Immunological Effects of a Single Hemodialysis Treatment
Abstract
:1. Introduction
2. Innate Immune Response During a Single Hemodialysis Treatment
2.1. Complement System
2.2. Cellular Components
3. Adaptive Immune Response during Hemodialysis Treatment
3.1. T Cells
3.2. B Cells
4. Possible Role of Hemodialysis in Early Stages of Kidney Transplant: Pro- or Anti-Tolerogenic Effects?
5. Single Hemodialysis Treatment and Immune System: Current Knowledge and Future Insights
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Balagopal, P.B.; de Ferranti, S.D.; Cook, S.; Daniels, S.R.; Gidding, S.S.; Hayman, L.L.; McCrindle, B.W.; Mietus-Snyder, M.L.; Steinberger, J. American Heart Association Committee on Atherosclerosis H. Nontraditional risk factors and biomarkers for cardiovascular disease: Mechanistic, research, and clinical considerations for youth: A scientific statement from the American Heart Association. Circulation 2011, 123, 2749–2769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaziri, N.D.; Pahl, M.V.; Crum, A.; Norris, K. Effect of uremia on structure and function of immune system. J. Ren. Nutr. 2012, 22, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betjes, M.G.; Meijers, R.W.; Litjens, N.H. Loss of renal function causes premature aging of the immune system. Blood Purif. 2013, 36, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.S.; Evans, C.V.; Johnson, E.; Redmond, N.; Coppola, E.L.; Smith, N. Nontraditional Risk Factors in Cardiovascular Disease Risk Assessment: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2018, 320, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Xiang, F.F.; Zhu, J.M.; Cao, X.S.; Shen, B.; Zou, J.Z.; Liu, Z.H.; Zhang, H.; Teng, J.; Liu, H.; Ding, X.Q. Lymphocyte depletion and subset alteration correlate to renal function in chronic kidney disease patients. Ren. Fail 2016, 38, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Stefoni, S.; Cianciolo, G.; Donati, G.; Dormi, A.; Silvestri, M.G.; Coli, L.; De Pascalis, A.; Iannelli, S. Low TGF-beta1 serum levels are a risk factor for atherosclerosis disease in ESRD patients. Kidney Int. 2002, 61, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Sharif, M.R.; Chitsazian, Z.; Moosavian, M.; Raygan, F.; Nikoueinejad, H.; Sharif, A.R.; Einollahi, B. Immune disorders in hemodialysis patients. Iran. J. Kidney Dis. 2015, 9, 84–96. [Google Scholar]
- Cheung, C.Y.; Chan, G.C.; Chan, S.K.; Ng, F.; Lam, M.F.; Wong, S.S.; Chak, W.L.; Chau, K.F.; Lui, S.L.; Lo, W.K.; et al. Cancer Incidence and Mortality in Chronic Dialysis Population: A Multicenter Cohort Study. Am. J. Nephrol. 2016, 43, 153–159. [Google Scholar] [CrossRef]
- Cobo, G.; Lindholm, B.; Stenvinkel, P. Chronic inflammation in end-stage renal disease and dialysis. Nephrol Dial Transpl. 2018, 33, iii35–iii40. [Google Scholar] [CrossRef] [Green Version]
- Litjens, N.H.; Huisman, M.; van den Dorpel, M.; Betjes, M.G. Impaired immune responses and antigen-specific memory CD4+ T cells in hemodialysis patients. J. Am. Soc. Nephrol. 2008, 19, 1483–1490. [Google Scholar] [CrossRef] [Green Version]
- Liakopoulos, V.; Jeron, A.; Shah, A.; Bruder, D.; Mertens, P.R.; Gorny, X. Hemodialysis-related changes in phenotypical features of monocytes. Sci. Rep. 2018, 8, 13964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, J.W.; Gollapudi, S.; Pahl, M.V.; Vaziri, N.D. Naive and central memory T-cell lymphopenia in end-stage renal disease. Kidney Int. 2006, 70, 371–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betjes, M.G.; Huisman, M.; Weimar, W.; Litjens, N.H. Expansion of cytolytic CD4+CD28- T cells in end-stage renal disease. Kidney Int. 2008, 74, 760–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meijers, R.W.; Litjens, N.H.; de Wit, E.A.; Langerak, A.W.; van der Spek, A.; Baan, C.C.; Weimar, W.; Betjes, M.G. Uremia causes premature ageing of the T cell compartment in end-stage renal disease patients. Immun. Ageing 2012, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Fisher, M.; Golestaneh, L.; Allon, M.; Abreo, K.; Mokrzycki, M.H. Prevention of Bloodstream Infections in Patients Undergoing Hemodialysis. Clin. J. Am. Soc. Nephrol. 2019, 56, 566–577. [Google Scholar]
- Mathew, R.; Mason, D.; Kennedy, J.S. Vaccination issues in patients with chronic kidney disease. Expert Rev. Vaccines 2014, 13, 285–298. [Google Scholar] [CrossRef]
- Walport, M.J. Complement. First of two parts. N. Engl. J. Med. 2001, 344, 1058–1066. [Google Scholar] [CrossRef]
- Walport, M.J. Complement. Second of two parts. N. Engl. J. Med. 2001, 344, 1140–1144. [Google Scholar] [CrossRef]
- Angeletti, A.; Reyes-Bahamonde, J.; Cravedi, P.; Campbell, K.N. Complement in Non-Antibody-Mediated Kidney Diseases. Front. Med. 2017, 4, 99. [Google Scholar] [CrossRef] [Green Version]
- Ricklin, D.; Hajishengallis, G.; Yang, K.; Lambris, J.D. Complement: A key system for immune surveillance and homeostasis. Nat. Immunol. 2010, 11, 785–797. [Google Scholar] [CrossRef] [Green Version]
- Craddock, P.R.; Fehr, J.; Brigham, K.L.; Kronenberg, R.S.; Jacob, H.S. Complement and leukocyte-mediated pulmonary dysfunction in hemodialysis. N. Engl. J. Med. 1977, 296, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.K.; Parker, C.J.; Wilcox, L.; Janatova, J. Activation of the alternative pathway of complement by cellulosic hemodialysis membranes. Kidney Int. 1989, 36, 257–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, A.K.; Parker, C.J.; Janatova, J.; Brynda, E. Modulation of complement activation on hemodialysis membranes by immobilized heparin. J. Am. Soc. Nephrol. 1992, 2, 1328–1337. [Google Scholar] [PubMed]
- Innes, A.; Farrell, A.M.; Burden, R.P.; Morgan, A.G.; Powell, R.J. Complement activation by cellulosic dialysis membranes. J. Clin. Pathol. 1994, 47, 155–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenkranz, A.R.; Kormoczi, G.F.; Thalhammer, F.; Menzel, E.J.; Horl, W.H.; Mayer, G.; Zlabinger, G.J. Novel C5-dependent mechanism of neutrophil stimulation by bioincompatible dialyzer membranes. J. Am. Soc. Nephrol. 1999, 10, 128–135. [Google Scholar] [PubMed]
- Mares, J.; Richtrova, P.; Hricinova, A.; Tuma, Z.; Moravec, J.; Lysak, D.; Matejovic, M. Proteomic profiling of blood-dialyzer interactome reveals involvement of lectin complement pathway in hemodialysis-induced inflammatory response. Proteom. Clin. Appl. 2010, 4, 829–838. [Google Scholar] [CrossRef]
- Mares, J.; Thongboonkerd, V.; Tuma, Z.; Moravec, J.; Matejovic, M. Specific adsorption of some complement activation proteins to polysulfone dialysis membranes during hemodialysis. Kidney Int. 2009, 76, 404–413. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, M.; Endo, Y.; Fujita, T. Cutting edge: Complement-activating complex of ficolin and mannose-binding lectin-associated serine protease. J. Immunol. 2000, 164, 2281–2284. [Google Scholar] [CrossRef] [Green Version]
- Poppelaars, F.; Gaya da Costa, M.; Berger, S.P.; Assa, S.; Meter-Arkema, A.H.; Daha, M.R.; van Son, W.J.; Franssen, C.F.; Seelen, M.A. Strong predictive value of mannose-binding lectin levels for cardiovascular risk of hemodialysis patients. J. Transl. Med. 2016, 14, 236. [Google Scholar] [CrossRef] [Green Version]
- Poppelaars, F.; Gaya da Costa, M.; Faria, B.; Berger, S.P.; Assa, S.; Daha, M.R.; Medina Pestana, J.O.; van Son, W.J.; Franssen, C.F.M.; Seelen, M.A. Intradialytic Complement Activation Precedes the Development of Cardiovascular Events in Hemodialysis Patients. Front. Immunol. 2018, 9, 2070. [Google Scholar] [CrossRef] [Green Version]
- Inoshita, H.; Ohsawa, I.; Kusaba, G.; Ishii, M.; Onda, K.; Horikoshi, S.; Ohi, H.; Tomino, Y. Complement in patients receiving maintenance hemodialysis: Functional screening and quantitative analysis. BMC Nephrol. 2010, 11, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girndt, M.; Sester, U.; Sester, M.; Kaul, H.; Kohler, H. Impaired cellular immune function in patients with end-stage renal failure. Nephrol. Dial Transpl. 1999, 14, 2807–2810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angeletti, A.; Cantarelli, C.; Cravedi, P. Immune responses towards bioengineered tissues and strategies to control them. Curr. Opin. Organ Transpl. 2019, 24, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cravedi, P.; Farouk, S.; Angeletti, A.; Edgar, L.; Tamburrini, R.; Duisit, J.; Perin, L.; Orlando, G. Regenerative immunology: The immunological reaction to biomaterials. Transpl. Int. 2017, 30, 1199–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, B.J. Cytokine production in patients on dialysis. Blood Purif. 1995, 13, 135–146. [Google Scholar] [CrossRef]
- Rysz, J.; Majewska, E.; Stolarek, R.A.; Banach, M.; Cialkowska-Rysz, A.; Baj, Z. Increased levels of soluble TNF-alpha receptors and cellular adhesion molecules in patients undergoing bioincompatible hemodialysis. Am. J. Nephrol. 2006, 26, 437–444. [Google Scholar] [CrossRef]
- Carracedo, J.; Ramirez, R.; Martin-Malo, A.; Rodriguez, M.; Aljama, P. Nonbiocompatible hemodialysis membranes induce apoptosis in mononuclear cells: The role of G-proteins. J. Am. Soc. Nephrol. 1998, 9, 46–53. [Google Scholar]
- Merino, A.; Nogueras, S.; Buendia, P.; Ojeda, R.; Carracedo, J.; Ramirez-Chamond, R.; Martin-Malo, A.; Aljama, P. Microinflammation and endothelial damage in hemodialysis. Contrib. Nephrol. 2008, 161, 83–88. [Google Scholar]
- Springer, T.A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 1995, 57, 827–872. [Google Scholar] [CrossRef]
- Ramirez, R.; Carracedo, J.; Merino, A.; Soriano, S.; Ojeda, R.; Alvarez-Lara, M.A.; Martin-Malo, A.; Aljama, P. CD14+CD16+ monocytes from chronic kidney disease patients exhibit increased adhesion ability to endothelial cells. Contrib. Nephrol. 2011, 171, 57–61. [Google Scholar]
- Merino, A.; Portoles, J.; Selgas, R.; Ojeda, R.; Buendia, P.; Ocana, J.; Bajo, M.A.; del Peso, G.; Carracedo, J.; Ramirez, R.; et al. Effect of different dialysis modalities on microinflammatory status and endothelial damage. Clin. J. Am. Soc. Nephrol. 2010, 5, 227–234. [Google Scholar] [CrossRef] [Green Version]
- De Sa, H.M.; Freitas, L.A.; Alves, V.C.; Garcao, M.F.; Rosa, M.A.; Marques, A.A. Leukocyte, platelet and endothelial activation in patients with acute renal failure treated by intermittent hemodialysis. Am. J. Nephrol. 2001, 21, 264–273. [Google Scholar] [CrossRef]
- Kosch, M.; Levers, A.; Fobker, M.; Barenbrock, M.; Schaefer, R.M.; Rahn, K.H.; Hausberg, M. Dialysis filter type determines the acute effect of haemodialysis on endothelial function and oxidative stress. Nephrol. Dial Transpl. 2003, 18, 1370–1375. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Miguel, P.; de Sequera, P.; Molina, A.; Oviedo, V.; Grande, J.; Escaja, C.; Diaz, H.; Abreu, E.; Asensio, M.; Rodriguez-Puyol, D.; et al. Influence of polysulphone-derived dialysis membranes on the interaction of circulating mononuclear cells with the endothelium. Int. J. Artif. Organs 2014, 37, 455–465. [Google Scholar] [CrossRef]
- Coli, L.; Donati, G.; Cappuccilli, M.L.; Cianciolo, G.; Comai, G.; Cuna, V.; Carretta, E.; La Manna, G.; Stefoni, S. Role of the hemodialysis vascular access type in inflammation status and monocyte activation. Int. J. Artif. Organs 2011, 34, 481–488. [Google Scholar] [CrossRef]
- Oliver, M.J.; Mendelssohn, D.C.; Quinn, R.R.; Richardson, E.P.; Rajan, D.K.; Pugash, R.A.; Hiller, J.A.; Kiss, A.J.; Lok, C.E. Catheter patency and function after catheter sheath disruption: A pilot study. Clin. J. Am. Soc. Nephrol. 2007, 2, 1201–1206. [Google Scholar] [CrossRef] [Green Version]
- Angeletti, A.; Biondi, R.; Battaglino, G.; Cremonini, E.; Comai, G.; Capelli, I.; Donati, G.; Cevenini, R.; Donati, M.; La Manna, G. Seroprevalence of a “new” bacterium, Simkania negevensis, in renal transplant recipients and in hemodialysis patients. BMC Nephrol. 2017, 18, 133. [Google Scholar] [CrossRef]
- Penne, E.L.; Visser, L.; van den Dorpel, M.A.; van der Weerd, N.C.; Mazairac, A.H.; van Jaarsveld, B.C.; Koopman, M.G.; Vos, P.; Feith, G.W.; Kremer Hovinga, T.K.; et al. Microbiological quality and quality control of purified water and ultrapure dialysis fluids for online hemodiafiltration in routine clinical practice. Kidney Int. 2009, 76, 665–672. [Google Scholar] [CrossRef] [Green Version]
- Bossola, M.; Sanguinetti, M.; Scribano, D.; Zuppi, C.; Giungi, S.; Luciani, G.; Torelli, R.; Posteraro, B.; Fadda, G.; Tazza, L. Circulating bacterial-derived DNA fragments and markers of inflammation in chronic hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2009, 4, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Cianciolo, G.; Colí, L.; La Manna, G.; Donati, G.; D’Addio, F.; Comai, G.; Ricci, D.; Dormi, A.; Wratten, M.; Feliciangeli, G.; et al. Is beta2-microglobulin-related amyloidosis of hemodialysis patients a multifactorial disease? A new pathogenetic approach. Int. J. Artif. Organs 2007, 30, 864–878. [Google Scholar] [CrossRef]
- Di Iorio, B.; Di Micco, L.; Bruzzese, D.; Nardone, L.; Russo, L.; Formisano, P.; D’Esposito, V.; Russo, D. Ultrapure dialysis water obtained with additional ultrafilter may reduce inflammation in patients on hemodialysis. J. Nephrol. 2017, 30, 795–801. [Google Scholar] [CrossRef] [Green Version]
- Kwan, B.C.; Chow, K.M.; Ma, T.K.; Cheng, P.M.; Leung, C.B.; Li, P.K.; Szeto, C.C. Effect of using ultrapure dialysate for hemodialysis on the level of circulating bacterial fragment in renal failure patients. Nephron Clin. Pract. 2013, 123, 246–253. [Google Scholar] [CrossRef]
- Libetta, C.; Sepe, V.; Dal Canton, A. Bio-incompatibility and Th2 polarization during regular dialysis treatment. Int. Rev. Immunol. 2010, 29, 608–625. [Google Scholar] [CrossRef]
- Winterberg, P.D.; Ford, M.L. The effect of chronic kidney disease on T cell alloimmunity. Curr. Opin. Organ Transpl. 2017, 22, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Mansouri, L.; Nopp, A.; Jacobson, S.H.; Hylander, B.; Lundahl, J. Hemodialysis Patients Display a Declined Proportion of Th2 and Regulatory T Cells in Parallel with a High Interferon-gamma Profile. Nephron 2017, 136, 254–260. [Google Scholar] [CrossRef]
- Lisowska, K.A.; Pindel, M.; Pietruczuk, K.; Kuzmiuk-Glembin, I.; Storoniak, H.; Debska-Slizien, A.; Witkowski, J.M. The influence of a single hemodialysis procedure on human T lymphocytes. Sci. Rep. 2019, 9, 5041. [Google Scholar] [CrossRef] [Green Version]
- Borges, A.; Borges, M.; Fernandes, J.; Nascimento, H.; Sameiro-Faria, M.; Miranda, V.; Reis, F.; Belo, L.; Costa, E.; Santos-Silva, A. Apoptosis of peripheral CD4(+) T-lymphocytes in end-stage renal disease patients under hemodialysis and rhEPO therapies. Ren. Fail 2011, 33, 138–143. [Google Scholar] [CrossRef]
- Lisowska, K.A.; Debska-Slizien, A.; Jasiulewicz, A.; Jozwik, A.; Rutkowski, B.; Bryl, E.; Witkowski, J.M. Flow cytometric analysis of STAT5 phosphorylation and CD95 expression in CD4+ T lymphocytes treated with recombinant human erythropoietin. J. Recept. Signal Transduct. Res. 2011, 31, 241–246. [Google Scholar] [CrossRef]
- Cravedi, P.; Manrique, J.; Hanlon, K.E.; Reid-Adam, J.; Brody, J.; Prathuangsuk, P.; Mehrotra, A.; Heeger, P.S. Immunosuppressive effects of erythropoietin on human alloreactive T cells. J. Am. Soc. Nephrol. 2014, 25, 2003–2015. [Google Scholar] [CrossRef]
- Todosenko, N.M.; Shmarov, V.A.; Malashchenko, V.V.; Meniailo, M.E.; Melashchenko, O.B.; Gazatova, N.D.; Goncharov, A.G.; Seledtsov, V.I. Erythropoietin exerts direct immunomodulatory effects on the cytokine production by activated human T-lymphocytes. Int. Immunopharmacol. 2016, 36, 277–281. [Google Scholar] [CrossRef]
- Purroy, C.; Fairchild, R.L.; Tanaka, T.; Baldwin, W.M.; Manrique, J.; Madsen, J.C.; Colvin, R.B.; Alessandrini, A.; Blazar, B.R.; Fribourg, M.; et al. Erythropoietin Receptor-Mediated Molecular Crosstalk Promotes T Cell Immunoregulation and Transplant Survival. J. Am. Soc. Nephrol. 2017, 28, 2377–2392. [Google Scholar] [CrossRef] [Green Version]
- Cantarelli, C.; Angeletti, A.; Cravedi, P. Erythropoietin, a multifaceted protein with innate and adaptive immune modulatory activity. Am. J. Transpl. 2019. [Google Scholar] [CrossRef]
- Donadei, C.; Angeletti, A.; Cantarelli, C.; D’Agati, V.D.; La Manna, G.; Fiaccadori, E.; Horwitz, J.K.; Xiong, H.; Guglielmo, C.; Hartzell, S.; et al. Erythropoietin inhibits SGK1-dependent TH17 induction and TH17-dependent kidney disease. JCI Insight. 2019, 4, e127428. [Google Scholar] [CrossRef]
- Guglielmo, C.; Cantarelli, C.; Angeletti, A.; Todeschini, P.; Cravedi, P. Non erythropoietic effects of Erythropoietin. G. Ital. Nefrol. 2019, 36, 64–70. [Google Scholar]
- Litjens, N.H.; de Wit, E.A.; Betjes, M.G. Differential effects of age, cytomegalovirus-seropositivity and end-stage renal disease (ESRD) on circulating T lymphocyte subsets. Immun. Ageing 2011, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Litjens, N.H.; van Druningen, C.J.; Betjes, M.G. Progressive loss of renal function is associated with activation and depletion of naive T lymphocytes. Clin. Immunol. 2006, 118, 83–91. [Google Scholar] [CrossRef]
- Almeida, A.; Lourenco, O.; Fonseca, A.M. Haemodialysis in Diabetic Patients Modulates Inflammatory Cytokine Profile and T Cell Activation Status. Scand. J. Immunol. 2015, 82, 135–141. [Google Scholar] [CrossRef]
- Raskova, J.; Ghobrial, I.; Czerwinski, D.K.; Shea, S.M.; Eisinger, R.P.; Raska, K., Jr. B-cell activation and immunoregulation in end-stage renal disease patients receiving hemodialysis. Arch. Int. Med. 1987, 147, 89–93. [Google Scholar] [CrossRef]
- Pahl, M.V.; Gollapudi, S.; Sepassi, L.; Gollapudi, P.; Elahimehr, R.; Vaziri, N.D. Effect of end-stage renal disease on B-lymphocyte subpopulations, IL-7, BAFF and BAFF receptor expression. Nephrol. Dial Transpl. 2010, 25, 205–212. [Google Scholar] [CrossRef]
- Fernandez-Fresnedo, G.; Ramos, M.A.; Gonzalez-Pardo, M.C.; de Francisco, A.L.; Lopez-Hoyos, M.; Arias, M. B lymphopenia in uremia is related to an accelerated in vitro apoptosis and dysregulation of Bcl-2. Nephrol. Dial Transpl. 2000, 15, 502–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.W.; Chung, B.H.; Jeon, E.J.; Kim, B.M.; Choi, B.S.; Park, C.W.; Kim, Y.S.; Cho, S.G.; Cho, M.L.; Yang, C.W. B cell-associated immune profiles in patients with end-stage renal disease (ESRD). Exp. Mol. Med. 2012, 44, 465–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier-Kriesche, H.U.; Port, F.K.; Ojo, A.O.; Rudich, S.M.; Hanson, J.A.; Cibrik, D.M.; Leichtman, A.B.; Kaplan, B. Effect of waiting time on renal transplant outcome. Kidney Int. 2000, 58, 1311–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.T.; Liu, F.C.; Lin, J.R.; Pang, S.T.; Yu, H.P. Impact of the pretransplant dialysis modality on kidney transplantation outcomes: A nationwide cohort study. BMJ Open 2018, 8, e020558. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; Li, T.; Liu, H. A Comparison of Transplant Outcomes in Peritoneal and Hemodialysis Patients: A Meta-Analysis. Blood Purif. 2016, 42, 170–176. [Google Scholar] [CrossRef]
- Mai, K.; Boldt, A.; Hau, H.M.; Kirschfink, M.; Schiekofer, S.; Keller, F.; Beige, J.; Giannis, A.; Sack, U.; Rasche, F.M. Immunological Alterations due to Hemodialysis Might Interfere with Early Complications in Renal Transplantation. Anal. Cell Pathol. 2019, 2019, 8389765. [Google Scholar] [CrossRef] [Green Version]
- Joachim, E.; Gardezi, A.I.; Chan, M.R.; Shin, J.I.; Astor, B.C.; Waheed, S. Association of Pre-Transplant Dialysis Modality and Post-Transplant Outcomes: A Meta-Analysis. Perit Dial Int. 2017, 37, 259–265. [Google Scholar] [CrossRef]
- Piccoli, G.B.; Nielsen, L.; Gendrot, L.; Fois, A.; Cataldo, E.; Cabiddu, G. Prescribing Hemodialysis or Hemodiafiltration: When One Size Does Not Fit All the Proposal of a Personalized Approach Based on Comorbidity and Nutritional Status. J. Clin. Med. 2018, 7, 331. [Google Scholar] [CrossRef] [Green Version]
- Kooman, J.P.; Usvyat, L.A.; Dekker, M.J.; Maddux, D.W.; Raimann, J.G.; van der Sande, F.M.; Ye, X.; Wang, Y.; Kotanko, P. Cycles, Arrows and Turbulence: Time Patterns in Renal Disease, a Path from Epidemiology to Personalized Medicine? Blood Purif. 2019, 47, 171–184. [Google Scholar] [CrossRef]
- Ronco, C.; La Manna, G. Expanded Hemodialysis: A New Therapy for a New Class of Membranes. Contrib Nephrol. 2017, 190, 124–133. [Google Scholar]
Reference | Study Design | Patients | Endpoints | Results |
---|---|---|---|---|
Innate Immunity | ||||
Craddock PR, 1977 | Observational prospective | 34 hemodialysis patients with leukopenia during hemodialysis sessions | Detection of mechanisms for acute pulmonary dysfunction reported in the first hour of hemodialysis with cellophane membranes | 15/34 had impaired pulmonary function with transient neutropenia and reduction of monocytes during the first hour of hemodialysis sessions with activation of C3 and factor B |
Mares J, 2010 | Observational prospective | 16 hemodialysis patients with polysulfone dialyzers | Leukocyte counts and complement components levels were monitored during hemodialysis in serum and equates | C3c, ficolin-2, mannan-binding lectin serine proteases, and properdin were enriched in equates and decreased in serum. |
Poppelaars F, 2018 | Observational prospective | 55 hemodialysis patients | To correlate cardiovascular event with plasma levels of MBL, properdin, and C3d/C3 ratio | Lower levels of MBL and properdin in patient cardiovascular events |
Adaptive Immunity | ||||
Borges A, 2011 | Cross-sectional | 47 hemodialysis patients (12 evaluated before and after hemodialysis sessions) | Characterization of T lymphocyte phenotype and apoptosis | The hemodialysis procedure contributed to the development of T-cell lymphopenia, at least in part, by apoptosis induction of CD8+ T cells |
Martinez-Miguel P, 2014 | Observational prospective | 30 hemodialysis patients with high-flux polymers | To evaluate monocyte activation | No change after a single hemodialysis treatment |
Almeida A, 2015 | Observational prospective | 17 hemodialysis and diabetic patients | To assess the expression of T cell activation markers and quantify inflammatory cytokines before and after a single hemodialysis session | CD25+ cells and CD8+ CD25+ increased significantly, while CD69 T cells and CD4+ CD25+ significantly decreased after the hemodialysis session |
Lisowska KA, 2019 | Observational prospective | 14 hemodialysis patients | To investigate the effect of the single hemodialysis session on T lymphocyte subsets | Increased CD4+/CD8+ ratio as a consequence of the reduction of CD8+ T |
Mai K, 2019 | Observational prospective | 15 ESRD patients receiving hemodialysis treatment before renal transplant | Alterations of adaptive immune response to polynephron membrane | During the first hour there was an increase in CD4+ T cells and activated CD4+ HLA-DR+ T cells, with a decrease of CD8+ T cells and CD8+ HLA-DR+ T cells |
Normal | Diabetes Albumin < 4 gr% | Diabetes Albumin < 4 gr% Cardiac Disease Hypotension | Allergies | |
---|---|---|---|---|
HD Technique | HD low/high flux | HD high flux | On-line HDF (convection target > 20 L/session) | High Flux HD On-line HDF (convection target > 20 L/session) |
Dialyzer | Synthetic | Synthetic | Synthetic | Bisfenol-free PVP-free |
Dialysate flow | 500 mL/min | 500 mL/min | 500 mL/min | 500 mL/min |
Dialysate composition | Na+ 140 mEq/L K+ 2.5–3 mEq/L Ca++ 1.5 mmol/L | Na+ 140 mEq/L K+ 2.5–3 mEq/L Ca++ 1.5 mmol/L | Na+ 140 mEq/L K+ 2.5–3 mEq/L Ca++ 1.5 mmol/L | Na+ 140 mEq/L K+ 2.5–3 mEq/L Ca++ 1.5 mmol/L |
Ultrafiltration rate | max 10 mL/kg/hour | max 10 mL/kg/hour | max 10 mL/kg/hour | max 10 mL/kg/hour |
Anticoagulation | LMWH | LMWH | LMWH | LMWH |
Length (according to clinical status) | 210-270 min | 210-270 min | 210-270 min | 210-270 min |
Rhythm (according to clinical status) | 1->2->3->4 times/week | 1->2->3->4 times/week | 1->2->3->4 times/week | 1->2->3->4 times/week |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angeletti, A.; Zappulo, F.; Donadei, C.; Cappuccilli, M.; Di Certo, G.; Conte, D.; Comai, G.; Donati, G.; La Manna, G. Immunological Effects of a Single Hemodialysis Treatment. Medicina 2020, 56, 71. https://doi.org/10.3390/medicina56020071
Angeletti A, Zappulo F, Donadei C, Cappuccilli M, Di Certo G, Conte D, Comai G, Donati G, La Manna G. Immunological Effects of a Single Hemodialysis Treatment. Medicina. 2020; 56(2):71. https://doi.org/10.3390/medicina56020071
Chicago/Turabian StyleAngeletti, Andrea, Fulvia Zappulo, Chiara Donadei, Maria Cappuccilli, Giulia Di Certo, Diletta Conte, Giorgia Comai, Gabriele Donati, and Gaetano La Manna. 2020. "Immunological Effects of a Single Hemodialysis Treatment" Medicina 56, no. 2: 71. https://doi.org/10.3390/medicina56020071
APA StyleAngeletti, A., Zappulo, F., Donadei, C., Cappuccilli, M., Di Certo, G., Conte, D., Comai, G., Donati, G., & La Manna, G. (2020). Immunological Effects of a Single Hemodialysis Treatment. Medicina, 56(2), 71. https://doi.org/10.3390/medicina56020071