0 | 0 | 2 (4.1) |
HINE Sections | Median 1 (Range) | SD | 10th Percentile | Median 2 (Range) | SD | 10th Percentile |
---|---|---|---|---|---|---|
Function of cranial nerves | 13 (8–15) | 1.66 | 11 | 15 (12–15) | 1.06 | 12 |
Posture | 14 (8–16) * | 1.94 | 9 | 14 (10–18) | 1.85 | 13 |
Movements | 6 (2–6) | 0.98 | 3 | 6 (4–6) | 0.54 | 4 |
Tone | 16 (7–24) * | 2.82 | 13 | 18 (10–24) | 2.99 | 14 |
Reflexes | 7 (3–12) ** | 1.69 | 4 | 8 (5–13) | 1.89 | 5 |
Total score | 56 (28–68) ** | 6.98 | 48 | 62 (43–76) | 6.5 | 54 |
HINE Sections | Cognitive | Language | Motor | ||||||
---|---|---|---|---|---|---|---|---|---|
N | Coeff | CI | N | Coeff | CI | N | Coeff | CI | |
Function of cranial nerves | 49 | 0.25 | −0.2,3.5 * | 48 | 0.22 | −0.45, 3.7 | 49 | 0.45 | 1.1,4.3 ** |
Posture | 49 | 0.27 | −0.06, 2.78 * | 48 | 0.13 | −1, 2.5 | 49 | 0.26 | −0.1, 2.8 * |
Movements | 49 | 0.08 | −2.1, 3.7 | 48 | 0.42 | −3, 4.1 | 49 | 0.37 | 1, 6.5 ** |
Tone | 49 | 0.37 | 0.32, 2.2 ** | 48 | 0.15 | −0.56, 1.87 | 49 | 0.32 | −0.13, 2 ** |
Reflexes | 49 | 0.06 | −1.3, 2 | 48 | 1 | −2.9, 1.2 | 49 | 0.1 | −1.1, 2.3 |
Total score | 49 | 0.3 | −0.04, 0.82 ** | 48 | 0.13 | −0.28, 0.7 | 49 | 0.39 | −0.16, 0.94 ** |
HINE Sections | Cognitive | Language | Motor | ||||||
---|---|---|---|---|---|---|---|---|---|
N | Coeff | CI | N | Coeff | CI | N | Coeff | CI | |
Function of cranial nerves | 49 | 0.06 | −2.1, 3.2 | 48 | 1 | −2.1, 4.4 | 49 | 0.27 | −0.15,5.15 * |
Posture | 49 | 0.05 | −1.3,1.8 | 48 | −0.53 | −1.5, 2.3 | 49 | 0.2 | −0.5, 2.6 |
Movements | 49 | 0.07 | −4, 6.6 | 48 | 0.05 | −5.3, 7.6 | 49 | 0.36 | −1.58, 11.7 ** |
Tone | 49 | 0.22 | −0.2, 1.7 | 48 | 0.09 | −0.8, 1.6 | 49 | 0.27 | −0.05, 1.84 * |
Reflexes | 49 | 0.12 | −0.9, 2 | 48 | −0.06 | −1.47, 2.3 | 49 | 0.25 | −0.2, 2.8 * |
Total score | 49 | 0.16 | −0.2, 0.7 | 48 | −0.09 | −0.38, 0.7 | 49 | 0.2 | 0.05, 0.9 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriakidou, M.; Chatziioannidis, I.; Mitsiakos, G.; Lampropoulou, S.; Pouliakis, A. Neurodevelopmental Outcome in Extremely Low Birth Weight Infants at 2–3 Years of Age. Medicina 2020, 56, 649. https://doi.org/10.3390/medicina56120649
Kyriakidou M, Chatziioannidis I, Mitsiakos G, Lampropoulou S, Pouliakis A. Neurodevelopmental Outcome in Extremely Low Birth Weight Infants at 2–3 Years of Age. Medicina. 2020; 56(12):649. https://doi.org/10.3390/medicina56120649
Chicago/Turabian StyleKyriakidou, Maria, Ilias Chatziioannidis, Georgios Mitsiakos, Sofia Lampropoulou, and Abraham Pouliakis. 2020. "Neurodevelopmental Outcome in Extremely Low Birth Weight Infants at 2–3 Years of Age" Medicina 56, no. 12: 649. https://doi.org/10.3390/medicina56120649
APA StyleKyriakidou, M., Chatziioannidis, I., Mitsiakos, G., Lampropoulou, S., & Pouliakis, A. (2020). Neurodevelopmental Outcome in Extremely Low Birth Weight Infants at 2–3 Years of Age. Medicina, 56(12), 649. https://doi.org/10.3390/medicina56120649