State of the Art in Fertility Preservation for Female Patients Prior to Oncologic Therapies
Abstract
:1. Introduction
2. Current Fertility Preservation Methods
3. New Techniques of Fertility Preservation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Armuand, G.M.; Rodriguez-Wallberg, K.A.; Wettergren, L.; Ahlgren, J.; Enblad, G.; Höglund, M.; Lampic, C. Sex differences in fertility-related information received by young adult cancer survivors. J. Clin. Oncol. 2012, 30, 2147–2153. [Google Scholar] [CrossRef]
- Petru, E. MaligneTumoren der Mamma: Fertilität, Kontrazeption und Hormonersatz. In Praxisbuch Gynäkologische Onkologie; Petru, E., Fink, D., Köchli, O.R., Loibl, S., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2019; pp. 33–38. [Google Scholar]
- Mehedintu, C.; Bratila, E.; Berceanu, C.; Cirstoiu, M.M.; Barac, R.I.; Andreescu, C.V.; Badiu, D.C.; Gales, L.; Zgura, A.; Bumbu, A.G. Comparison of Tumor - Infiltrating Lymphocytes Between Primary and Metastatic Tumors in Her2+and HER2-Breast Cancer Patients. Rev. Chim. Buchar. 2018, 69, 4033–4037. [Google Scholar] [CrossRef]
- Hankey, B.F.; Miller, B.; Curtis, R.; Kosary, C. Trends in breast cancer in younger women in contrast to older women. J. Natl. Cancer. Inst. Monogr. 1994, 16, 7–14. [Google Scholar]
- Voinea, O.C.; Sajin, M.; Dumitru, A.V.; Patrascu, O.M.; Georgescu, T.A.; Cirstoiu, M.M.; Jinga, D.C.; Nica, A.E. Emerging concepts regarding the molecular profile of breast carcinoma: One-year experience in a University Center. Rom. J. Mil. Med. 2018, 121, 17–24. [Google Scholar]
- Jemal, A.; Tiwari, R.C.; Murray, T.; Ghafoor, A.; Samuels, A.; Ward, E.; Feuer, E.J.; Thun, M.J.; American Cancer Society. Cancer statistics, 2004. CA Cancer J. Clin. 2004, 54, 8–29. [Google Scholar] [CrossRef]
- Hankey, B.F.; Ries, L.A.; Edwards, B.K. The surveillance, epidemiology, and end results program: A national resource. Cancer Epidemiol. Biomark. Prev. 1999, 8, 1117–1121. [Google Scholar]
- Zgura, A.; Gales, L.; Haineala, B.; Bratila, E.; Mehedintu, C.; Andreescu, C.V.; Berceanu, C.; Petca, A.; Barac, R.I.; Ionescu, A.; et al. Correlations Between Known Prognostic Markers and Tumor - infiltrating Lymphocytes in Breast Cancer. Rev. Chim. Buchar. 2019, 70, 2362–2366. [Google Scholar] [CrossRef]
- Anders, C.K.; Hsu, D.S.; Broadwater, G.; Acharya, C.R.; Foekens, J.A.; Zhang, Y.; Wang, Y.; Marcom, P.K.; Marks, J.R.; Febbo, P.G.; et al. Young age at diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared patterns of gene expression. J. Clin. Oncol. 2008, 26, 3324–3330. [Google Scholar] [CrossRef] [Green Version]
- McGuire, S. World Cancer Report 2014; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Pagani, O.; Partridge, A.; Korde, L.; Badve, S.; Bartlett, J.; Albain, K.; Gelber, R.; Goldhirsch, A.; Breast International Group; North American Breast Cancer Group; et al. Pregnancy after breast cancer: If you wish, ma’am. Breast Cancer Res. Treat. 2011, 129, 309–317. [Google Scholar] [CrossRef]
- Logan, S.; Perz, J.; Ussher, J.M.; Peate, M.; Anazodo, A. Systematic review of fertility-related psychological distress in cancer patients: Informing on an improved model of care. Psycho. Oncol. 2019, 28, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Monte, L.M.; Ellis, R.R. Fertility of women in the United States: 2012. Econ 2014, 24, 1071–1100. [Google Scholar]
- Te Velde, E.R.; Pearson, P.L. The variability of female reproductive ageing. Hum. Reprod. Update 2002, 8, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.; Themmen, A.; Al-Qahtani, A.; Groome, N.; Cameron, D. The effects of chemotherapy and long-term gonadotrophin suppression on the ovarian reserve in premenopausal women with breast cancer. Hum. Reprod. 2006, 21, 2583–2592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chemaitilly, W.; Mertens, A.C.; Mitby, P.; Whitton, J.; Stovall, M.; Yasui, Y.; Robison, L.L.; Sklar, C.A. Acute ovarian failure in the childhood cancer survivor study. J. Clin. Endocrinol. Metab. 2006, 91, 1723–1728. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, P.J.; Ennis, M.; Pritchard, K.I.; Trudeau, M.; Hood, N. Risk of menopause during the first year after breast cancer diagnosis. J. Clin. Oncol. 1999, 17, 2365–2370. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, R.; Heytens, E.; Darzynkiewicz, Z.; Oktay, K. Mechanisms of chemotherapy-induced human ovarian aging: Double strand DNA breaks and microvascular compromise. Aging Albany NY 2011, 3, 782–793. [Google Scholar] [CrossRef] [Green Version]
- Moore, H.C.; Unger, J.M.; Phillips, K.-A.; Boyle, F.; Hitre, E.; Porter, D.; Francis, P.A.; Goldstein, L.J.; Gomez, H.L.; Vallejos, C.S.; et al. Goserelin for ovarian protection during breast-cancer adjuvant chemotherapy. N. Engl. J. Med. 2015, 372, 923–932. [Google Scholar] [CrossRef] [Green Version]
- Oktay, K.; Harvey, B.E.; Loren, A.W. Fertility preservation in patients with cancer: ASCO clinical practice guideline update summary. J. Oncol. Pract. 2018, 14, 381–385. [Google Scholar] [CrossRef]
- Wong, K.M.; Mastenbroek, S.; Repping, S. Cryopreservation of human embryos and its contribution to in vitro fertilization success rates. Fertil. Steril. 2014, 102, 19–26. [Google Scholar] [CrossRef]
- Haouzi, D.; Assou, S.; Mahmoud, K.; Tondeur, S.; Rème, T.; Hedon, B.; De Vos, J.; Hamamah, S. Gene expression profile of human endometrial receptivity: Comparison between natural and stimulated cycles for the same patients. Hum. Reprod. 2009, 24, 1436–1445. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.M.; van Wely, M.; Mol, F.; Repping, S.; Mastenbroek, S. Fresh versus frozen embryo transfers in assisted reproduction. Cochrane Database Syst. Rev. 2017, 3, CD011184. [Google Scholar] [CrossRef] [PubMed]
- European IVF-Monitoring Consortium (EIM); European Society of Human Reproduction and Embryology (ESHRE); Kupka, M.S.; D’Hooghe, T.; Ferraretti, A.P.; de Mouzon, J.; Erb, K.; Castilla, J.A.; Calhaz-Jorge, C.; De Geyter, C.H.; et al. Assisted reproductive technology in Europe, 2011: Results generated from European registers by ESHRE. Hum. Reprod. 2016, 31, 233–248. [Google Scholar] [PubMed] [Green Version]
- Liseth, K.; Foss Abrahamsen, J.; Bjørsvik, S.; Grøttebø, K.; Bruserud, Ø. The viability of cryopreserved PBPC depends on the DMSO concentration and the concentration of nucleated cells in the graft. Cytotherapy 2005, 7, 328–333. [Google Scholar] [CrossRef]
- Fowler, A.; Toner, M. Cryo-injury and biopreservation. Ann. N. Y. Acad. Sci. 2006, 1066, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Vajta, G.; Nagy, Z.P. Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod. Biomed. Online 2006, 12, 779–796. [Google Scholar] [CrossRef]
- Kuwayama, M.; Vajta, G.; Kato, O.; Leibo, S.P. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod. Biomed. Online 2005, 11, 300–308. [Google Scholar] [CrossRef]
- Vajta, G.; Rienzi, L.; Ubaldi, F.M. Open versus closed systems for vitrification of human oocytes and embryos. Reprod. Biomed. Online 2015, 30, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Jin, B.; Mazur, P. High survival of mouse oocytes/embryos after vitrification without permeating cryoprotectants followed by ultra-rapid warming with an IR laser pulse. Sci. Rep. 2015, 5, 9271. [Google Scholar] [CrossRef] [Green Version]
- Darwish, E.; Magdi, Y. Artificial shrinkage of blastocoel using a laser pulse prior to vitrification improves clinical outcome. J. Assist. Reprod. Genet. 2016, 33, 467–471. [Google Scholar] [CrossRef] [Green Version]
- Mazur, P. Principles of cryobiology. In Life in the Frozen State; Fuller, B.J., Lane, N., Benson, E.E., Eds.; CRC press: Boca Raton, FL, USA, 2004; pp. 3–65. [Google Scholar]
- Ramløv, H.; Wharton, D.A.; Wilson, P.W. Recrystallization in a freezing tolerant Antarctic nematode, Panagrolaimusdavidi, and an alpine weta, Hemideinamaori (Orthoptera; Stenopelmatidae). Cryobiology 1996, 33, 607–613. [Google Scholar] [CrossRef]
- Dashnau, J.; Vanderkooi, J. Computational approaches to investigate how biological macromolecules can be protected in extreme conditions. J. Food Sci. 2007, 72, R001–R010. [Google Scholar] [CrossRef]
- Chaytor, J.L.; Tokarew, J.M.; Wu, L.K.; Leclère, M.; Tam, R.Y.; Capicciotti, C.J.; Guolla, L.; von Moos, E.; Findlay, C.S.; Allan, D.S.; et al. Inhibiting ice recrystallization and optimization of cell viability after cryopreservation. Glycobiology 2011, 22, 123–133. [Google Scholar] [CrossRef]
- Tam, R.Y.; Ferreira, S.S.; Czechura, P.; Chaytor, J.L.; Ben, R.N. Hydration Index-A Better Parameter for Explaining Small Molecule Hydration in Inhibition of Ice Recrystallization. J. Am. Chem. Soc. 2008, 130, 17494–17501. [Google Scholar] [CrossRef]
- Pereira, R.; Marques, C. Animal oocyte and embryo cryopreservation. Cell Tissue Bank. 2008, 9, 267–277. [Google Scholar] [CrossRef]
- Arav, A.; Zeron, Y.; Leslie, S.; Behboodi, E.; Anderson, G.; Crowe, J. Phase transition temperature and chilling sensitivity of bovine oocytes. Cryobiology 1996, 33, 589–599. [Google Scholar] [CrossRef]
- Chen, S.; Lien, Y.; Chao, K.; Ho, H.-N.; Yang, Y.; Lee, T. Effects of cryopreservation on meiotic spindles of oocytes and its dynamics after thawing: Clinical implications in oocyte freezing-a review article. Mol. Cell. Endocrinol. 2003, 202, 101–107. [Google Scholar] [CrossRef]
- AbdelHafez, F.; Xu, J.; Goldberg, J.; Desai, N. Vitrification in open and closed carriers at different cell stages: Assessment of embryo survival, development, DNA integrity and stability during vapor phase storage for transport. BMC Biotechnol. 2011, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Punyawai, K.; Anakkul, N.; Srirattana, K.; Aikawa, Y.; Sangsritavong, S.; Nagai, T.; Imai, K.; Parnpai, R. Comparison of Cryotop and micro volume air cooling methods for cryopreservation of bovine matured oocytes and blastocysts. J. Reprod. Dev. 2015, 61, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Practice Committees of American Society for Reproductive Medicine; Society for Assisted Reproductive Technology. Mature oocyte cryopreservation: A guideline. Fertil. Steril. 2013, 99, 37–43. [Google Scholar] [CrossRef]
- Patrizio, P.; Sakkas, D. From oocyte to baby: A clinical evaluation of the biological efficiency of in vitro fertilization. Fertil. Steril. 2009, 91, 1061–1066. [Google Scholar] [CrossRef]
- Isachenko, V.; Isachenko, E.; Weiss, J.M.; Todorov, P.; Kreienberg, R. Cryobanking of human ovarian tissue for anti-cancer treatment: Comparison of vitrification and conventional freezing. CryoLetters 2009, 30, 449–454. [Google Scholar]
- Klocke, S.; Bündgen, N.; Köster, F.; Eichenlaub-Ritter, U.; Griesinger, G. Slow-freezing versus vitrification for human ovarian tissue cryopreservation. Arch. Gynecol. Obstet. 2015, 291, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Xie, Y.; Wang, Y.; Li, S. Vitrification versus slow freezing for human ovarian tissue cryopreservation: A systematic review and meta-anlaysis. Sci. Rep. 2017, 7, 8538. [Google Scholar] [CrossRef] [PubMed]
- Silber, S. Unifying theory of adult resting follicle recruitment and fetal oocyte arrest. Reprod. Biomed. Online 2015, 31, 472–475. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Ogushi, S.; Kurimoto, K.; Shimamoto, S.; Ohta, H.; Saitou, M. Offspring from oocytes derived from in vitro primordial germ cell–like cells in mice. Science 2012, 338, 971–975. [Google Scholar] [CrossRef] [Green Version]
- Donnez, J.; Dolmans, M.-M. The ovary: From conception to death. Fertil. Steril. 2017, 108, 594–595. [Google Scholar] [CrossRef] [Green Version]
- Damásio, L.C.V.; Soares-Júnior, J.M.; Iavelberg, J.; Maciel, G.A.; de Jesus Simões, M.; dos Santos Simões, R.; da Motta, E.V.; Baracat, M.C.; Baracat, E.C. Heterotopic ovarian transplantation results in less apoptosis than orthotopic transplantation in a minipig model. J. Ovarian Res. 2016, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.-M.; Sheng, Y.; Cao, Y.-Z.; Wang, H.-Y.; Chen, Z.-J. Cryopreservation of whole ovaries with vascular pedicles: Vitrification or conventional freezing? J. Assist. Reprod. Genet. 2011, 28, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, K.; Cheng, Y.; Suzuki, N.; Deguchi, M.; Sato, Y.; Takae, S.; Ho, C.H.; Kawamura, N.; Tamura, M.; Hashimoto, S.; et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc. Natl. Acad. Sci. USA 2013, 110, 17474–17479. [Google Scholar] [CrossRef] [Green Version]
- Silber, S. How ovarian transplantation works and how resting follicle recruitment occurs: A review of results reported from one center. Women’s Health Lond 2016, 12, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Wallace, W.H.B.; Kelsey, T.W. Human ovarian reserve from conception to the menopause. PLoS ONE 2010, 5, e8772. [Google Scholar] [CrossRef] [Green Version]
- Tica, O.A.; Tica, O.; Antal, L.; Hatos, A.; Popescu, M.I.; Pantea Stoian, A.; Bratu, O.G.; Gaman, M.A.; Pituru, S.M.; Diaconu, C.C. Modern oral anticoagulant treatment in patients with atrial fibrillation and heart failure: Insights from the clinical practice. Farmacia 2018, 66, 972–976. [Google Scholar] [CrossRef]
- Faddy, M. Follicle dynamics during ovarian ageing. Mol. Cell. Endocrinol. 2000, 163, 43–48. [Google Scholar] [CrossRef]
- Ayuandari, S.; Winkler-Crepaz, K.; Paulitsch, M.; Wagner, C.; Zavadil, C.; Manzl, C.; Ziehr, S.C.; Wildt, L.; Hofer-Tollinger, S. Follicular growth after xenotransplantation of cryopreserved/thawed human ovarian tissue in SCID mice: Dynamics and molecular aspects. J. Assist. Reprod. Genet. 2016, 33, 1585–1593. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, K.; Kawamura, N.; Hsueh, A.J. Activation of dormant follicles: A new treatment for premature ovarian failure? Curr. Opin. Obstet. Gynecol. 2016, 28, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Gavish, Z.; Peer, G.; Hadassa, R.; Yoram, C.; Meirow, D. Follicle activation and ‘burn-out’contribute to post-transplantation follicle loss in ovarian tissue grafts: The effect of graft thickness. Hum. Reprod. 2014, 29, 989–996. [Google Scholar] [CrossRef] [Green Version]
- Meirow, D.; Roness, H.; Kristensen, S.G.; Andersen, C.Y. Optimizing outcomes from ovarian tissue cryopreservation and transplantation; activation versus preservation. Hum. Reprod. 2015, 30, 2453–2456. [Google Scholar] [CrossRef]
- Celik, S.; Celikkan, F.T.; Ozkavukcu, S.; Can, A.; Celik-Ozenci, C. Expression of inhibitor proteins that control primordial follicle reserve decreases in cryopreserved ovaries after autotransplantation. J. Assist. Reprod. Genet. 2018, 35, 615–626. [Google Scholar] [CrossRef]
- Dolmans, M.-M.; Cordier, F.; Amorim, C.A.; Donnez, J.; Vander Linden, C. In vitro activation prior to transplantation of human ovarian tissue: Is it truly effective? Front. Endocrinol. 2019, 10, 520. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, N.; Yoshioka, N.; Takae, S.; Sugishita, Y.; Tamura, M.; Hashimoto, S.; Morimoto, Y.; Kawamura, K. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum. Reprod. 2015, 30, 608–615. [Google Scholar] [CrossRef] [Green Version]
- Donnez, J.; Dolmans, M.-M. Fertility preservation in women. N. Engl. J. Med. 2017, 377, 1657–1665. [Google Scholar] [CrossRef]
- Xia, X.; Yin, T.; Yan, J.; Yan, L.; Jin, C.; Lu, C.; Wang, T.; Zhu, X.; Zhi, X.; Wang, J.; et al. Mesenchymal stem cells enhance angiogenesis and follicle survival in human cryopreserved ovarian cortex transplantation. Cell Transplant. 2015, 24, 1999–2010. [Google Scholar] [CrossRef] [Green Version]
- Andersen, C.Y.; Silber, S.J.; Berghold, S.H.; Jorgensen, J.S.; Ernst, E. Long-term duration of function of ovarian tissue transplants. Reprod. Biomed. Online 2012, 25, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Jensen, A.; Rechnitzer, C.; Macklon, K.; Ifversen, M.; Birkebæk, N.; Clausen, N.; Sørensen, K.; Fedder, J.; Ernst, E.; Yding Andersen, C. Cryopreservation of ovarian tissue for fertility preservation in a large cohort of young girls: Focus on pubertal development. Hum. Reprod. 2016, 32, 154–164. [Google Scholar] [CrossRef]
- Wilkosz, P.; Greggains, G.D.; Tanbo, T.G.; Fedorcsak, P. Female reproductive decline is determined by remaining ovarian reserve and age. PLoS ONE 2014, 9, e108343. [Google Scholar] [CrossRef] [Green Version]
- Rosendahl, M.; Simonsen, M.; Kjer, J. The influence of unilateral oophorectomy on the age of menopause. Climacteric 2017, 20, 540–544. [Google Scholar] [CrossRef]
- Andersen, C.Y.; Kristensen, S.G. Novel use of the ovarian follicular pool to postpone menopause and delay osteoporosis. Reprod. Biomed. Online 2015, 31, 128–131. [Google Scholar] [CrossRef] [Green Version]
- Yasui, T.; Hayashi, K.; Mizunuma, H.; Kubota, T.; Aso, T.; Matsumura, Y.; Lee, J.S.; Suzuki, S. Factors associated with premature ovarian failure, early menopause and earlier onset of menopause in Japanese women. Maturitas 2012, 72, 249–255. [Google Scholar] [CrossRef]
- Herraiz, S.; Romeu, M.; Buigues, A.; Martínez, S.; Díaz-García, C.; Gómez-Seguí, I.; Martinez, J.; Pellicer, N.; Pellicer, A. Autologous stem cell ovarian transplantation to increase reproductive potential in patients who are poor responders. Fertil. Steril. 2018, 110, 496–505. [Google Scholar] [CrossRef]
- Akahori, T.; Woods, D.C.; Tilly, J.L. Female Fertility Preservation through Stem Cell-based Ovarian Tissue Reconstitution in Vitro and Ovarian Regeneration in Vivo. Clin. Med. Insights Reprod. Health. 2019, 13, 1179558119848007. [Google Scholar] [CrossRef]
- Meng, Y.; Xu, Z.; Wu, F.; Chen, W.; Xie, S.; Liu, J.; Huang, X.; Zhou, Y. Sphingosine-1-phosphate suppresses cyclophosphamide induced follicle apoptosis in human fetal ovarian xenografts in nude mice. Fertil. Steril. 2014, 102, 871–877. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Turan, V.; Lierman, S.; Cuvelier, C.; De Sutter, P.; Oktay, K. Sphingosine-1-phosphate prevents chemotherapy-induced human primordial follicle death. Hum. Reprod. 2013, 29, 107–113. [Google Scholar] [CrossRef]
- Guzel, Y.; Bildik, G.; Dilege, E.; Oktem, O. Sphingosine-1-phosphate reduces atresia of primordial follicles occurring during slow-freezing and thawing of human ovarian cortical strips. Mol. Reprod. Dev. 2018, 85, 858–864. [Google Scholar] [CrossRef]
- Bedaiwy, M.A.; Hussein, M.R.; Biscotti, C.; Falcone, T. Cryopreservation of intact human ovary with its vascular pedicle. Hum. Reprod. 2006, 21, 3258–3269. [Google Scholar] [CrossRef] [Green Version]
- Nichols-Burns, S.M.; Lotz, L.; Schneider, H.; Adamek, E.; Daniel, C.; Stief, A.; Grigo, C.; Klump, D.; Hoffmann, I.; Beckmann, M.W.; et al. Preliminary observations on whole-ovary xenotransplantation as an experimental model for fertility preservation. Reprod. Biomed. Online 2014, 29, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Kara, M.; Daglioglu, Y.K.; Kuyucu, Y.; Tuli, A.; Tap, O. The effect of edaravone on ischemia–reperfusion injury in rat ovary. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 162, 197–202. [Google Scholar] [CrossRef]
- Brännström, M.; Milenkovic, M. Whole ovary cryopreservation with vascular transplantation–A future development in female oncofertility. Middle East. Fertil. Soc. J. 2010, 15, 125–138. [Google Scholar] [CrossRef]
- Maiani, E.; Di Bartolomeo, C.; Klinger, F.G.; Cannata, S.M.; Bernardini, S.; Chateauvieux, S.; Mack, F.; Mattei, M.; De Felici, M.; Diederich, M.; et al. Reply to: Cisplatin-induced primordial follicle oocyte killing and loss of fertility are not prevented by imatinib. Nat. Med. 2012, 18, 1172–1174. [Google Scholar] [CrossRef]
- Kerr, J.B.; Hutt, K.J.; Michalak, E.M.; Cook, M.; Vandenberg, C.J.; Liew, S.H.; Bouillet, P.; Mills, A.; Scott, C.L.; Findlay, J.K.; et al. DNA damage-induced primordial follicle oocyte apoptosis and loss of fertility require TAp63-mediated induction of Puma and Noxa. Mol. Cell 2012, 48, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Sonigo, C.; Beau, I.; Binart, N.; Grynberg, M. Anti-Müllerian hormone in fertility preservation: Clinical and therapeutic applications. Clin. Med. Insights Reprod. Health 2019, 13, 1179558119854755. [Google Scholar] [CrossRef]
- Laronda, M.M.; Rutz, A.L.; Xiao, S.; Whelan, K.A.; Duncan, F.E.; Roth, E.W.; Woodruff, T.K.; Shah, R.N. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat. Commun. 2017, 8, 15261. [Google Scholar] [CrossRef]
- Luyckx, V.; Dolmans, M.M.; Vanacker, J.; Legat, C.; Moya, C.F.; Donnez, J.; Amorim, C.A. A new step toward the artificial ovary: Survival and proliferation of isolated murine follicles after autologous transplantation in a fibrin scaffold. Fertil. Steril. 2014, 101, 1149–1156. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chibelean, C.B.; Petca, R.-C.; Radu, D.C.; Petca, A. State of the Art in Fertility Preservation for Female Patients Prior to Oncologic Therapies. Medicina 2020, 56, 89. https://doi.org/10.3390/medicina56020089
Chibelean CB, Petca R-C, Radu DC, Petca A. State of the Art in Fertility Preservation for Female Patients Prior to Oncologic Therapies. Medicina. 2020; 56(2):89. https://doi.org/10.3390/medicina56020089
Chicago/Turabian StyleChibelean, Călin Bogdan, Răzvan-Cosmin Petca, Dan Cristian Radu, and Aida Petca. 2020. "State of the Art in Fertility Preservation for Female Patients Prior to Oncologic Therapies" Medicina 56, no. 2: 89. https://doi.org/10.3390/medicina56020089
APA StyleChibelean, C. B., Petca, R. -C., Radu, D. C., & Petca, A. (2020). State of the Art in Fertility Preservation for Female Patients Prior to Oncologic Therapies. Medicina, 56(2), 89. https://doi.org/10.3390/medicina56020089