Effect of an Eleven-Day Altitude Training Program on Aerobic and Anaerobic Performance in Adolescent Runners
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Measures
2.3. Design and Procedures
2.4. Statistical Analysis
2.5. Ethical Approval
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jones, A.M.; Carter, H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000, 29, 373–386. [Google Scholar] [CrossRef]
- Khazhal, K.H.; Abbas, M. Effect of concurrent training on VO2max, certain physical variables and spike performance for young female volleyball players. Sci. Mov. Health 2014, 14, 437–441. [Google Scholar]
- Unnithan, V.; Holohan, J.; Fernhall, B.; Wylegala, J.; Rowland, T.; Pendergast, D.R. Aerobic cost in elite female adolescent swimmers. Int. J. Sports Med. 2009, 30, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Baquet, G.; Van Praagh, E.; Berthoin, S. Endurance training and aerobic fitness in young people. Sports Med. 2003, 33, 1127–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchheit, M.; Kuitunen, S.; Voss, S.C.; Williams, B.K.; Mendez-Villanueva, A.; Bourdon, P.C. Physiological strain associated with high-intensity hypoxic intervals in highly trained young runners. J. Strength Cond. Res. 2012, 26, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Diebel, S.R.; Newhouse, I.; Thompson, D.S.; Johnson, V.B. The effects of a 10-day altitude training camp at 1828 meters on varsity cross-country runners. Int. J. Exerc. Sci. 2017, 10, 97–107. [Google Scholar] [PubMed]
- Saltin, B.; Larsen, H.; Terrados, N.; Bangsbo, J.; Bak, T.; Kim, C.K.; Svedenhag, J.; Rolf, C.J. Aerobic exercise capacity at sea level and altitude in Kenyan boys, junior and senior runners compared with Scandinavian runners. Scand. J. Med. Sci. Sports 1995, 5, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, M.; Nachbauer, W.; Baumgartl, P.; Philadelphy, M. Benefits of training at moderate altitude versus sea level training in amateur runners. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 74, 558–563. [Google Scholar] [CrossRef]
- Ferrari, R.; Alberton, C.; Pinto, S.; Cadore, E.; Pinto, R.; Kruel, L.F. Oxygen consumption during concurrent training: Influence of intra-session exercise sequence and aerobic exercise modality. Biol. Sport 2018, 35, 247–252. [Google Scholar] [CrossRef]
- Bahenský, P.; Malátová, R. Physiological, biochemical and performance changes to a 10-days training camp at 1040 m altitude in adolescent runners. Studia Kinanthropologica 2018, 19, 97–107. [Google Scholar]
- Bonetti, D.L.; Hopkins, W.G. Meta-analysis of sea level performance following adaptation to hypoxia. Sports Med. 2009, 39, 107–127. [Google Scholar] [CrossRef] [PubMed]
- Billat, V.L.; Flechet, B.; Petit, B.; Muriaux, G.; Koralsztein, J.P. Interval training at VO2max: Effects on aerobic performance and overtraining markers. Med. Sci. Sport Exer. 1999, 31, 156–163. [Google Scholar] [CrossRef]
- Paavolainen, L.; Nummela, A.; Rusko, H. Muscle power factors and VO2max as determinants of horizontal and uphill running performance. Scand. J. Med. Sci. Sports 2000, 10, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Keith, S.P.; Jacobs, I.; McLellan, T.M. Adaptations to training at the individual anaerobic threshold. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 65, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Bahenský, P.; Bunc, V. Training of Young Runners in Medium and Long-Distance Tracks; Karolinum: Praha, Czech Republic, 2018. [Google Scholar]
- Carte, H.; Jones, A.M.; Doust, J.H. Effect of 6 weeks of endurance training on the lactate minimum speed. J. Sport Sci. 1997, 17, 957–967. [Google Scholar] [CrossRef]
- Diebel, S.R.; Newhouse, I.; Thompson, D.S.; Johnson, V.B. Changes in running economy, respiratory exchange ratio and VO2max in runners following a 10-day altitude training camp. Int. J. Exerc. Sci. 2017, 10, 629–639. [Google Scholar]
- Inbar, O.; Bar-Or, O.; Skinner, J.S. The Wingate Anaerobic Test; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Neumann, G.; Pfützner, A.; Berbalk, A. Successful Endurance Training; Meyer & Meyer Verlag: Aachen, Germany, 2000. [Google Scholar]
- Dill, D.B.; Adams, W.C. Maximal oxygen uptake at sea level and at 3090-m altitude in high school champion runners. J. Appl. Physiol. 1971, 30, 854–859. [Google Scholar] [CrossRef]
- Whipp, B.J.; Ward, S.A.; Lamarra, N.; Davis, J.A.; Wasserman, K. Parameters of ventilatory and gas exchange dynamics during exercise. J. Appl. Physiol. 1982, 52, 1506–1513. [Google Scholar]
- Di Prampero, P.E.; Atchou, G.; Bruckner, J.C.; Moia, C. The energetics of endurance running. Eur. J. Appl. Physiol. Occup. Physiol. 1986, 55, 259–266. [Google Scholar] [CrossRef]
- Helgerud, J. Maximal oxygen uptake, anaerobic threshold and running economy in women and men with similar performances level in marathons. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 68, 155–161. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Wolters Kluwer: Philadelphia, PA, USA, 2018. [Google Scholar]
- Kučera, V.; Truksa, Z. Running on the Middle and Long Tracks; Olympia: Praha, Czech Republic, 2000. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge Academic: New York, NY, USA, 1988. [Google Scholar]
- Wilhite, D.P.; Mickleborough, T.D.; Laymon, A.S.; Chapman, R.F. Increases in VO2max with “live high–train low” altitude training: Role of ventilatory acclimatization. Eur. J. Appl. Physiol. 2013, 113, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.D.; Stray-Gundersen, J. Living high-training low: Effect of moderate-altitude acclimatization with low-altitude training on performance. J. Appl. Physiol. 1997, 83, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Stegemann, J.; Kindermann, W. Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4 mmol/l lactate. Int. J. Sports Med. 1982, 3, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.P.; Saunders, P.U.; Garvican-Lewis, L.A.; Clark, B.; Stanley, J.; Robertson, E.Y.; Thompson, K.G. The effect of training at 2100-m altitude on running speed and session rating of perceived exertion at different intensities in elite middle-distance runners. Int. J. Sport Physiol. 2017, 12, 147–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morton, J.P.; Cable, N.T. The effects of intermittent hypoxic training on aerobic and anaerobic performance. Ergonomics 2005, 48, 1535–1546. [Google Scholar] [CrossRef]
- Pannier, J.L.; Vrijens, J.; Van Cauter, C. Cardiorespiratory response to treadmill and bicycle exercise in runners. Eur. J. Appl. Physiol. Occup. Physiol. 1980, 43, 243–251. [Google Scholar] [CrossRef]
- Verstappen, F.T.J.; Huppertz, R.M.; Snoeckx, L.H.E.H. Effect of Training Specificity on Maximal Treadmill and Bicycle Ergometer Exercise. Int. J. Sports Med. 1982, 3, 43–46. [Google Scholar] [CrossRef]
- Římák, P.; Fiala, J.; Kunzová, S.; Kaňovský, P. Comparsion of physical fitness examinations measured on bicycle ergometer and treadmill for the purpose of primary preventive examination. Hygiena 2012, 57, 135–143. [Google Scholar]
- Bouchard, C.; Daw, E.W.; Rice, T.; Pérusse, L.; Gagnon, J.; Province, M.A.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; Wilmore, J.H. Familial resemblance for ˙VO2max in the sedentary state: The HERITAGE family study. Med. Sci. Sport Exerc. 1998, 30, 252–258. [Google Scholar] [CrossRef]
- Bassett, D.R.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sport Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef]
- Suchý, J.; Opočenský, J. Usefulness of training camps at high altitude for well-trained adolescents. Acta Gymnica 2015, 45, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Wilber, R.L. Current trends in altitude training. Sports Med. 2001, 31, 249–265. [Google Scholar] [CrossRef] [PubMed]
VO2max (mL·min−1·kg−1) | Before | After | % Change | Cohen’s d | Statistical Significance |
---|---|---|---|---|---|
altitude group | 57.3 ± 7.9 | 64.9 ± 8.8 | 13.55 | 0.92 | p < 0.01 |
control group | 56.4 ± 6.2 | 56.8 ± 6.4 | 0.66 | 0.06 | |
VT (L) | before | after | % change | Cohen’s d | statist. significance |
altitude group | 2.519 ± 0.522 | 2.642 ± 0.537 | 5.16 | 0.23 | p > 0.05 |
control group | 2.309 ± 0.575 | 2.300 ± 0.558 | −0.24 | −0.02 | |
VE (L·min−1) | before | after | % change | Cohen’s d | statist. significance |
altitude group | 134.6 ± 37.0 | 148.1 ± 31.1 | 12.34 | 0.41 | p < 0.05 |
control group | 124.7 ± 18.5 | 124.9 ± 18.9 | 0.16 | 0.01 | |
BF (b·min−1) | before | after | % change | Cohen’s d | statist. significance |
altitude group | 54.1 ± 11.9 | 57.2 ± 10.6 | 7.47 | 0.27 | p > 0.05 |
control group | 56.4 ± 13.5 | 56.5 ± 12.2 | 0.83 | 0.01 | |
RER | before | after | % change | Cohen’s d | statist. significance |
altitude group | 1.163 ± 0.053 | 1.130 ± 0.029 | −2.74 | 0.79 | p > 0.05 |
control group | 1.125 ± 0.037 | 1.125 ± 0.023 | 0.06 | 0.00 | |
SF VO2max (beat·min−1) | before | after | % change | Cohen’s d | statist. significance |
altitude group | 183.8 ± 7.6 | 186.2 ± 8.1 | 1.35 | 0.31 | p < 0.01 |
control group | 189.0 ± 10.6 | 188.9 ± 9.9 | −0.04 | 0.02 | |
WR (W·kg−1) | before | after | % change | Cohen’s d | statist. significance |
altitude group | 4.57 ± 0.69 | 4.95 ± 0.52 | 9.57 | 0.63 | p < 0.01 |
control group | 4.27 ± 1.04 | 4.26 ± 1.05 | −0.37 | −0.01 |
Relative Peak 30 s Power (W·kg−1) | Before | After | % Change | Cohen’s d | Statistical Significance |
---|---|---|---|---|---|
altitude group | 8.091 ± 0.877 | 8.525 ± 0.977 | 5.12 | 0.47 | p > 0.05 |
control group | 7.976 ± 0.900 | 8.016 ± 1.067 | 0.86 | 0.06 | |
relative peak power (W·kg−1) | before | after | % change | Cohen’s d | statist. significance |
altitude group | 11.466 ± 1.587 | 12.547 ± 2.027 | 7.39 | 0.39 | p > 0.05 |
control group | 11.671 ± 1.601 | 11.714 ± 1.646 | 0.19 | 0.03 | |
relative peak 5 s power (W·kg−1) | before | after | % change | Cohen’s d | statist. significance |
altitude group | 9.474 ± 1.466 | 10.041 ± 1.412 | 9.38 | 0.59 | p > 0.05 |
control group | 9.666 ± 1.393 | 9.750 ± 1.419 | 0.86 | 0.06 | |
revs per 30 s | before | after | % change | Cohen’s d | statist. significance |
altitude group | 59.7 ± 4.9 | 62.2 ± 5.3 | 4.61 | 0.50 | p > 0.05 |
control group | 60.0 ± 3.6 | 60.1 ± 3.3 | 0.25 | 0.04 |
2 mmol·L−1 | Running Speed before (km·h−1) | Running Speed after (km·h−1) | % Change | Cohen’s d | Statistical Significance |
---|---|---|---|---|---|
altitude group | 12.04 ± 1.58 | 12.97 ± 1.65 | 7.93 | 0.58 | p < 0.01 |
control group | 12.91 ± 1.80 | 13.00 ± 1.82 | 0.75 | 0.05 | |
4 mmol·L−1 | running speed before (km·h−1) | running speed after (km·h−1) | % change | Cohen’s d | statist. significance |
altitude group | 13.73 ± 1.77 | 14.84 ± 1.58 | 8.47 | 0.66 | p < 0.01 |
control group | 14.00 ± 2.09 | 14.10 ± 2.14 | 0.74 | 0.05 | |
6 mmol·L−1 | running speed before (km·h−1) | running speed after (km·h−1) | % change | Cohen’s d | statist. significance |
altitude group | 14.57 ± 1.51 | 15.93 ± 1.57 | 9.59 | 0.88 | p < 0.01 |
control group | 14.55 ± 1.95 | 14.65 ± 2.01 | 0.63 | 0.05 | |
9 mmol·L−1 | running speed before (km·h−11) | running speed after (km·h−1) | % change | Cohen’s d | statist. significance |
altitude group | 15.92 ± 1.62 | 16.82 ± 1.53 | 5.87 | 0.57 | p < 0.01 |
control group | 15.60± 1.84 | 15.76 ± 1.85 | 1.03 | 0.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahenský, P.; Bunc, V.; Tlustý, P.; Grosicki, G.J. Effect of an Eleven-Day Altitude Training Program on Aerobic and Anaerobic Performance in Adolescent Runners. Medicina 2020, 56, 184. https://doi.org/10.3390/medicina56040184
Bahenský P, Bunc V, Tlustý P, Grosicki GJ. Effect of an Eleven-Day Altitude Training Program on Aerobic and Anaerobic Performance in Adolescent Runners. Medicina. 2020; 56(4):184. https://doi.org/10.3390/medicina56040184
Chicago/Turabian StyleBahenský, Petr, Václav Bunc, Pavel Tlustý, and Gregory J. Grosicki. 2020. "Effect of an Eleven-Day Altitude Training Program on Aerobic and Anaerobic Performance in Adolescent Runners" Medicina 56, no. 4: 184. https://doi.org/10.3390/medicina56040184
APA StyleBahenský, P., Bunc, V., Tlustý, P., & Grosicki, G. J. (2020). Effect of an Eleven-Day Altitude Training Program on Aerobic and Anaerobic Performance in Adolescent Runners. Medicina, 56(4), 184. https://doi.org/10.3390/medicina56040184