Effects of Khat on Surface Roughness and Color of Feldspathic and Zirconia Porcelain Materials under Simulated Oral Cavity Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Preparation and Fabrication
2.3. Surface Treatments of Samples
2.4. Surface Roughness Measurements
2.5. Color Measurements
2.6. Sample Immersion and Thermocycling
2.7. Surface Evaluation and Qualitative Analysis
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Joiner, A. Tooth colour: A review of the literature. J. Dent. 2004, 32, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Vagkopoulou, T.; Koutayas, S.O.; Koidis, P.; Strub, J.R. Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic. Eur. J. Esthet. Dent. 2009, 4, 130–150. [Google Scholar] [PubMed]
- Powers, J.M.; Sakaguchi, R.L.; Craig, R.G. Craig’s Restorative Dental Materials/Edited by Ronald L. Sakaguchi, John M. Powers; Elsevier/Mosby: Philadelphia, PA, USA, 2012. [Google Scholar]
- Singh, K.; Suvarna, S.; Agnihotri, Y.; Sahoo, S.; Kumar, P. Color stability of aesthetic restorative materials after exposure to commonly consumed beverages: A systematic review of literature. Eur. J. Prosthodont. 2014, 2, 15. [Google Scholar]
- Trautmann, G.; Gutmann, J.L.; Nunn, M.E.; Witherspoon, D.E.; Shulman, J.D. Restoring teeth that are endodontically treated through existing crowns. Part II: Survey of restorative materials commonly used. Quintessence Int. 2000, 31, 13–18. [Google Scholar]
- Fehmer, V.; Mühlemann, S.; Hämmerle, C.H.; Sailer, I. Criteria for the selection of restoration materials. Quintessence Int. 2014, 45, 723–730. [Google Scholar]
- Liu, M.-C.; Aquilino, S.A.; Gratton, D.G.; Ou, K.-L.; Lin, C.-C. Relative translucency and surface roughness of four yttrium-stabilized tetragonal zirconia polycrystalline-based dental restorations. J. Exp. Clin. Med. 2013, 5, 22–24. [Google Scholar] [CrossRef]
- Arena, A.; Prete, F.; Rambaldi, E.; Bignozzi, M.C.; Monaco, C.; Di Fiore, A.; Chevalier, J. Nanostructured zirconia-based ceramics and composites in dentistry: A state-of-the-art review. Nanomaterials 2019, 9, 1393. [Google Scholar] [CrossRef] [Green Version]
- Haralur, S.B.; Alqahtani, R.S.; Alhassan Mujayri, F. Effect of hydrothermal aging and beverages on color stability of lithium disilicate and zirconia based ceramics. Medicina 2019, 55, 749. [Google Scholar] [CrossRef] [Green Version]
- Ala’a Abu-Obaid, A.A.; Alyabis, N.; Alzaaqi, N. An in vitro evaluation of the effect of polishing on the stainability of different CAD/CAM ceramic materials. Saudi Dent. J. 2020, 32, 135–141. [Google Scholar] [CrossRef]
- Saridag, S.; Tak, O.; Alniacik, G. Basic properties and types of zirconia: An overview. World J. Stomatol. 2013, 2, 40–47. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Si, W.; Feng, H.; Tao, Y.; Ma, Z. Friction and wear behaviors of dental ceramics against natural tooth enamel. J. Eur. Ceram. Soc. 2012, 32, 2599–2606. [Google Scholar] [CrossRef]
- Ageely, H.M. Prevalence of Khat chewing in college and secondary (high) school students of Jazan region, Saudi Arabia. Harm Reduct. J. 2009, 6, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, C.; Gibson, A. The oral and dental effects of q’at chewing. Oral Surg. Oral Med. Oral Pathol. 1987, 63, 433–436. [Google Scholar] [CrossRef]
- Kalix, P.; Braenden, O. Pharmacological aspects of the chewing of khat leaves. Pharmacol. Rev. 1985, 37, 149–164. [Google Scholar] [PubMed]
- Wabe, N.T. Chemistry, pharmacology, and toxicology of khat (catha edulis forsk): A review. Addict. Health 2011, 3, 137. [Google Scholar] [PubMed]
- Nyanchoka, I.; Dimba, E.; Chindia, M.; Wanzala, P.; Macigo, F. The oral and dental effects of khat chewing in the Eastleigh area of Nairobi. J. Kenya Dent. Assoc. 2008, 1, 37–42. [Google Scholar]
- Al-Alimi, K.R.; Razak, A.A.A.; Saub, R. Salivary caries parameters: Comparative study among Yemeni khat chewers and nonchewers. J. Dent. Sci. 2014, 9, 328–331. [Google Scholar] [CrossRef] [Green Version]
- Raigrodski, A.J. Contemporary materials and technologies for all-ceramic fixed partial dentures: A review of the literature. J. Prosthet. Dent. 2004, 92, 557–562. [Google Scholar] [CrossRef]
- Volpato, C.Â.M.; Garbelotto, L.; Fredel, M.C.; Bondioli, F. Application of zirconia in dentistry: Biological, mechanical and optical considerations. In Advances in Ceramics-Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment; BoD–Books on Demand: Nordstedt, Germany, 2011; p. 25. [Google Scholar]
- Oliveira-Junior, O.B.; Buso, L.; Fujiy, F.H.; Lombardo, G.; Campos, F.; Sarmento, H.R.; Souza, R. Influence of polishing procedures on the surface roughness of dental ceramics made by different techniques. Gen. Dent. 2013, 61, e4–e8. [Google Scholar]
- Rashid, H. Evaluation of the surface roughness of a standard abraded dental porcelain following different polishing techniques. J. Dent. Sci. 2012, 7, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Lohbauer, U.; Müller, F.A.; Petschelt, A. Influence of surface roughness on mechanical strength of resin composite versus glass ceramic materials. Dent. Mater. 2008, 24, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, D.M.; da Silva, E.V.F.; Watanabe, D.; Bitencourt, S.B.; Guiotti, A.M.; Goiato, M.C. Effect of different acidic solutions on the optical behavior of lithium disilicate ceramics. J. Prosthet. Dent. 2017, 118, 430–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarac, D.; Sarac, Y.S.; Yuzbasioglu, E.; Bal, S. The effects of porcelain polishing systems on the color and surface texture of feldspathic porcelain. J. Prosthet. Dent. 2006, 96, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Peter, A.; Pietrobon, N.; Hämmerle, C. Visual and spectrophotometric shade analysis of human teeth. J. Dent. Res. 2002, 81, 578–582. [Google Scholar] [CrossRef]
- Motro, P.F.K.; Kursoglu, P.; Kazazoglu, E. Effects of different surface treatments on stainability of ceramics. J. Prosthet. Dent. 2012, 108, 231–237. [Google Scholar] [CrossRef]
- Alghazali, N.; Burnside, G.; Moallem, M.; Smith, P.; Preston, A.; Jarad, F.D. Assessment of perceptibility and acceptability of color difference of denture teeth. J. Dent. 2012, 40, e10–e17. [Google Scholar] [CrossRef]
- Dozić, A.; Kleverlaan, C.J.; El-Zohairy, A.; Feilzer, A.J.; Khashayar, G. Performance of five commercially available tooth color-measuring devices. J. Prosthodont. 2007, 16, 93–100. [Google Scholar] [CrossRef]
- Kim-Pusateri, S.; Brewer, J.D.; Davis, E.L.; Wee, A.G. Reliability and accuracy of four dental shade-matching devices. J. Prosthet. Dent. 2009, 101, 193–199. [Google Scholar] [CrossRef]
- Acar, O.; Yilmaz, B.; Altintas, S.H.; Chandrasekaran, I.; Johnston, W.M. Color stainability of CAD/CAM and nanocomposite resin materials. J. Prosthet. Dent. 2016, 115, 71–75. [Google Scholar] [CrossRef]
- Dietschi, D.; Campanile, G.; Holz, J.; Meyer, J.-M. Comparison of the color stability of ten new-generation composites: An in vitro study. Dent. Mater. 1994, 10, 353–362. [Google Scholar] [CrossRef]
- Alghazali, N.; Hakami, A.A.; AlAjlan, G.A.; Alotaibi, R.M.; Alabdulwahab, F.N.; AlQuraishi, L.A.; Abdalkadeer, H.; Al Moaleem, M.M. Influence of the arabic-coffee on the overall color of glazed or polished porcelain veneers–study. Open Dent. J. 2019, 13, 364–370. [Google Scholar] [CrossRef]
- Gupta, R.; Parkash, H.; Shah, N.; Jain, V. A spectrophotometric evaluation of color changes of various tooth colored veneering materials after exposure to commonly consumed beverages. J. Indian Prosthodont. Soc. 2005, 5, 72. [Google Scholar] [CrossRef]
- El-Wajeh, Y.; Thornhill, M. Qat and its health effects. Br. Dent. J. 2009, 206, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Meshal, I.A.; Qureshi, S.; Ageel, A.M.; Tariq, M. The toxicity of Catha edulis (khat) in mice. J. Subst. Abus. 1991, 3, 107–115. [Google Scholar] [CrossRef]
- Al-Moaleem, M.M.; Shah, F.K.; Khan, N.S.; Porwal, A. The effect of thermocycling on the bonding of different restorative materials to access opening through porcelain fused to metal restorations. J. Adv. Prosthodont. 2011, 3, 186–189. [Google Scholar] [CrossRef] [Green Version]
- Kozmacs, C.; Hollmann, B.; Arnold, W.H.; Naumova, E.; Piwowarczyk, A. Polishing of monolithic zirconia crowns—Results of different dental practitioner groups. Dent. J. 2017, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Al-Anesi, W.A.; Madfa, A.A.; Dubais, M.A.; Albahari, A.A. Effects of khat extract and other staining media on color change of composite resins subjected to various polishing methods. Mater. Sci. 2019. [Google Scholar] [CrossRef]
- Colombo, M.; Cavallo, M.; Miegge, M.; Dagna, A.; Beltrami, R.; Chiesa, M.; Poggio, C. Color stability of CAD/CAM Zirconia ceramics following exposure to acidic and staining drinks. J. Clin. Exp. Dent. 2017, 9, e1297. [Google Scholar] [CrossRef]
- Özarslan, M.M.; Büyükkaplan, U.Ş.; Barutcigil, Ç.; Arslan, M.; Türker, N.; Barutcigil, K. Effects of different surface finishing procedures on the change in surface roughness and color of a polymer infiltrated ceramic network material. J. Adv. Prosthodont. 2016, 8, 16–20. [Google Scholar] [CrossRef]
- Al Moaleem, M.M.; Porwal, A.; Al Ahmari, N.M.; Shariff, M.; Homeida, H.; Khalid, A. Khat chewing induces a floral shift in dental material-associated microbiota: A preliminary study. Med. Sci. Monit. 2020, 26, e918219-1–e918219-9. [Google Scholar] [CrossRef]
- Aboushelib, M.N.; Sleem, D. Microtensile bond strength of lithium disilicate ceramics to resin adhesives. J. Adhes. Dent. 2014, 16, 547–552. [Google Scholar] [PubMed]
- Al-Hebshi, N.N.; Nielsen, Ø.; Skaug, N. In vitro effects of crude khat extracts on the growth, colonization, and glucosyltransferases of Streptococcus mutans. Acta Odontol. Scand. 2005, 63, 136–142. [Google Scholar] [CrossRef]
- Alp, G.; Subaşı, M.G. Effect of surface finishing methods and aging on surface roughness and optical properties of zirconia-reinforced lithium silicate glass-ceramic. Cumhur. Dent. J. 2019, 22, 121–130. [Google Scholar] [CrossRef]
- Al-Alimi, K.R.; Razak, A.A.A.; Saub, R. Is Khat chewing habit a risk factor for occlusal caries progression? Afr. Health Sci. 2018, 18, 1036–1045. [Google Scholar] [CrossRef] [PubMed]
- Lawson, N.C.; Janyavula, S.; Syklawer, S.; McLaren, E.A.; Burgess, J.O. Wear of enamel opposing zirconia and lithium disilicate after adjustment, polishing and glazing. J. Dent. 2014, 42, 1586–1591. [Google Scholar] [CrossRef] [PubMed]
- Saba, D.A.; Salama, R.A.; Haridy, R. Effect of different beverages on the color stability and microhardness of CAD/CAM hybrid versus feldspathic ceramic blocks: An in-vitro study. Future Dent. J. 2017, 3, 61–66. [Google Scholar] [CrossRef]
- Sarikaya, I.; Güler, A.U. Effects of different polishing techniques on the surface roughness of dental porcelains. J. Appl. Oral Sci. 2010, 18, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, I.; Güler, A.U. Effects of different surface treatments on the color stability of various dental porcelains. J. Dent. Sci. 2011, 6, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Hmaidouch, R.; Müller, W.-D.; Lauer, H.-C.; Weigl, P. Surface roughness of zirconia for full-contour crowns after clinically simulated grinding and polishing. Int. J. Oral Sci. 2014, 6, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Janyavula, S.; Lawson, N.; Cakir, D.; Beck, P.; Ramp, L.C.; Burgess, J.O. The wear of polished and glazed zirconia against enamel. J. Prosthet. Dent. 2013, 109, 22–29. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, S.-H.; Han, J.-S.; Yeo, I.-S.L.; Yoon, H.-I. Optical and surface properties of monolithic zirconia after simulated toothbrushing. Materials 2019, 12, 1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamza, T.A.; Alameldin, A.A.; Elkouedi, A.Y.; Wee, A.G. Effect of artificial accelerated aging on surface roughness and color stability of different ceramic restorations. Stomatol. Dis. Sci. 2017, 1, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Sarıkaya, I.; Yerliyurt, K.; Hayran, Y. Effect of surface finishing on the colour stability and translucency of dental ceramics. BMC Oral Health 2018, 18, 40. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, C.; Korkmaz, T.; Demirköprülü, H.; Ergün, G.; Özkan, Y. Color stability of glazed and polished dental porcelains. J. Prosthodont. 2008, 17, 20–24. [Google Scholar] [CrossRef]
- Al-Habori, M.; Al-Aghbari, A.; Al-Mamary, M.; Baker, M. Toxicological evaluation of Catha edulis leaves: A long term feeding experiment in animals. J. Ethnopharmacol. 2002, 83, 209–217. [Google Scholar] [CrossRef]
- Jorgensen, E.; Kaimenyi, J. The status of periodontal health and oral hygiene of Miraa (catha edulis) chewers. East Afr. Med. J. 1990, 67, 585–590. [Google Scholar]
- Alabdulaaly, A.I.; Al-Zarah, A.I.; Khan, M.A. Occurrence of fluoride in ground waters of Saudi Arabia. Appl. Water Sci. 2013, 3, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Maciel, L.C.; Silva, C.F.B.; de Jesus, R.H.; Kano, S.C.; Xible, A.A. Influence of polishing systems on roughness and color change of two dental ceramics. J. Adv. Prosthodont. 2019, 11, 215–222. [Google Scholar] [CrossRef]
- Palla, E.-S.; Kontonasaki, E.; Kantiranis, N.; Papadopoulou, L.; Zorba, T.; Paraskevopoulos, K.M.; Koidis, P. Color stability of lithium disilicate ceramics after aging and immersion in common beverages. J. Prosthet. Dent. 2018, 119, 632–642. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, S.H.; Yoon, H.I.; Yeo, I.S.L.; Han, J.S. Colour stability and surface properties of high-translucency restorative materials for digital dentistry after simulated oral rinsing. Eur. J. Oral Sci. 2020, 128, 170–180. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, S.-H.; Han, J.-S.; Yeo, I.-S.L.; Yoon, H.-I.; Lee, J. Effects of ultrasonic scaling on the optical properties and surface characteristics of highly translucent CAD/CAM ceramic restorative materials: An in vitro study. Ceram. Int. 2019, 45, 14594–14601. [Google Scholar] [CrossRef]
- Egilmez, F.; Ergun, G.; Cekic-Nagas, I.; Vallittu, P.K.; Lassila, L.V.J. Comparative color and surface parameters of current esthetic restorative CAD/CAM materials. J. Adv. Prosthodont. 2018, 10, 32–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Material/Device Type | Type (Brand Name) | Composition | Manufacturers | Lot # | Shades |
---|---|---|---|---|---|
Nickel chromium casting alloy | Wiron(R) 99 | Ni 65%, Cr 22.5%, Mo 9.5%, Nb 1% Si 1%, Fe 0.5%, Ce 0.5%, Cmax 0.021 | BEGO, Germany | 9868 | Silver |
Feldspathic CAD/CAM porcelain blocks, | Vitablocs Mark II | Fine-particle feldspar glass ceramic, low-to-moderate <50% leucite-containing. | VITA Zahnfabrik, Bad Säckingen, Germany | 42650 | B1 |
Feldspathic P/L porcelain body | VITA VM(R)13 | Silicon dioxide and possess a glassy matrix, assorted quantities of potassium, sodium, barium, or calcium | VITA Zahnfabrik, Bad Säckingen, Germany | 49510 | B1 |
Zircon CAD/CAM | Ceramill Zolid multilayer PS | ZrO2 + HfO2 + Y2O3: ≥99.0, Y2O3: 8.5–9.5, HfO2: ≤5, Al2O3: ≤0.5, Other oxides: ≤1 | Amann Girrbach, Germany | 32976-FB | B1 Light` |
Khat or Qat | Catha edulis plant | Alkaloids, terpenoids, flavonoids, sterols, glycosides, tannins, amino acids, vitamins, minerals. | |||
Surface Roughness Tester | Profilometer | Device recorded graphically the average height of profile above and below a center line along the given length of a sample | Perthometer M2, Mahr GmbH, Germany | NHT-6 | |
Spectrophotometer | VITA Easyshade® V | Device used to measure wavelength transmitted from one object at a time, without being affected by subjective interferences of color | VITA Zahnfabrik H. Rauter GmbH & Co. KG, Bad Sackingen, Germany | 10180 | |
Surface roughness and topography tester | White Light Interferometry Microscope | 3D printer of surface characteristics | Contour GT-K1, Bruker Nano GmbH, Berlin, Germany |
Tested Material | Mean Ra ± SD – Glazed | Mean Ra ± SD – Polished | p Values |
---|---|---|---|
MC | 0.83 (0.266) a,c,d,e,f,g | 1.18 (0.127) a,b,d,e,f,g | <0.001 |
Vitablocs Mark II | 1.26 (0.274) a,b,c,e,f,g | 1.93 (0.306) a,b,c,d,f,g | <0.001 |
Zircon | 1.32 (0.116) b,c,d,e,g | 2.23 (0.114) b,c,d,e,f | <0.001 |
Material Type | Mean ± (SD) – Glazed | Mean ± SD – Polished | p Values |
---|---|---|---|
MC | 0.56 (0.080) a,c,d,e,f,g | 1.34 (0.126) a,b,d,e,f,g | <0.001 |
Vitablocs Mark II | 0.28 (0.079) a,b,c,e,f,g | 0.73 (0.134) a,b,c,d,f,g | <0.001 |
Zircon | 1.58 (0.141) a,b,c,d,e,g | 2.52 (0.188) a,b,c,d,e,f | <0.001 |
Parameter | Before Immersion * | After Immersion * | p Values |
---|---|---|---|
Surface roughness (Ra) | 2.75 (0.213) | 4.91 (0.338) | <0.001 |
Average color (ΔE*) | 2.12 (0.201) | 3.45 (.411) | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Moaleem, M.M.; AlSanosy, R.; Al Ahmari, N.M.; Shariff, M.; Alshadidi, A.A.; Alhazmi, H.A.; Khalid, A. Effects of Khat on Surface Roughness and Color of Feldspathic and Zirconia Porcelain Materials under Simulated Oral Cavity Conditions. Medicina 2020, 56, 234. https://doi.org/10.3390/medicina56050234
Al Moaleem MM, AlSanosy R, Al Ahmari NM, Shariff M, Alshadidi AA, Alhazmi HA, Khalid A. Effects of Khat on Surface Roughness and Color of Feldspathic and Zirconia Porcelain Materials under Simulated Oral Cavity Conditions. Medicina. 2020; 56(5):234. https://doi.org/10.3390/medicina56050234
Chicago/Turabian StyleAl Moaleem, Mohammed M., Rashad AlSanosy, Nasser M. Al Ahmari, Mansoor Shariff, Abdulkhaliq A. Alshadidi, Hassan A. Alhazmi, and Asaad Khalid. 2020. "Effects of Khat on Surface Roughness and Color of Feldspathic and Zirconia Porcelain Materials under Simulated Oral Cavity Conditions" Medicina 56, no. 5: 234. https://doi.org/10.3390/medicina56050234
APA StyleAl Moaleem, M. M., AlSanosy, R., Al Ahmari, N. M., Shariff, M., Alshadidi, A. A., Alhazmi, H. A., & Khalid, A. (2020). Effects of Khat on Surface Roughness and Color of Feldspathic and Zirconia Porcelain Materials under Simulated Oral Cavity Conditions. Medicina, 56(5), 234. https://doi.org/10.3390/medicina56050234