Phacoemulsification Induced Changes of Choroidal Thickness in Eyes with Age-Related Macular Degeneration
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dong, N.; Xu, B.; Wang, B.; Chu, L.; Tang, X. Aqueous Cytokines as Predictors of Macular Edema in Patients with Diabetes following Uncomplicated Phacoemulsification Cataract Surgery. Biomed. Res. Int. 2015, 2015, 126984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, S.; Liang, C.; He, Y.; Chen, Y.; Zhao, Q.; Dai, S.; Cheng, F.; Zhang, J.; Jiang, X. Changes of Subfoveal Choroidal Thickness after Cataract Surgery: A Meta-Analysis. J. Ophthalmol. 2018, 2018, 2501325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Zhang, X. Long-term Increase in Subfoveal Choroidal Thickness After Surgery for Senile Cataracts. Am. J. Ophthalmol. 2014, 158, 1362. [Google Scholar] [CrossRef] [PubMed]
- Cheong, K.X.; Tan, C.S. Long-term increase in subfoveal choroidal thickness after surgery for senile cataracts. Am. J. Ophthalmol. 2015, 159, 608–609. [Google Scholar] [CrossRef] [PubMed]
- Falcão, M.S.; Gonçalves, N.M.; Freitas-Costa, P.; Beato, J.B.; Rocha-Sousa, A.; Carneiro, Â.; Brandão, E.M.; Falcão-Reis, F.M. Choroidal and macular thickness changes induced by cataract surgery. Clin. Ophthalmol. 2014, 8, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Yılmaz, T.; Karci, A.A.; Yilmaz, İ.; Yılmaz, A.; Yıldırım, Y.; Sakalar, Y.B. Long-Term Changes in Subfoveal Choroidal Thickness After Cataract Surgery. Med. Sci. Monit. 2016, 22, 1566–1570. [Google Scholar]
- Lee, H.D.; Kim, G.H.; Shin, J.G.; Lee, B.; Kim, C.; Eom, T.J. Akinetic swept-source optical coherence tomography based on a pulse-modulated active mode locking fiber laser for human retinal imaging. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Bourne, R.R.; Stevens, G.A.; White, R.A.; Smith, J.L.; Flaxman, S.R.; Price, H.; Jonas, J.B.; Keeffe, J.; Leasher, J.; Naidoo, K.; et al. Causes of vision loss worldwide 1990–2010: A systematic analysis. Lancet Glob. Health 2012, 1, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Hau, V.S.; London, N.; Dalton, M. The Treatment Paradigm for the Implantable Miniature Telescope. Ophthalmol. Ther. 2016, 5, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Sunness, J.S.; Rubin, G.S.; Zuckerbrod, A.A.C. Foveal-Sparing Scotomas in Advanced Dry Age-Related Macular Degeneration. J. Vis. Impair. Blind. 2008, 102, 600–610. [Google Scholar] [CrossRef]
- Kim, J.H.; Kang, S.W.; Kim, J.R.; Kim, S.J. Variability of subfoveal choroidal thickness measurements in patients with age-related macular degeneration and central serous chorioretinopathy. Eye (Lond) 2013, 27, 809–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brit, Y.; Hayreh, S.S. Segmental nature of the choroidal vasculature. Br. J. Ophthalmol. 1975, 59, 631. [Google Scholar]
- Bille, J.F. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics; Springer: Berlin, Germany, 2019; Volume 1, pp. 301–317. [Google Scholar]
- Tsang, S.H.; Sharma, T. Optical Coherence Tomography. Adv. Exp. Med. Biol. 2018, 1085, 11–13. [Google Scholar] [PubMed]
- Mrejen, S.; Spaide, R.F. Optical coherence tomography: Imaging of the choroid and beyond. Surv Ophthalmol. 2013, 58, 387–429. [Google Scholar] [CrossRef] [PubMed]
- Wan, K.H.; Lam, A.K.N.; Leung, K.C. Optical coherence tomography angiography compared with optical coherence tomography macular measurements for detection of glaucoma. JAMA Ophthalmol. 2018, 136, 866–874. [Google Scholar] [CrossRef] [Green Version]
- Alibhai, A.J.; Or, C.; Witkin, A.J. Swept Source Optical Coherence Tomography: A Review. Curr. Ophthalmol. Rep. 2018, 6, 7–16. [Google Scholar] [CrossRef]
- Age-Related Eye Disease Study Research Group. The age-related eye disease study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: The age-related eye disease study report number 6. Am. J. Ophthalmol. 2001, 132, 668–681. [Google Scholar] [CrossRef]
- Chylack, L.T.; Wolfe, J.K.; Singer, D.M.; Leske, M.C.; Bullimore, M.A.; Bailey, I.L.; Friend, J.; McCarthy, D.; Wu, S.Y. The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group. Arch. Ophthalmol. 1993, 111, 831–836. [Google Scholar] [CrossRef]
- Noda, Y.; Ogawa, A.; Taku Toyama, T.U. Long-term increase in subfoveal choroidal thickness after surgery for senile cataracts. Am. J. Ophthalmol. 2014, 158, 455–459. [Google Scholar] [CrossRef]
- Abdellatif, M.K.; Ebeid, W.M. Variations in Choroidal and Macular Thickness Maps after Uneventful Phacoemulsification. Semin. Ophthalmol. 2018, 33, 719–725. [Google Scholar] [CrossRef]
- Celik, E.; Cakir, B.; Turkoglu, E.B.; Dogan, E.; Alagoz, G. Effect of cataract surgery on subfoveal choroidal and ganglion cell complex thicknesses measured by enhanced depth imaging optical coherence tomography. Clin. Ophthalmol. 2016, 10, 2171–2177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierru, A.; Carles, M.; Gastaud, P.; Baillif, S. Measurement of Subfoveal Choroidal Thickness After Cataract Surgery in Enhanced Depth Imaging Optical Coherence Tomography. Invest. Ophthalmol. Vis. Sci. 2014, 55, 4967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coscas, F.; Puche, N.; Coscas, G.; Srour, M.; Français, C.; Glacet-Bernard, A.; Querques, G.; Souied, E.H. Comparison of Macular Choroidal Thickness in Adult Onset Foveomacular Vitelliform Dystrophy and Age-Related Macular Degeneration. Invest. Ophthalmol. Vis. Sci. 2014, 55, 64–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.; Lee, D.H.; Lee, J.Y.; Yoon, Y.H. Correlation between subfoveal choroidal thickness and the severity or progression of nonexudative age-related macular degeneration. Invest. Ophthalmol Vis. Sci. 2013, 54, 7812–7818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonas, J.B.; Forster, T.M.; Steinmetz, P.; Schlichtenbrede, F.C.; Harder, B.C. Choroidal thickness in age-related macular degeneration. Retina 2014, 34, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- Yiu, G.; Chiu, S.J.; Petrou, P.A.; Stinnett, S.; Sarin, N.; Farsiu, S.; Chew, E.Y.; Wong, W.T.; Toth, C.A. Relationship of Central Choroidal Thickness with Age-Related Macular Degeneration Status. Am. J. Ophthalmol. 2015, 159, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Oyster, C.W. Book Review: The Human Eye, Structure and Function. Ophthal. Physiol. Opt. 2000, 20, 349–350. [Google Scholar]
- Shahzad, R.; Siddiqui, M.A.R.; Zafar, S.; Kausar, F.; Shahzad, M.H. Choroidal thickness changes following cataract surgery using swept source optical coherence tomography. Can. J. Ophthalmol. 2018, 53, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.M.; Elgouhary, S.M.; Nassar, M.K.; El Batanony, A.H. Changes in Choroidal Thickness after Cataract Surgery. Semin. Ophthalmol. 2018, 33, 664–670. [Google Scholar] [CrossRef]
- Ozdogan, E.S.; Kapran, Z.; Uyar, O.M. Quantitative analysis of subfoveal choroidal thickness using enhanced depth imaging optical coherence tomography in normal eyes. Int. Ophthalmol. 2014, 34, 35–40. [Google Scholar] [CrossRef]
- Ohsugi, H.; Ikuno, Y.; Ohara, Z.; Imamura, H.; Nakakura, S.; Matsuba, S.; Kato, Y.; Tabuchi, H. Changes in Choroidal Thickness after Cataract Surgery. Semin. Ophthalmol. 2014, 40, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Li, Z.; Sun, R.; Liu, D.; Liu, N. Subfoveal Choroidal and Macular Thickness Changes after Phacoemulsification Using Enhanced Depth Imaging Optical Coherence Tomography. Ophthalmic Res. 2018, 60, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, L.; Katsanos, A.; Russo, A.; Riva, I. 24-hour intraocular pressure and ocular perfusion pressure in glaucoma. Surv. Ophthalmol. 2013, 58, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Nganga Ngabou, C.G.F.; Makita, C.; Ndalla, S.S.; Nkokolo, F.; Madzou, M. Intraocular pressure decrease after manual small incision cataract surgery. J. Fr. Ophtalmol. 2017, 5, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Ngo, W.K.; Tan, C.S.H. Effect of bilateral sequential cataract extraction on intraocular pressure in non-glaucomatous Asian eyes. Br. J. Ophthalmol. 2016, 100, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Laurell, C.G.; Zetterström, C. Effects of dexamethasone, diclofenac, or placebo on the inflammatory response after cataract surgery. Br. J. Ophthalmol. 2002, 86, 1380–1384. [Google Scholar] [CrossRef] [Green Version]
- Broadhead, G.K.; Hong, T.; McCluskey, P.; Grigg, J.R.; Schlub, T.E.; Chang, A.A. Choroidal Thickness and Microperimetry Sensitivity in Age-Related Macular Degeneration. Ophthalmic Res. 2017, 58, 27–34. [Google Scholar] [CrossRef]
Author | Year | Country | N | OCT | Outcome after Cataract Surgery |
---|---|---|---|---|---|
Pierru | 2014 | France | 115 | Heidelberg | Significant ↑ in SFCT, negative correlation with age and AL |
Falcão | 2014 | Portugal | 14 | Heidelberg | No significant changes in CT |
Bayhan | 2016 | Turkey | 38 | RTvue-100 | Significant ↑ in CT. Change in IOP correlated with the CT changes |
Yilmaz | 2016 | Turkey | 65 | Heidelberg | Significant ↑ in SFCT |
Noda | 2014 | Japan | 29 | Heidelberg | Significant ↑ in SFCT |
Ohsugi | 2014 | Japan | 100 | Heidelberg | Significant ↑ in CT. Changes negatively correlated with those in IOP and AL |
Ibrahim | 2017 | Egypt | 53 | Heidelberg | Significant ↑ in CT |
Abdellatif | 2017 | Egypt | 66 | NIDEK | Insignificant ↑ in SFCT |
Shahzad | 2017 | Pakistan | 101 | Topcon | Significant ↑ in SFCT |
Asena | 2017 | Turkey | 27 | Topcon | Significant ↑ in SFCT in Phaco vs. Femto group |
Celik | 2016 | Turkey | 30 | Zeiss | Significant ↑ in SFCT |
Jiang | 2017 | China | 100 | Heidelberg | SFCT correlated with sex, AL, IOP, US time |
AMD Group | No-AMD Group | P | ||
---|---|---|---|---|
Sex, n (%) | Male | 11 (34.4) | 12 (37.5) | 0.5 * |
Female | 21 (65.6) | 20 (62.5) | ||
Age (years), M (SD) | 73.4 (7.09) | 71.8 (8.96) | 0.633 ** | |
AL (mm), M (SD) | 23.22 (1.03) | 23.29 (0.94) | 0.798 ** | |
PCME, n (%) | 1 (3.1%) | 1 (3.1%) | 0.754 * |
Group | Parameter | P | M1 | M3 | P * | P ** | P *** | P **** |
---|---|---|---|---|---|---|---|---|
AMD | BCVA | +0.44 (0.26) | +0.12 (0.33) | +0.1 (0.34) | 0.001 | 0.391 | 0.001 | 0.001 |
No-AMD | BCVA | +0.35 (0.23) | +0.05 (0.13) | +0.04 (0.08) | 0.001 | 0.440 | 0.001 | 0.001 |
AMD | IOP | 15.87 (2.60) | 14.09 (2.97) | 13.27 (2.46) | 0.003 | 0.129 | 0.001 | 0.001 |
No-AMD | IOP | 15.16 (2.45) | 13.0 (1.70) | 12.8 (2.24) | 0.001 | 0.925 | 0.001 | 0.001 |
AMD | OPP | 56.51 (20.34) | 51.63 (10.13) | 52.36 (8.63) | 0.233 | 0.182 | 0.789 | 0.231 |
No-AMD | OPP | 65.69 (22.76) | 56.13 (8.79) | 57.5 (8.38) | 0.07 | 0.586 | 0.484 | 0.531 |
AMD | FRT | 243.17 (36.22) | 262.50 (61.09) | 252.36 (34.70) | 0.001 | 0.253 | 0.141 | 0.031 |
No-AMD | FRT | 232.63 (36.61) | 246.81 (51.51) | 249.10 (30.42) | 0.001 | 0.502 | 0.001 | 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gudauskienė, G.; Povilaitytė, I.; Šepetauskienė, E.; Žaliūnienė, D. Phacoemulsification Induced Changes of Choroidal Thickness in Eyes with Age-Related Macular Degeneration. Medicina 2020, 56, 252. https://doi.org/10.3390/medicina56050252
Gudauskienė G, Povilaitytė I, Šepetauskienė E, Žaliūnienė D. Phacoemulsification Induced Changes of Choroidal Thickness in Eyes with Age-Related Macular Degeneration. Medicina. 2020; 56(5):252. https://doi.org/10.3390/medicina56050252
Chicago/Turabian StyleGudauskienė, Gailė, Ieva Povilaitytė, Eglė Šepetauskienė, and Dalia Žaliūnienė. 2020. "Phacoemulsification Induced Changes of Choroidal Thickness in Eyes with Age-Related Macular Degeneration" Medicina 56, no. 5: 252. https://doi.org/10.3390/medicina56050252
APA StyleGudauskienė, G., Povilaitytė, I., Šepetauskienė, E., & Žaliūnienė, D. (2020). Phacoemulsification Induced Changes of Choroidal Thickness in Eyes with Age-Related Macular Degeneration. Medicina, 56(5), 252. https://doi.org/10.3390/medicina56050252