Pharmacogenetics Update on Biologic Therapy in Psoriasis
Abstract
:1. Introduction
2. Materials and Methods
3. Anti-TNF Drugs
4. Anti-IL12/23 Drugs (Ustekinumab)
Reference | Genes | Protein Function | Allele/SNP | Response | Number of Patients | Country | Weeks after Initiation of Treatment | Outcome Measure |
---|---|---|---|---|---|---|---|---|
Talamonti et al, 2013 [53] | HLA-C | It belongs to the HLA class I heavy chain group. Relevant role in the immune system as it helps to present endoplasmic reticulum peptides. | HLA-C*06:02 positive | Better | 51 | Italy | 4, 12, 28 and 40 | PASI 75. PASI 90 |
Chiu et al, 2014 [63] | HLA-C | It belongs to the HLA class I heavy chain group. Relevant role in the immune system as it helps to present endoplasmic reticulum peptides. | HLA-C*06:02 positive | Better | 66 | China | 16 and 28 | PASI50, PASI75, PASI90 |
Prieto-Pérez et al, 2015 [65] | IL-17F | This cytokine is expressed by activated T cells, and is involved, among others, in IL-23 and IL-17 Family Signaling Pathways in the immune response. | rs763780 (TC genotype) | Worse | 70 | Spain | 12 and 24 | PASI75 |
Masouri et al, 2016 [35] | ERAP1 | Aminopeptidase involved in trimming precursors of HLA class I-binding peptides to allow their presentation by MHC class I molecules | rs151823 (CC genotype) | Better | 22 | Greece | 24 | PASI 50, PASI75 |
rs26653 (GG genotype) | Better | |||||||
Li et al, 2016 [56] | HLA-C | It belongs to the HLA class I heavy chain group. Relevant role in the immune system as it helps to present endoplasmic reticulum peptides. | HLA-C*06:02 positive | Better | 601 | The United States of America | 4, 12, 24 and 28 | PASI50, PASI75, PASI 90.PASI100 |
Galluzo et al, 2016 [57] | HLA-C | It belongs to the HLA class I heavy chain group. Relevant role in the immune system as it helps to present endoplasmic reticulum peptides. | HLA-C*06:02 positive | Better | 64 | Italy | 4, 12, 28, 40 and 52 | PASI 75 |
Talamonti et al, 2016 [54] | HLA-C | It belongs to the HLA class I heavy chain group. Relevant role in the immune system as it helps to present endoplasmic reticulum peptides. | HLA-C*06:02 positive | Better | 134 | Italy | 4, 12, 28, 52, 76, 104, 156 | PASI75 |
Talamonti et al, 2017 [55] | HLA-C | It belongs to the HLA class I heavy chain group. Relevant role in the immune system as it helps to present endoplasmic reticulum peptides. | HLA-C*06:02 positive | Better | 255 | Italy | 4, 12, 28, 40 and 52 | PASI 50, PASI75, PASI90 |
Raposo et al, 2017 [58] | HLA-C | It belongs to the HLA class I heavy chain group. Relevant role in the immune system as it helps to present endoplasmic reticulum peptides. | HLA-C*06:02 positive | Better | 116 | Portugal | 4, 12, 24 and 52 | PASI75 |
Reek et al, 2017 [64] | IL12b | Subunit of interleukin 12, expressed by activated macrophages and essential inducer of Th1 cell development. | rs3213094 (CT genotype) | Better | Number of patients not stated. Sixty-six episodes on ustekinumab | The Netherlands | 6, 12, and every three months thereafter | PASI75, ΔPASI |
TNFAIP3 | Zinc finger protein and ubiquitin-editing enzyme. | rs610604 (GG genotype) | Worse | |||||
Prieto-Pérez et al, 2017 [61] | TNFRSF1A | Member of the TNF receptor superfamily of proteins. Plays a role in cell survival, apoptosis, and inflammation. | rs191190 (TT genotype) | Worse | 69 | Spain | 16 | PASI75 |
HTR2A | Serotonin receptor. Mutations in this gene are associated with susceptibility to schizophrenia and obsessive-compulsive disorder. | rs6311 (TT genotype) | Worse | |||||
NFKBIA | Member of the NF-kappa-B inhibitor family. | rs2145623 (CC genotype) | Worse | |||||
ADAM33 | Member of the ADAM (a disintegrin and metalloprotease domain) family. | rs2787094 (CC genotype) | Worse | |||||
IL13 | Immunoregulatory cytokine produced primarily by activated Th2 cells. | rs848 (TT genotype) | Worse | |||||
CHUK | Serine kinase that plays an essential role in the NF-kappa-B signaling pathway. | rs11591741 (GC genotype) | Better | |||||
C17orf51 | RNA Gene associated with psoriasis | rs1975974 (AG genotype) | Better | |||||
ZNF816A | Transcriptional regulation | rs9304742 (CT genotype) | Better | |||||
STAT4 | Mediating responses to IL12 in lymphocytes, and regulating the differentiation of T helper cells. | rs7574865 (GT genotype) | Better | |||||
SLC22A4 | Polyspecific organic cation transporter critical for elimination of drugs and environmental toxins. | rs1050152 (CT genotype) | Better | |||||
C9orf72 | Important role in the regulation of endosomal trafficking. Interacts with Rab proteins, which are involved in autophagy and endocytic transport. | rs774359 (CT genotype) | Better | |||||
Loft et al, 2018 [24] | IL1B | Important mediator of the inflammatory response. | rs1143623 (G/C genotype) | Better | 230 | Denmark | 12, 24 | PASI50, PASI75 |
rs1143627 (T/C genotype) | Better | |||||||
TIRAP | TIR adaptor protein involved in the toll-like receptor signaling pathway in the immune system. | rs8177374 (C/T genotype) | Better | |||||
TLR5 | Member of the TLR family, which plays a fundamental role in pathogen recognition and activation of the innate immune response. | rs5744174 (T/C genotype) | Better | |||||
Il12B | Subunit of interleukin 12. This cytokine is expressed by activated macrophages and is an essential inducer of Th1 cells development. | rs6887695 (GG genotype) | Better* | |||||
rs3212227 (absence of AA genotype) | Better* | |||||||
Dand et al, 2019 [51] | HLA- C | It belongs to the HLA class I heavy chain group. Relevant role in the immune system as it helps to present endoplasmic reticulum peptides. | HLA-C*06:02 positive | Better. | 487 | The United Kingdom | 12, 24, 48 | PASI 75, PASI90, PASI100 |
5. Anti-IL17 Drugs
Reference | Drug | Genes Studied | Response | Number of Patients | Country | Weeks after Initiation of Treatment | Outcome Measure |
---|---|---|---|---|---|---|---|
Costanzo et al, 2018 [68] | Secukinumab | HLA-C | HLA-C*06:02 had no relation to response | 434 | Italy | 16 and 24 | PASI50, PASI75, PASI90, PASI100 |
Anzengruber et al, 2018 [70] | Secukinumab | HLA-C | HLA-C*06:02 had no relation to response | 18 | Switzerland | 12 | PASI50, PASI75, PASI90 |
Papini et al, 2019 [69] | Secukinumab | HLA-C | HLA-C*06:02 had no relation to response | 434 | Italy | 1, 2, 3, 4, 8, 12, 16, 20, 24, 36, 48, 60 and 72 | PASI75, PASI90, PASI100 |
Vugt et al, 2020 [71] | Secukinumab and ixekizumab | IL-17 | No relation to response | 134 | The Netherlands, Belgium, Italy, Estonia | 12 and 24 | PASI75, PASI90 |
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Boehncke, W.-H.; Schön, M.P. Psoriasis. Lancet 2015, 386, 983–994. [Google Scholar] [CrossRef]
- Lowes, M.A.; Suarez-Farinas, M.; Krueger, J.G. Immunology of Psoriasis. Annu. Rev. Immunol. 2014, 32, 227–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parisi, R.; Symmons, D.P.; Griffiths, C.E.; Ashcroft, D.M. Global Epidemiology of Psoriasis: A Systematic Review of Incidence and Prevalence. J. Investig. Dermatol. 2013, 133, 377–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lønnberg, A.; Skov, L.; Skytthe, A.; Kyvik, K.O.; Pedersen, O.B.; Thomsen, S. Heritability of psoriasis in a large twin sample. Br. J. Dermatol. 2013, 169, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Okada, Y. The current landscape of psoriasis genetics in 2020. J. Dermatol. Sci. 2020, 99, 2–8. [Google Scholar] [CrossRef]
- Hwang, S.T.; Nijsten, T.; Elder, J.T. Recent Highlights in Psoriasis Research. J. Investig. Dermatol. 2017, 137, 550–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Tsai, T.-F. HLA-Cw6and psoriasis. Br. J. Dermatol. 2018, 178, 854–862. [Google Scholar] [CrossRef]
- Sbidian, E.; Chaimani, A.; Afach, S.; Doney, L.; Dressler, C.; Hua, C.; Mazaud, C.; Phan, C.; Hughes, C.; Riddle, D.; et al. Systemic pharmacological treatments for chronic plaque psoriasis: A network meta-analysis. Cochrane Database Syst. Rev. 2020, 1, CD011535. [Google Scholar] [CrossRef]
- Daudén, E.; Puig, L.; Ferrándiz, C.; Sánchez-Carazo, J.; Hernanz-Hermosa, J.; the Spanish Psoriasis Group of the Spanish Academy of Dermatology and Venereology. Consensus document on the evaluation and treatment of moderate-to-severe psoriasis: Psoriasis Group of the Spanish Academy of Dermatology and Venereology. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 1–18. [Google Scholar] [CrossRef]
- Prieto-Pérez, R.; Cabaleiro, T.; Daudén, E.; Ochoa, D.; Román, M.; Abad-Santos, F. Pharmacogenetics of topical and systemic treatment of psoriasis. Pharmacogenomics 2013, 14, 1623–1634. [Google Scholar] [CrossRef]
- Abraham, J. International Conference on Harmonisation Of Technical Requirements for Registration Of Pharmaceuticals For Human Use. In Handbook of Transnational Economic Governance Regimes; Tietje, C., Brouder, A., Eds.; Brill: Leiden, The Netherlands, 2010; pp. 1041–1053. [Google Scholar] [CrossRef] [Green Version]
- Ovejero-Benito, M.C.; Muñoz-Aceituno, E.; Reolid, A.; Saiz-Rodríguez, M.; Abad-Santos, F.; Daudén, E. Pharmacogenetics and Pharmacogenomics in Moderate-to-Severe Psoriasis. Am. J. Clin. Dermatol. 2018, 19, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Tello, E.D.; Farmacogenética, I. Concepto, historia, objetivos y áreas de estudio. Actas Dermo-Sifiliogr. 2006, 97, 623–629. [Google Scholar] [CrossRef]
- Daudén, E. Farmacogenética II. Métodos moleculares de estudio, bioinformática y aspectos éticos. Actas Dermo-Sifiliogr. 2007, 98, 3–13. [Google Scholar] [CrossRef]
- Agúndez, J.A.G.; Eabad-Santos, F.; Ealdea, A.; Alonso-Navarro, H.; Ebernal, M.L.; Borobia, A.M.; Eborras, E.; Ecarballo, M.; Ecarvajal, A.; García-Muñiz, J.D.; et al. Toward a clinical practice guide in pharmacogenomics testing for functional polymorphisms of drug-metabolizing enzymes. Gene/drug pairs and barriers perceived in Spain. Front. Genet. 2012, 3, 273. [Google Scholar] [CrossRef] [Green Version]
- Valdes, R.; Yin, D. (Tyler) Fundamentals of Pharmacogenetics in Personalized, Precision Medicine. Clin. Lab. Med. 2016, 36, 447–459. [Google Scholar] [CrossRef]
- Vasilopoulos, Y. Pharmacogenetics and psoriasis: Is targeted treatment a possibility? Pharmacogenomics 2017, 18, 1627–1630. [Google Scholar] [CrossRef] [Green Version]
- Roden, D.M.; Wilke, R.A.; Kroemer, H.K.; Stein, C.M. Pharmacogenomics: The genetics of variable drug responses. Circulation 2011, 123, 1661–1670. [Google Scholar] [CrossRef] [Green Version]
- Linares-Pineda, T.M.; Cañadas-Garre, M.; Sanchez-Pozo, A.; Hernández, C. Gene polymorphisms as predictors of response to biological therapies in psoriasis patients. Pharmacol. Res. 2016, 113, 71–80. [Google Scholar] [CrossRef]
- Van Vugt, L.; Reek, J.V.D.; Coenen, M.; De Jong, E. A systematic review of pharmacogenetic studies on the response to biologics in patients with psoriasis. Br. J. Dermatol. 2018, 178, 86–94. [Google Scholar] [CrossRef]
- Talamonti, M.; D’Adamio, S.; Bianchi, L.; Galluzzo, M. The Role of Pharmacogenetics in Chronic Plaque Psoriasis: Update of the Literature. Mol. Diagn. Ther. 2017, 21, 467–480. [Google Scholar] [CrossRef]
- Burmester, G.-R.; Panaccione, R.; Gordon, K.B.; McIlraith, M.J.; Lacerda, A.P.M. Adalimumab: Long-term safety in 23 458 patients from global clinical trials in rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis and Crohn’s disease. Ann. Rheum. Dis. 2012, 72, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Cabaleiro, T.; Prietoperez, R.; Navarro, R.M.; Solano, G.; Roman, M.J.; Ochoa, D.; Abadsantos, F.; Dauden, E. Paradoxical psoriasiform reactions to anti-TNFα drugs are associated with genetic polymorphisms in patients with psoriasis. Pharmacogenom. J. 2016, 16, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Loft, N.D.; Skov, L.; Iversen, L.; Gniadecki, R.; Dam, T.N.; Brandslund, I.; Hoffmann, H.J.; Andersen, M.R.; Dessau, R.B.; Bergmann, A.C.; et al. Associations between functional polymorphisms and response to biological treatment in Danish patients with psoriasis. Pharmacogenom. J. 2017, 18, 494–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ovejero-Benito, M.C.; Muñoz-Aceituno, E.; Sabador, D.; Reolid, A.; Llamas-Velasco, M.; Prieto-Pérez, R.; Abad-Santos, F.; Daudén, E. Polymorphisms associated with optimization of biological therapy through drug dose reduction in moderate-to-severe psoriasis. J. Eur. Acad. Dermatol. Venereol. 2020, 34. [Google Scholar] [CrossRef]
- Ovejero-Benito, M.C.; Prieto-Pérez, R.; Llamas-Velasco, M.; Muñoz-Aceituno, E.; Reolid, A.; Saiz-Rodríguez, M.; Belmonte, C.; Román, M.; Ochoa, D.; Talegón, M.; et al. Polymorphisms associated with adalimumab and infliximab response in moderate-to-severe plaque psoriasis. Pharmacogenomics 2018, 19, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Ovejero-Benito, M.C.; Muñoz-Aceituno, E.; Sabador, D.; Almoguera, B.; Prieto-Pérez, R.; Hakonarson, H.; Coto-Segura, P.; Carretero, G.; Reolid, A.; Llamas-Velasco, M.; et al. Genome-wide association analysis of psoriasis patients treated with anti-TNF drugs. Exp. Dermatol. 2020, 29, 1225–1232. [Google Scholar] [CrossRef]
- Julià, A.; Ferrándiz, C.; Dauden, E.; Fonseca, E.; Fernández-López, E.; Sanchez-Carazo, J.L.; Vanaclocha, F.; Puig, L.; Morenoramirez, D.; Lopez-Estebaranz, J.L.; et al. Association of the PDE3A-SLCO1C1 locus with the response to anti-TNF agents in psoriasis. Pharmacogenom. J. 2015, 15, 322–325. [Google Scholar] [CrossRef]
- Gallo, E.; Cabaleiro, T.; Román, M.; Solano-López, G.; Abad-Santos, F.; García-Díez, A.; Dauden, E. The relationship between tumour necrosis factor (TNF)-α promoter andIL12B/IL-23Rgenes polymorphisms and the efficacy of anti-TNF-α therapy in psoriasis: A case-control study. Br. J. Dermatol. 2013, 169, 819–829. [Google Scholar] [CrossRef]
- Prieto-Pérez, R.; Solano-López, G.; Cabaleiro, T.; Román, M.; Ochoa, D.; Talegón, M.; Baniandrés, O.; López-Estebaranz, J.L.; De La Cueva, P.; Daudén, E.; et al. New polymorphisms associated with response to anti-TNF drugs in patients with moderate-to-severe plaque psoriasis. Pharmacogenom. J. 2018, 18, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Ryan, C.; Kelleher, J.; Fagan, M.F.; Rogers, S.; Collins, P.; Barker, J.N.W.N.; Allen, M.; Hagan, R.; Renfro, L.; Kirby, B. Genetic markers of treatment response to tumour necrosis factor-α inhibitors in the treatment of psoriasis. Clin. Exp. Dermatol. 2014, 39, 519–524. [Google Scholar] [CrossRef]
- Vasilopoulos, Y.; Manolika, M.; Zafiriou, E.; Sarafidou, T.; Bagiatis, V.; Krüger-Krasagaki, S.; Tosca, A.; Patsatsi, A.; Sotiriadis, D.; Mamuris, Z.; et al. Pharmacogenetic Analysis of TNF, TNFRSF1A, and TNFRSF1B Gene Polymorphisms and Prediction of Response to Anti-TNF Therapy in Psoriasis Patients in the Greek Population. Mol. Diagn. Ther. 2012, 16, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Coto-Segura, P.; Batalla, A.; González-Fernández, D.; Gomez, J.; Santos-Juanes, J.; Queiro, R.; Alonso, B.; Iglesias, S.; Coto, E. CDKAL1 gene variants affect the anti-TNF response among Psoriasis patients. Int. Immunopharmacol. 2015, 29, 947–949. [Google Scholar] [CrossRef] [PubMed]
- Tutuncu, Z.; Kavanaugh, A.; Zvaifler, N.; Corr, M.; Deutsch, R.; Boyle, D. Fcγ receptor type IIIA polymorphisms influence treatment outcomes in patients with inflammatory arthritis treated with tumor necrosis factor α-blocking agents. Arthritis Rheum. 2005, 52, 2693–2696. [Google Scholar] [CrossRef] [PubMed]
- Masouri, S.; Stefanaki, I.; Ntritsos, G.; Kypreou, K.P.; Drakaki, E.; Evangelou, E.; Nicolaidou, E.; Stratigos, A.J.; Antoniou, C. A Pharmacogenetic Study of Psoriasis Risk Variants in a Greek Population and Prediction of Responses to Anti-TNF-α and Anti-IL-12/23 Agents. Mol. Diagn. Ther. 2016, 20, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Manresa, M.J.; Guilabert, A.; Lozano, F.; Suarez-Casasús, B.; Moreno, N.; Carrascosa, J.M.; Ferrándiz, C.; Pedrosa, E.; Alsina-Gibert, M.; Mascaró, J.M. The Role of Fcγ Receptor Polymorphisms in the Response to Anti–Tumor Necrosis Factor Therapy in Psoriasis. JAMA Dermatol. 2013, 149, 1033–1039. [Google Scholar] [CrossRef]
- Tejasvi, T.; Stuart, P.E.; Chandran, V.; Voorhees, J.J.; Gladman, D.D.; Rahman, P.; Elder, J.T.; Nair, R.P. TNFAIP3 Gene Polymorphisms Are Associated with Response to TNF Blockade in Psoriasis. J. Investig. Dermatol. 2012, 132, 593–600. [Google Scholar] [CrossRef] [Green Version]
- Seitz, M.; Wirthmuller, U.; Moller, B.; Villiger, P.M. The -308 tumour necrosis factor- gene polymorphism predicts therapeutic response to TNF -blockers in rheumatoid arthritis and spondyloarthritis patients. Rheumatology 2007, 46, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Song, G.G.; Seo, Y.H.; Kim, J.-H.; Choi, S.J.; Ji, J.D.; Lee, Y.H. Association between TNF-α (-308 A/G, -238 A/G, -857 C/T) polymorphisms and responsiveness to TNF-α blockers in spondyloarthropathy, psoriasis and Crohn’s disease: A meta-analysis. Pharmacogenomics 2015, 16, 1427–1437. [Google Scholar] [CrossRef]
- Chen, W.; Xu, H.; Wang, X.; Gu, J.; Xiong, H.; Shi, Y. The tumor necrosis factor receptor superfamily member 1B polymorphisms predict response to anti-TNF therapy in patients with autoimmune disease: A meta-analysis. Int. Immunopharmacol. 2015, 28, 146–153. [Google Scholar] [CrossRef]
- Batalla, A.; Coto, E.; Gómez, J.; Eirís, N.; González-Fernández, D.; Castro, C.G.-D.; Daudén, E.; Llamas-Velasco, M.; Prieto-Perez, R.; Abad-Santos, F.; et al. IL17RA gene variants and anti-TNF response among psoriasis patients. Pharmacogenom. J. 2018, 18, 76–80. [Google Scholar] [CrossRef]
- Ovejero-Benito, M.C.; Prieto-Pérez, R.; Llamas-Velasco, M.; Belmonte, C.; Cabaleiro, T.; Román, M.; Ochoa, D.; Talegón, M.; Saiz-Rodríguez, M.; Daudén, E.; et al. Polymorphisms associated with etanercept response in moderate-to-severe plaque psoriasis. Pharmacogenomics 2017, 18, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Pérez, R.; Solano-López, G.; Cabaleiro, T.; Roman, M.; Ochoa, D.; Talegón, M.; Baniandrés, O.; Estebaranz, J.L.L.; De La Cueva, P.; Daudén, E.; et al. New immune system genetic polymorphisms associated with moderate-to-severe plaque psoriasis: A case-control study. Br. J. Dermatol. 2015, 172, 1432–1435. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Pérez, R.; Cabaleiro, T.; Daudén, E.; Ochoa, D.; Roman, M.; Abad-Santos, F. Genetics of Psoriasis and Pharmacogenetics of Biological Drugs. Autoimmune Dis. 2013, 2013, 613086. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, R.; Nagai, H.; Bito, T.; Ikeda, T.; Horikawa, T.; Adachi, A.; Matsubara, T.; Nishigori, C. Genetic prediction of the effectiveness of biologics for psoriasis treatment. J. Dermatol. 2016, 43, 1273–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrascosa, J.-M.; Garcia-Doval, I.; Pérez-Zafrilla, B.; Carretero, G.; Vanaclocha, F.; Daudén, E.; De La Cueva-Dobao, P.; Belinchón, I.; Alsina, M.; López-Estebaranz, J.-L.; et al. Use of off-label doses is frequent in biologic therapy for moderate to severe psoriasis: A cross-sectional study in clinical practice. J. Dermatol. Treat. 2015, 26, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Baniandrés-Rodríguez, O.; Rodríguez-Soria, V.; Romero-Jiménez, R.; Suarez, R. Modificación de la dosis de terapias biológicas en psoriasis moderada-grave: Análisis descriptivo en condiciones de práctica clínica. Actas Dermo-Sifiliogr. 2015, 106, 569–577. [Google Scholar] [CrossRef]
- Van Bezooijen, J.S.; Van Doorn, M.B.; Schreurs, M.W.J.; Koch, B.C.P.; Velthuis, H.T.; Prens, E.; Van Gelder, T. Prolongation of Biologic Dosing Intervals in Patients with Stable Psoriasis. Ther. Drug Monit. 2017, 39, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Esposito, M.; Gisondi, P.; Conti, A.; Giunta, A.; Del Giglio, M.; Di Mercurio, M.; Veneziano, L.; Ferrucci, G.; Bianchi, L.; Chimenti, S.; et al. Dose adjustment of biologic therapies for psoriasis in dermatological practice: A retrospective study. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 863–869. [Google Scholar] [CrossRef]
- Atalay, S.; Reek, J.V.D.; Van Vugt, L.; Otero, M.E.; Van De Kerkhof, P.; Broeder, A.A.D.; Kievit, W.; De Jong, E.M.G.J. Tight controlled dose reduction of biologics in psoriasis patients with low disease activity: A randomized pragmatic non-inferiority trial. BMC Dermatol. 2017, 17, 6. [Google Scholar] [CrossRef] [Green Version]
- Dand, N.; Duckworth, M.; Baudry, D.; Russell, A.; Curtis, C.J.; Lee, S.H.; Evans, I.; Mason, K.J.; Alsharqi, A.; Becher, G.; et al. HLA-C*06:02 genotype is a predictive biomarker of biologic treatment response in psoriasis. J. Allergy Clin. Immunol. 2019, 143, 2120–2130. [Google Scholar] [CrossRef] [Green Version]
- Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consortium 2. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat. Genet. 2010, 42, 985–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talamonti, M.; Botti, E.; Galluzzo, M.; Teoli, M.; Spallone, G.; Bavetta, M.; Chimenti, S.; Costanzo, A. Pharmacogenetics of psoriasis: HLA-Cw6 but not LCE3B/3C deletion nor TNFAIP3 polymorphism predisposes to clinical response to interleukin 12/23 blocker ustekinumab. Br. J. Dermatol. 2013, 169, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Talamonti, M.; Galluzzo, M.; Chimenti, S.; Costanzo, A. HLA-C*06 and response to ustekinumab in Caucasian patients with psoriasis: Outcome and long-term follow-up. J. Am. Acad. Dermatol. 2016, 74, 374–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talamonti, M.; Galluzzo, M.; Reek, J.V.D.; De Jong, E.; Lambert, J.; Malagoli, P.; Bianchi, L.; Costanzo, A. Role of the HLA-C*06 allele in clinical response to ustekinumab: Evidence from real life in a large cohort of European patients. Br. J. Dermatol. 2017, 177, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Huang, C.C.; Randazzo, B.; Li, S.; Szapary, P.; Curran, M.; Campbell, K.; Brodmerkel, C. HLA-C*06:02 Allele and Response to IL-12/23 Inhibition: Results from the Ustekinumab Phase 3 Psoriasis Program. J. Investig. Dermatol. 2016, 136, 2364–2371. [Google Scholar] [CrossRef] [Green Version]
- Galluzzo, M.; Boca, A.N.; Botti, E.; Potenza, C.; Malara, G.; Malagoli, P.; Vesa, S.; Chimenti, S.; Buzoianu, A.D.; Talamonti, M.; et al. IL12B (p40) Gene Polymorphisms Contribute to Ustekinumab Response Prediction in Psoriasis. Dermatology 2015, 232, 230–236. [Google Scholar] [CrossRef]
- Raposo, I.; Carvalho, C.; Bettencourt, A.; Martins-Silva, B.; Leite, L.; Selores, M.; Torres, T. Psoriasis pharmacogenetics: HLA-Cw*0602 as a marker of therapeutic response to ustekinumab. Eur. J. Dermatol. EJD 2017, 27, 528–530. [Google Scholar] [CrossRef]
- Nair, R.P.; Ding, J.; Duffin, K.C.; Helms, C.; Voorhees, J.J.; Krueger, G.G.; Bowcock, A.M.; Abecasis, G.R.; Elder, J.T. Psoriasis Bench to Bedside. Arch. Dermatol. 2009, 145, 462–464. [Google Scholar] [CrossRef]
- Ciric, B.; El-Behi, M.; Cabrera, R.; Zhang, G.-X.; Rostami, A. IL-23 Drives Pathogenic IL-17-Producing CD8+ T Cells. J. Immunol. 2009, 182, 5296–5305. [Google Scholar] [CrossRef] [Green Version]
- Prieto-Pérez, R.; Llamas-Velasco, M.; Cabaleiro, T.; Solano-López, G.; Márquez, B.; Román, M.; Ochoa, D.; Talegón, M.; Daudén, E.; Abad-Santos, F. Pharmacogenetics of ustekinumab in patients with moderate-to-severe plaque psoriasis. Pharmacogenomics 2017, 18, 157–164. [Google Scholar] [CrossRef]
- Chiu, H.; Huang, P.-Y.; Jee, S.-H.; Hu, C.-Y.; Chou, C.-T.; Chang, Y.-T.; Hwang, C.-Y.; Tsai, T.-F. HLA polymorphism among Chinese patients with chronic plaque psoriasis: Subgroup analysis. Br. J. Dermatol. 2012, 166, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.-Y.; Wang, T.-S.; Chan, C.-C.; Cheng, Y.-P.; Lin, S.-J.; Tsai, T.-F. Human leucocyte antigen-Cw6 as a predictor for clinical response to ustekinumab, an interleukin-12/23 blocker, in C hinese patients with psoriasis: A retrospective analysis. Br. J. Dermatol. 2014, 171, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Reek, J.V.D.; Coenen, M.; Arias, M.V.D.L.; Zweegers, J.; Rodijk-Olthuis, D.; Schalkwijk, J.; Vermeulen, S.; Joosten, I.; Van De Kerkhof, P.; Seyger, M.; et al. Polymorphisms inCD84,IL12BandTNFAIP3are associated with response to biologics in patients with psoriasis. Br. J. Dermatol. 2017, 176, 1288–1296. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Pérez, R.; Solano-López, G.; Cabaleiro, T.; Román, M.; Ochoa, D.; Talegón, M.; Baniandrés, O.; Estebaranz, J.L.L.; De La Cueva, P.; Daudén, E.; et al. The polymorphism rs763780 in theIL-17Fgene is associated with response to biological drugs in patients with psoriasis. Pharmacogenomics 2015, 16, 1723–1731. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Kikly, K.; Lu, J.; Allan, B.W.; Tang, Y.; Tetreault, J.; Chow, C.-K.; Barmettler, B.; Nelson, J.; Bina, H.; et al. Generation and characterization of ixekizumab, a humanized monoclonal antibody that neutralizes interleukin-17A. J. Inflamm. Res. 2016, 9, 39–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blauvelt, A.; Reich, K.; Tsai, T.-F.; Tyring, S.; Vanaclocha, F.; Kingo, K.; Ziv, M.; Pinter, A.; Vender, R.; Hugot, S.; et al. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate-to-severe plaque psoriasis up to 1 year: Results from the CLEAR study. J. Am. Acad. Dermatol. 2017, 76, 60–69.e9. [Google Scholar] [CrossRef]
- Costanzo, A.; Bianchi, L.; Flori, M.L.; Malara, G.; Stingeni, L.; Bartezaghi, M.; Carraro, L.; Castellino, G. The SUPREME study group Secukinumab shows high efficacy irrespective of HLA-Cw6 status in patients with moderate-to-severe plaque-type psoriasis: SUPREME study. Br. J. Dermatol. 2018, 179, 1072–1080. [Google Scholar] [CrossRef] [Green Version]
- Papini, M.; Cusano, F.; Romanelli, M.; Burlando, M.; Stinco, G.; Girolomoni, G.; Peris, K.; Potenza, C.; Offidani, A.; Bartezaghi, M.; et al. Secukinumab shows high efficacy irrespective of HLA-Cw6 status in patients with moderate-to-severe plaque-type psoriasis: Results from extension phase of the SUPREME study. Br. J. Dermatol. 2019, 181, 413–414. [Google Scholar] [CrossRef]
- Anzengruber, F.; Drach, M.; Meier, B.; Navarini, A.A.; Maul, J.-T.; Kolios, A. Therapy response was not altered by HLA-Cw6 status in psoriasis patients treated with secukinumab: A retrospective case series. J. Eur. Acad. Dermatol. Venereol. 2018, 32, e274–e276. [Google Scholar] [CrossRef] [Green Version]
- Van Vugt, L.; Reek, J.V.D.; Meulewaeter, E.; Hakobjan, M.; Heddes, N.; Traks, T.; Kingo, K.; Galluzzo, M.; Talamonti, M.; Lambert, J.; et al. Response to IL -17A inhibitors secukinumab and ixekizumab cannot be explained by genetic variation in the protein-coding and untranslated regions of the IL -17A gene: Results from a multicentre study of four European psoriasis cohorts. J. Eur. Acad. Dermatol. Venereol. 2019, 34, 112–118. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Aceituno, E.; Martos-Cabrera, L.; Ovejero-Benito, M.C.; Reolid, A.; Abad-Santos, F.; Daudén, E. Pharmacogenetics Update on Biologic Therapy in Psoriasis. Medicina 2020, 56, 719. https://doi.org/10.3390/medicina56120719
Muñoz-Aceituno E, Martos-Cabrera L, Ovejero-Benito MC, Reolid A, Abad-Santos F, Daudén E. Pharmacogenetics Update on Biologic Therapy in Psoriasis. Medicina. 2020; 56(12):719. https://doi.org/10.3390/medicina56120719
Chicago/Turabian StyleMuñoz-Aceituno, Ester, Luisa Martos-Cabrera, María Carmen Ovejero-Benito, Alejandra Reolid, Francisco Abad-Santos, and Esteban Daudén. 2020. "Pharmacogenetics Update on Biologic Therapy in Psoriasis" Medicina 56, no. 12: 719. https://doi.org/10.3390/medicina56120719
APA StyleMuñoz-Aceituno, E., Martos-Cabrera, L., Ovejero-Benito, M. C., Reolid, A., Abad-Santos, F., & Daudén, E. (2020). Pharmacogenetics Update on Biologic Therapy in Psoriasis. Medicina, 56(12), 719. https://doi.org/10.3390/medicina56120719