Traumatic Brain Injury and Stem Cells: An Overview of Clinical Trials, the Current Treatments and Future Therapeutic Approaches
Abstract
:1. Introduction
2. Traumatic Brain Injury
3. Stem Cells and Traumatic Brain Injury
4. Role of Stem Cell in Traumatic Brain Injury: Clinical Studies
4.1. Clinical Trials Recorded in Clinicaltrial Gov
4.2. Clinical Trials Approved by Local Ethics Committees
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 2018, 130, 1080–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arciniegas, D.B.; Held, K.; Wagner, P. Cognitive impairment following traumatic brain injury. Curr. Treat. Options Neurol. 2002, 4, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Irrera, N.; Pizzino, G.; Calo, M.; Pallio, G.; Mannino, F.; Fama, F.; Arcoraci, V.; Fodale, V.; David, A.; Francesca, C.; et al. Lack of the nlrp3 inflammasome improves mice recovery following traumatic brain injury. Front. Pharmacol. 2017, 8, 459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picetti, E.; Rossi, S.; Abu-Zidan, F.M.; Ansaloni, L.; Armonda, R.; Baiocchi, G.L.; Bala, M.; Balogh, Z.J.; Berardino, M.; Biffl, W.L.; et al. Wses consensus conference guidelines: Monitoring and management of severe adult traumatic brain injury patients with polytrauma in the first 24 h. World J. Emerg. Surg. WJES 2019, 14, 53. [Google Scholar] [CrossRef] [PubMed]
- Capizzi, A.; Woo, J.; Verduzco-Gutierrez, M. Traumatic brain injury: An overview of epidemiology, pathophysiology, and medical management. Med. Clin. N. Am. 2020, 104, 213–238. [Google Scholar] [CrossRef] [PubMed]
- Wakai, A.; McCabe, A.; Roberts, I.; Schierhout, G. Mannitol for acute traumatic brain injury. Cochrane Database Syst. Rev. 2013, 8, CD001049. [Google Scholar] [CrossRef]
- Mehta, R.; Trainee, G.P.; Chinthapalli, K.; Consultant, N. Glasgow coma scale explained. BMJ 2019, 365, l1296. [Google Scholar] [CrossRef]
- Lu, J.; Marmarou, A.; Lapane, K.; Turf, E.; Wilson, L.; Group, I.; American Brain Injury Consortium Study Participation Centers. A method for reducing misclassification in the extended glasgow outcome score. J. Neurotrauma 2010, 27, 843–852. [Google Scholar] [CrossRef] [Green Version]
- Galgano, M.; Toshkezi, G.; Qiu, X.; Russell, T.; Chin, L.; Zhao, L.R. Traumatic brain injury: Current treatment strategies and future endeavors. Cell Transplant. 2017, 26, 1118–1130. [Google Scholar] [CrossRef] [Green Version]
- Lozano, D.; Gonzales-Portillo, G.S.; Acosta, S.; de la Pena, I.; Tajiri, N.; Kaneko, Y.; Borlongan, C.V. Neuroinflammatory responses to traumatic brain injury: Etiology, clinical consequences, and therapeutic opportunities. Neuropsychiatr. Dis. Treat. 2015, 11, 97–106. [Google Scholar]
- Zhou, Y.; Shao, A.; Xu, W.; Wu, H.; Deng, Y. Advance of stem cell treatment for traumatic brain injury. Front. Cell. Neurosci. 2019, 13, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weston, N.M.; Sun, D. The potential of stem cells in treatment of traumatic brain injury. Curr. Neurol. Neurosci. Rep. 2018, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Werner, C.; Engelhard, K. Pathophysiology of traumatic brain injury. Br. J. Anaesth. 2007, 99, 4–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finfer, S.R.; Cohen, J. Severe traumatic brain injury. Resuscitation 2001, 48, 77–90. [Google Scholar] [CrossRef]
- Summers, C.R.; Ivins, B.; Schwab, K.A. Traumatic brain injury in the United States: An epidemiologic overview. Mt. Sinai J. Med. N. Y. 2009, 76, 105–110. [Google Scholar] [CrossRef]
- McKee, C.A.; Lukens, J.R. Emerging roles for the immune system in traumatic brain injury. Front. Immunol. 2016, 7, 556. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, A.G.; Alshboul, O.A. Pathophysiology of traumatic brain injury. Neurosciences 2013, 18, 222–234. [Google Scholar]
- Jalloh, I.; Carpenter, K.L.; Helmy, A.; Carpenter, T.A.; Menon, D.K.; Hutchinson, P.J. Glucose metabolism following human traumatic brain injury: Methods of assessment and pathophysiological findings. Metab. Brain Dis. 2015, 30, 615–632. [Google Scholar] [CrossRef] [Green Version]
- Hinzman, J.M.; Thomas, T.C.; Quintero, J.E.; Gerhardt, G.A.; Lifshitz, J. Disruptions in the regulation of extracellular glutamate by neurons and glia in the rat striatum two days after diffuse brain injury. J. Neurotrauma 2012, 29, 1197–1208. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Gu, Q.; Peterson, P.L.; Muizelaar, J.P.; Lee, C.P. Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J. Neurotrauma 1997, 14, 23–34. [Google Scholar] [CrossRef]
- Povlishock, J.T.; Kontos, H.A. The role of oxygen radicals in the pathobiology of traumatic brain injury. Hum. Cell 1992, 5, 345–353. [Google Scholar] [PubMed]
- Farkas, O.; Povlishock, J.T. Cellular and subcellular change evoked by diffuse traumatic brain injury: A complex web of change extending far beyond focal damage. Prog. Brain Res. 2007, 161, 43–59. [Google Scholar] [PubMed]
- Mashkouri, S.; Crowley, M.G.; Liska, M.G.; Corey, S.; Borlongan, C.V. Utilizing pharmacotherapy and mesenchymal stem cell therapy to reduce inflammation following traumatic brain injury. Neural Regen. Res. 2016, 11, 1379–1384. [Google Scholar] [CrossRef] [PubMed]
- Antonucci, I.; Pantalone, A.; Tete, S.; Salini, V.; Borlongan, C.V.; Hess, D.; Stuppia, L. Amniotic fluid stem cells: A promising therapeutic resource for cell-based regenerative therapy. Curr. Pharm. Des. 2012, 18, 1846–1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wislet-Gendebien, S.; Laudet, E.; Neirinckx, V.; Rogister, B. Adult bone marrow: Which stem cells for cellular therapy protocols in neurodegenerative disorders? J. Biomed. Biotechnol 2012, 2012, 601560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kukekov, V.G.; Laywell, E.D.; Suslov, O.; Davies, K.; Scheffler, B.; Thomas, L.B.; O’Brien, T.F.; Kusakabe, M.; Steindler, D.A. Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp. Neurol. 1999, 156, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.L.; Hu, Y.; Zhang, P.; Zhang, Z.; Li, L.H.; Gao, G.D.; Zhou, X.F.; Wang, T.H. Neural stem cell transplantation promotes functional recovery from traumatic brain injury via brain derived neurotrophic factor-mediated neuroplasticity. Mol. Neurobiol. 2018, 55, 2696–2711. [Google Scholar] [CrossRef]
- Haus, D.L.; Lopez-Velazquez, L.; Gold, E.M.; Cunningham, K.M.; Perez, H.; Anderson, A.J.; Cummings, B.J. Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury. Exp. Neurol. 2016, 281, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Meirelles, L.; Chagastelles, P.C.; Nardi, N.B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 2006, 119, 2204–2213. [Google Scholar] [CrossRef] [Green Version]
- Phinney, D.G.; Prockop, D.J. Concise review: Mesenchymal stem/multipotent stromal cells: The state of transdifferentiation and modes of tissue repair—Current views. Stem Cells 2007, 25, 2896–2902. [Google Scholar] [CrossRef]
- Le Blanc, K.; Tammik, C.; Rosendahl, K.; Zetterberg, E.; Ringden, O. Hla expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol. 2003, 31, 890–896. [Google Scholar] [CrossRef]
- Mahmood, A.; Lu, D.; Chopp, M. Intravenous administration of marrow stromal cells (mscs) increases the expression of growth factors in rat brain after traumatic brain injury. J. Neurotrauma 2004, 21, 33–39. [Google Scholar] [CrossRef]
- Hasan, A.; Deeb, G.; Rahal, R.; Atwi, K.; Mondello, S.; Marei, H.E.; Gali, A.; Sleiman, E. Mesenchymal stem cells in the treatment of traumatic brain injury. Front. Neurol. 2017, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Luo, Y.; Chen, L.; Liang, W. Safety of neural stem cell transplantation in patients with severe traumatic brain injury. Exp. Ther. Med. 2017, 13, 3613–3618. [Google Scholar] [CrossRef] [Green Version]
- Sekiya, I.; Larson, B.L.; Smith, J.R.; Pochampally, R.; Cui, J.G.; Prockop, D.J. Expansion of human adult stem cells from bone marrow stroma: Conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 2002, 20, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Andrews, E.M.; Tsai, S.Y.; Johnson, S.C.; Farrer, J.R.; Wagner, J.P.; Kopen, G.C.; Kartje, G.L. Human adult bone marrow-derived somatic cell therapy results in functional recovery and axonal plasticity following stroke in the rat. Exp. Neurol. 2008, 211, 588–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, H.; Xu, C.; Liu, Z.; Yang, L.; Hong, Y.; Liu, G.; Zhong, H.; Cai, X.; Lin, X.; Chen, X.; et al. Neural differentiation of bone marrow mesenchymal stem cells with human brain-derived neurotrophic factor gene-modified in functionalized self-assembling peptide hydrogel in vitro. J. Cell. Biochem. 2019, 120, 2828–2835. [Google Scholar] [CrossRef]
- Mahmood, A.; Lu, D.; Qu, C.; Goussev, A.; Chopp, M. Human marrow stromal cell treatment provides long-lasting benefit after traumatic brain injury in rats. Neurosurgery 2005, 57, 1026–1031. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, A.; Lu, D.; Qu, C.; Goussev, A.; Chopp, M. Long-term recovery after bone marrow stromal cell treatment of traumatic brain injury in rats. J. Neurosurg. 2006, 104, 272–277. [Google Scholar] [CrossRef]
- Romanov, Y.A.; Svintsitskaya, V.A.; Smirnov, V.N. Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate msc-like cells from umbilical cord. Stem Cells 2003, 21, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Zanier, E.R.; Montinaro, M.; Vigano, M.; Villa, P.; Fumagalli, S.; Pischiutta, F.; Longhi, L.; Leoni, M.L.; Rebulla, P.; Stocchetti, N.; et al. Human umbilical cord blood mesenchymal stem cells protect mice brain after trauma. Crit. Care Med. 2011, 39, 2501–2510. [Google Scholar] [CrossRef] [PubMed]
- Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001, 7, 211–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemi, N. Transdifferentiation of human adipose-derived mesenchymal stem cells into oligodendrocyte progenitor cells. Iran. J. Neurol. 2018, 17, 24–30. [Google Scholar] [PubMed]
- Kokai, L.E.; Marra, K.; Rubin, J.P. Adipose stem cells: Biology and clinical applications for tissue repair and regeneration. Transl. Res. J. Lab. Clin. Med. 2014, 163, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Salgado, A.J.; Reis, R.L.; Sousa, N.J.; Gimble, J.M. Adipose tissue derived stem cells secretome: Soluble factors and their roles in regenerative medicine. Curr. Stem Cell Res. Ther. 2010, 5, 103–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastro-Martinez, I.; Perez-Suarez, E.; Melen, G.; Gonzalez-Murillo, A.; Casco, F.; Lozano-Carbonero, N.; Gutierrez-Fernandez, M.; Diez-Tejedor, E.; Casado-Flores, J.; Ramirez-Orellana, M.; et al. Effects of local administration of allogenic adipose tissue-derived mesenchymal stem cells on functional recovery in experimental traumatic brain injury. Brain Inj. 2015, 29, 1497–1510. [Google Scholar] [CrossRef]
- Walker, P.A.; Shah, S.K.; Harting, M.T.; Cox, C.S., Jr. Progenitor cell therapies for traumatic brain injury: Barriers and opportunities in translation. Dis. Models Mech. 2009, 2, 23–38. [Google Scholar] [CrossRef] [Green Version]
- Harting, M.T.; Jimenez, F.; Xue, H.; Fischer, U.M.; Baumgartner, J.; Dash, P.K.; Cox, C.S. Intravenous mesenchymal stem cell therapy for traumatic brain injury. J. Neurosurg. 2009, 110, 1189–1197. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, A.; Lu, D.; Yi, L.; Chen, J.L.; Chopp, M. Intracranial bone marrow transplantation after traumatic brain injury improving functional outcome in adult rats. J. Neurosurg. 2001, 94, 589–595. [Google Scholar] [CrossRef]
- Fedorova, T.; Knudsen, C.S.; Mouridsen, K.; Nexo, E.; Borghammer, P. Salivary acetylcholinesterase activity is increased in parkinson’s disease: A potential marker of parasympathetic dysfunction. Parkinson’s Dis. 2015, 2015, 156479. [Google Scholar] [CrossRef] [Green Version]
- Cox, C.S., Jr.; Hetz, R.A.; Liao, G.P.; Aertker, B.M.; Ewing-Cobbs, L.; Juranek, J.; Savitz, S.I.; Jackson, M.L.; Romanowska-Pawliczek, A.M.; Triolo, F.; et al. Treatment of severe adult traumatic brain injury using bone marrow mononuclear cells. Stem Cells 2017, 35, 1065–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Cheng, H.; Dai, G.; Wang, X.; Hua, R.; Liu, X.; Wang, P.; Chen, G.; Yue, W.; An, Y. Umbilical cord mesenchymal stem cell transplantation significantly improves neurological function in patients with sequelae of traumatic brain injury. Brain Res. 2013, 1532, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.P.; Harting, M.T.; Hetz, R.A.; Walker, P.A.; Shah, S.K.; Corkins, C.J.; Hughes, T.G.; Jimenez, F.; Kosmach, S.C.; Day, M.C.; et al. Autologous bone marrow mononuclear cells reduce therapeutic intensity for severe traumatic brain injury in children. Pediatric Crit. Care Med. 2015, 16, 245–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, C.; Wang, X.; Wang, X.; Wang, L.; Wang, X.; Wu, S.; Wan, Z. Autologous bone marrow mesenchymal stem cell therapy in the subacute stage of traumatic brain injury by lumbar puncture. Exp. Clin. Transplant. 2013, 11, 176–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study Title | Identifier | Phase | Target Enrollment | Ages | Condition | Primary Outcome | Results | References |
---|---|---|---|---|---|---|---|---|
Safety of Autologous Stem Cell Treatment for Traumatic Brain Injury in Children | NCT00254722 | 1 | 10 | 5 to 14 years | Patients with TBI within 24 h after lesion | It has been evaluated the safety of BMPCs autologous transplantation | - | - |
A Double-Blind, Controlled Phase 2 Study of the Safety and Efficacy of Modified Stem Cells (SB623) in Patients with Chronic Motor Deficit From Traumatic Brain Injury (TBI) | NCT02416492 | 2 | 61 | 18 to 75 years | Patients with motor deficits from TBI at least 12 months | It has been assessed the motor functions in patients with chronic TBI after stereotactic intracranial implantation of allogeneic SB623 | The study results showed a significant improvement in motor function after 24 weeks of intracranial administration of SB623 cells. Furthermore, 5 severe side events were reported in patients treated with SB623 and 3 in the control patients. By contrast, there were no differences in the rate of adverse events emerging from the treatment between the two groups of patient | [50] |
Treatment of Severe Adult Traumatic Brain Injury Using Bone Marrow Mononuclear Cells | NCT01575470 | 1/2 | 25 | 18 to 55 years | Patients with severe TBI within 36 h after injury | It was shown the safety of BMMNCs autologous transplantation after TBI | None of the study participants have shown severe side events after collection as well as the administration of BMMNCs transplantation. Likewise, cell therapy has demonstrated the structural conservation of the critical regions of interest brain tissue. Moreover, the authors have reported a decrease in the inflammatory response, as well as a statistically significant reduction in IL-1β, IFN-γ, and TNF-α following autologous BMMNCs transplantation. | [51] |
Treatment of Adult Severe Traumatic Brain Injury Using Autologous Bone Marrow Mononuclear Cells | NCT02525432 | 2 | 55 | 18 to 55 years | Patients with TBI within 24 h after injury | Will be evaluated both the macrostructural and microstructural properties of gray matter, white matter as well as the integrity of the regions in the corpus callosum | - | |
Neurologic Bone Marrow Derived Stem Cell Treatment Study | NCT02795052 | - | 300 | Over 18 years | Patients with damage to the central or peripheral nervous system | Will be assessed the efficacy of intravenous and intranasal administration of autologous BM-MSCs by measuring the Activities of Daily Living at 3,6 and 12 months following the procedure | - | - |
A Phase 2 Multicenter Trial of Pediatric Autologous Bone Marrow Mononuclear Cells (BMMNCs) for Severe Traumatic Brain Injury (TBI) | NCT01851083 | 1/2 | 50 | 5 to 17 years | Patients with severe TBI within 24 h after injury | Will be evaluated by using diffusion tensor MRI the conservation of both white and grey matter in the groups of patients treated and untreated after the injury | - | - |
A Clinical Trial to Determine the Safety and Efficacy of Hope Biosciences Autologous Mesenchymal Stem Cell Therapy for the Treatment of Traumatic Brain Injury and Hypoxic-Ischemic Encephalopathy | NCT04063215 | 1/2 | 24 | 18 to 55 years | Patients with neurological injury at least 6 months | Will be evaluated the safety of autologous AD-MSCs transplantation in brain regions associated with specific neurocognitive deficits of patients with both subacute and chronic neurological injury | - | - |
Use of Adipose-Derived Cellular Stromal Vascular Fraction (AD-cSVF) Parenterally in Post-Concussion Injuries and Traumatic Brain Injuries (TBI) | NCT02959294 | 1/2 | 200 | 16 to 70 years | Patients with mild TBI or concussion syndrome at least 1 months | The safety of AD-cSVF in patients with TBI and concussion syndrome will be assessed by measuring the side events at baseline and 6 months. Moreover, it will be assessed the clinical symptoms associated with TBI and concussion such as recurrent headaches, amnesia, behavioral change, cognitive impairment, as well as sleep disturbances. | - | - |
Non-Randomized, Open-Labeled, Interventional, Single Group, Proof of Concept Study with Multimodality Approach in Cases of Brain Death Due to Traumatic Brain Injury Having Diffuse Axonal Injury | NCT02742857 | 1 | 20 | 15 to 65 years | Patients who present brain death caused by TBI with axonal injury shown by MRI | Will be demonstrated the reversal of brain death documented by clinical examination or electroencephalogram in the 15 days’ frame time | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schepici, G.; Silvestro, S.; Bramanti, P.; Mazzon, E. Traumatic Brain Injury and Stem Cells: An Overview of Clinical Trials, the Current Treatments and Future Therapeutic Approaches. Medicina 2020, 56, 137. https://doi.org/10.3390/medicina56030137
Schepici G, Silvestro S, Bramanti P, Mazzon E. Traumatic Brain Injury and Stem Cells: An Overview of Clinical Trials, the Current Treatments and Future Therapeutic Approaches. Medicina. 2020; 56(3):137. https://doi.org/10.3390/medicina56030137
Chicago/Turabian StyleSchepici, Giovanni, Serena Silvestro, Placido Bramanti, and Emanuela Mazzon. 2020. "Traumatic Brain Injury and Stem Cells: An Overview of Clinical Trials, the Current Treatments and Future Therapeutic Approaches" Medicina 56, no. 3: 137. https://doi.org/10.3390/medicina56030137
APA StyleSchepici, G., Silvestro, S., Bramanti, P., & Mazzon, E. (2020). Traumatic Brain Injury and Stem Cells: An Overview of Clinical Trials, the Current Treatments and Future Therapeutic Approaches. Medicina, 56(3), 137. https://doi.org/10.3390/medicina56030137