Risk Factors for Delayed Neurocognitive Recovery According to Brain Biomarkers and Cerebral Blood Flow Velocity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cognitive Evaluation
- The Adenbrooke test (ACE-III) (adopted in the Lithuanian language by R. Margeviciute, A. Bagdonas, K. Butkus, J. Kuzmickiene, A. Vaitkevicius, G. F. Kaubrys, T. H. Bak in 2013 September is composed of five cognitive domains: attention, memory, language, verbal fluency, and visuospatial abilities. It is sensitive to mild cognitive impairment.
- Trial making test, part A—provides information about visual attention and processing speed. Montreal Cognitive Assessment (MoCa)—validated to detect cognitive impairment and is often used instead of the Mini mental state examination (MMSE) test [14].
- Confusion Assessment Method (CAM)—used to identify delirium.
2.2. Perioperative Period
2.3. TCD Technique
2.4. Brain Biomarker
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Brain Biomarkers
3.3. MCA Blood Flow Velocity Changes
3.4. Pearson Correlation
3.5. Logistic Regression
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Health, W.; Systems, C. Postoperative Cognitive Dysfunction after Cardiac Surgery. Chest 2005, 128, 3664–3670. [Google Scholar]
- Rundshagen, I. Postoperative Cognitive Dysfunction. Dtsch. Aerzteblatt Online 2014, 111, 119–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soenarto, R.F.; Mansjoer, A.; Amir, N.; Aprianti, M.; Perdana, A. Cardiopulmonary Bypass Alone Does Not Cause Postoperative Cognitive Dysfunction Following Open Heart Surgery. Anesthesiol. Pain Med. 2018, 8, 4–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thudium, M.; Ellerkmann, R.K.; Heinze, I.; Hilbert, T. Relative cerebral hyperperfusion during cardiopulmonary bypass is associated with risk for postoperative delirium: A cross-sectional cohort study. BMC Anesthesiol. 2019, 19, 35. [Google Scholar] [CrossRef]
- Schmidt, M.; Scheunert, T.; Steinbach, G.; Schirmer, U.; Marx, T.; Freitag, N.; Reinelt, H. Hypertension as a risk factor for cerebral injury during cardiopulmonary bypass. Protein S100B and transcranial Doppler findings. Anaesthesia 2001, 56, 733–738. [Google Scholar] [CrossRef]
- Kosir, G.; Tetickovic, E. Intraoperative transcranial doppler ultrasonography monitoring of cerebral blood flow during coronary artery bypass grafting. Acta Clin. Croat. 2011, 50, 5–11. [Google Scholar]
- Caplan, L.R.; Hennerici, M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch. Neurol. 1998, 55, 1475–1482. [Google Scholar] [CrossRef]
- Hori, D.; Ono, M.; Rappold, T.E.; Conte, J.V.; Shah, A.S.; Cameron, D.E.; Adachi, H.; Everett, A.D.; Hogue, C.W. Hypotension After Cardiac Operations Based on Autoregulation Monitoring Leads to Brain Cellular Injury. Ann. Thorac. Surg. 2015, 100, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Cerejeira, J.; Lagarto, L.; Mukaetova-Ladinska, E.B. The Immunology of Delirium. Neuroimmunomodulation 2014, 21, 72–78. [Google Scholar] [CrossRef]
- Cerejeira, J.; Firmino, H.; Vaz-Serra, A.; Mukaetova-Ladinska, E.B. The neuroinflammatory hypothesis of delirium. Acta Neuropathol. 2010, 119, 737–754. [Google Scholar] [CrossRef] [Green Version]
- Shaw, G.; Yang, C.; Ellis, R.; Anderson, K.; Mickle, J.P.; Scheff, S.; Pike, B.; Anderson, D.K.; Howland, D.R. Hyperphosphorylated neurofilament NF-H is a serum biomarker of axonal injury. Biochem. Biophys. Res. Commun. 2005, 336, 1268–1277. [Google Scholar] [CrossRef]
- Tomaszewski, D. Biomarkers of Brain Damage and Postoperative Cognitive Disorders in Orthopedic Patients: An Update. BioMed Res. Int. 2015, 2015, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Benvenuti, S.M.; Zanatta, P.; Valfrè, C.; Polesel, E.; Palomba, D. Preliminary evidence for reduced preoperative cerebral blood flow velocity as a risk factor for cognitive decline three months after cardiac surgery: An extension study. Perfusion 2012, 27, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Larner, A.J. Screening utility of the Montreal Cognitive Assessment (MoCA): In place of—Or as well as—The MMSE? Int. Psychogeriatr. 2011, 24, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Itoh, T.; Matsumoto, M.; Handa, N.; Maeda, H.; Hougaku, H.; Hashimoto, H.; Etani, H.; Tsukamoto, Y.; Kamada, T. Rate of successful recording of blood flow signals in the middle cerebral artery using transcranial Doppler sonography. Stroke 1993, 24, 1192–1195. [Google Scholar] [CrossRef] [Green Version]
- Kwon, J.-H.; Kim, J.S.; Kang, D.-W.; Bae, K.-S.; Kwon, S.U. The Thickness and Texture of Temporal Bone in Brain CT Predict Acoustic Window Failure of Transcranial Doppler. J. Neuroimaging 2006, 16, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Marinoni, M.; Ginanneschi, A.; Forleo, P.; Amaducci, L. Technical limits in transcranial Doppler recording: Inadquate acoustic windows. Ultrasound Med. Biol. 1997, 23, 1275–1277. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Fu, M.-H.; Tan, T.-Y. Factors Associated with No or Insufficient Temporal Bone Window Using Transcranial Color-coded Sonography. J. Med. Ultrasound 2015, 23, 129–132. [Google Scholar] [CrossRef] [Green Version]
- Bathala, L.; Mehndiratta, M.M.; Sharma, V.K. Transcranial doppler: Technique and common findings (Part 1). Ann. Indian Acad. Neurol. 2013, 16, 174–179. [Google Scholar] [CrossRef]
- Alexandrov, A.V.; Sloan, M.A.; Wong, L.K.; Douville, C.; Razumovsky, A.Y.; Koroshetz, W.J.; Kaps, M.; Tegeler, C.H.; American Society of Neuroimaging Practice Guidelines Committee. Practice Standards for Transcranial Doppler Ultrasound: Part I-Test Performance. J. Neuroimaging 2007, 17, 11–18. [Google Scholar] [CrossRef]
- Seco, M.; Edelman, J.J.B.; Wilson, M.K.; Bannon, P.G.; Vallely, M.P. Serum Biomarkers of Neurologic Injury in Cardiac Operations. Ann. Thorac. Surg. 2012, 94, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Oeckl, P.; Halbgebauer, S.; Anderl-Straub, S.; Steinacker, P.; Huss, A.M.; Neugebauer, H.; Von Arnim, C.A.; Diehl-Schmid, J.; Grimmer, T.; Kornhuber, J.; et al. Glial Fibrillary Acidic Protein in Serum is Increased in Alzheimer’s Disease and Correlates with Cognitive Impairment. J. Alzheimer Dis. 2019, 67, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Arrastia, R.; Wang, K.K.; Papa, L.; Sorani, M.D.; Yue, J.K.; Puccio, A.M.; McMahon, P.J.; Inoue, T.; Yuh, E.L.; Lingsma, H.F.; et al. Acute Biomarkers of Traumatic Brain Injury: Relationship between Plasma Levels of Ubiquitin C-Terminal Hydrolase-L1 and Glial Fibrillary Acidic Protein. J. Neurotrauma 2014, 31, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Rundgren, M.; Friberg, H.; Cronberg, T.; Romner, B.; Petzold, A. Serial soluble neurofilament heavy chain in plasma as a marker of brain injury after cardiac arrest. Crit. Care 2012, 16, R45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uphaus, T.; Bittner, S.; Gröschel, S.; Steffen, F.; Muthuraman, M.; Wasser, K.; Weber-Krüger, M.; Zipp, F.; Wachter, R.; Gröschel, K. NfL (Neurofilament Light Chain) Levels as a Predictive Marker for Long-Term Outcome After Ischemic Stroke. Stroke 2019, 50, 3077–3084. [Google Scholar] [CrossRef] [PubMed]
- Pawliszak, W.; Szwed, K.; Słomka, A.; Piekuś-Słomka, N.; Szwed, M.; Kowalewski, M.; Zekanowska, E.; Borkowska, A. Three-vessel coronary artery disease may predict changes in biochemical brain injury markers after off-pump coronary artery bypass grafting. J. Zhejiang Univ. Sci. B 2018, 19, 735–738. (In Chinese) [Google Scholar] [CrossRef]
- Saller, T.; Petzold, A.; Zetterberg, H.; Kuhle, J.; Chappell, D.; Von Dossow, V.; Klawitter, F.; Schurholz, T.; Hagl, C.; Reuter, D.A.; et al. A case series on the value of tau and neurofilament protein levels to predict and detect delirium in cardiac surgery patients. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2019, 163, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Yan, J.; Hull, R.; Read, S.; O’Sullivan, J.D.; Henderson, R.; Rose, S.; Greer, J.M.; McCombe, P. Levels of phosphorylated axonal neurofilament subunit H (pNfH) are increased in acute ischemic stroke. J. Neurol. Sci. 2011, 304, 117–121. [Google Scholar] [CrossRef]
- Sellner, J.; Petzold, A.; Sadikovic, S.; Esposito, L.; Weber, M.S.; Heider, P.; Eckstein, H.-H.; Hemmer, B.; Poppert, H. The Value of the Serum Neurofilament Protein Heavy Chain as a Biomarker for Peri-operative Brain Injury After Carotid Endarterectomy. Neurochem. Res. 2009, 34, 1969–1974. [Google Scholar] [CrossRef]
- Traenka, C.; Disanto, G.; Seiffge, D.J.; Gensicke, H.; Hert, L.; Grond-Ginsbach, C.; Peters, N.; Regeniter, A.; Kloss, M.; De Marchis, G.M.; et al. Serum Neurofilament Light Chain Levels Are Associated with Clinical Characteristics and Outcome in Patients with Cervical Artery Dissection. Cerebrovasc. Dis. 2015, 40, 222–227. [Google Scholar] [CrossRef]
- Middeldorp, J.; Hol, E.M. GFAP in health and disease. Prog. Neurobiol. 2011, 93, 421–443. [Google Scholar] [CrossRef] [PubMed]
- Vedovelli, L.; Padalino, M.; Suppiej, A.; Sartori, S.; Falasco, G.; Simonato, M.; Carnielli, V.P.; Stellin, G.; Cogo, P. Cardiopulmonary-Bypass Glial Fibrillary Acidic Protein Correlates With Neurocognitive Skills. Ann. Thorac. Surg. 2018, 106, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Rappold, T.; LaFlam, A.; Hori, D.; Brown, C.; Brandt, J.; Mintz, C.D.; Sieber, F.; Gottschalk, A.; Yenokyan, G.; Everett, A.; et al. Evidence of an association between brain cellular injury and cognitive decline after non-cardiac surgery. Br. J. Anaesth. 2016, 116, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gailiušas, M.; Andrejaitienė, J.; Širvinskas, E.; Krasauskas, D.; Švagždienė, M.; Kumpaitienė, B. Association between serum biomarkers and postoperative delirium after cardiac surgery. Acta Medica Litu. 2019, 26, 8–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Easley, R.; Marino, B.S.; Jennings, J.; Cassedy, A.E.; Kibler, K.K.; Brady, K.M.; Andropoulos, D.B.; Brunetti, M.; Hogue, C.W.; Heitmiller, E.S.; et al. Impaired cerebral autoregulation and elevation in plasma glial fibrillary acidic protein level during cardiopulmonary bypass surgery for CHD. Cardiol. Young 2017, 28, 55–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Missler, U.; Orlowski, N.; Nötzold, A.; Dibbelt, L.; Steinmeier, E.; Wiesmann, M. Early elevation of S-100B protein in blood after cardiac surgery is not a predictor of ischemic cerebral injury. Clin. Chim. Acta 2002, 321, 29–33. [Google Scholar] [CrossRef]
- Sanchez-De-Toledo, J.; Chrysostomou, C.; Munoz, R.; Lichtenstein, S.; Sao-Avilés, C.A.; Wearden, P.D.; Morell, V.O.; Clark, R.S.; Toney, N.; Bell, M.J. Cerebral Regional Oxygen Saturation and Serum Neuromarkers for the Prediction of Adverse Neurologic Outcome in Pediatric Cardiac Surgery. Neurocrit. Care 2013, 21, 133–139. [Google Scholar] [CrossRef]
- Wan, Y.; Xu, J.; Ma, D.; Zeng, Y.; Cibelli, M.; Maze, M. Postoperative Impairment of Cognitive Function in Rats. Anesthesiology 2007, 106, 436–443. [Google Scholar] [CrossRef]
- Sprung, J.; Roberts, R.O.; Knopman, D.S.; Olive, D.M.; Gappa, J.L.; Sifuentes, V.L.; Behrend, T.L.; Farmer, J.D.; Weingarten, T.N.; Hanson, A.C.; et al. Association of Mild Cognitive Impairment With Exposure to General Anesthesia for Surgical and Nonsurgical Procedures: A Population-Based Study. Mayo Clin. Proc. 2016, 91, 208–217. [Google Scholar] [CrossRef] [Green Version]
- Dokkedal, U.; Hansen, T.; Rasmussen, L.S.; Mengel-From, J.; Christensen, K. Cognitive Functioning after Surgery in Middle-aged and Elderly Danish Twins. Anesthesiology 2016, 124, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.K.; Yang, Z.; Sarkis, G.; Torres, I.; Raghavan, V. Ubiquitin C-terminal hydrolase-L1 (UCH-L1) as a therapeutic and diagnostic target in neurodegeneration, neurotrauma and neuro-injuries. Expert Opin. Ther. Targets 2017, 21, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Mattsson, N.; Andreasson, U.; Zetterberg, H.; Blennow, K. Association of Plasma Neurofilament Light With Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurol. 2017, 74, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, K.K. Glial fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015, 38, 364–374. [Google Scholar] [CrossRef] [Green Version]
- DiMeglio, M.; Furey, W.; Hajj, J.; Lindekens, J.; Patel, S.; Acker, M.; Bavaria, J.; Szeto, W.Y.; Atluri, P.; Haber, M.; et al. Observational study of long-term persistent elevation of neurodegeneration markers after cardiac surgery. Sci. Rep. 2019, 9, 7177. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, W.; Basterra, L.B.; Jacobs, S.; Brouwer, N.; Meerlo, P.; Schaafsma, A.; Boddeke, E.W.; Eggen, B.J. Maternal inflammation induces immune activation of fetal microglia and leads to disrupted microglia immune responses, behavior, and learning performance in adulthood. Neurobiol. Dis. 2017, 106, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Laudanski, K.; Zawadka, M.; Polosak, J.; Modi, J.; DiMeglio, M.; Gutsche, J.; Szeto, W.Y.; Puzianowska-Kuźnicka, M. Acquired immunological imbalance after surgery with cardiopulmonary bypass due to epigenetic over-activation of PU.1/M-CSF. J. Transl. Med. 2018, 16, 143. [Google Scholar] [CrossRef]
- Szwed, K.; Słomka, A.; Pawliszak, W.; Szwed, M.; Anisimowicz, L.; Żekanowska, E.; Borkowska, A. Novel Markers for Predicting Type 2 Neurologic Complications of Coronary Artery Bypass Grafting. Ann. Thorac. Surg. 2019. [Google Scholar] [CrossRef]
- Glumac, S.; Kardum, G.; Karanovic, N. Postoperative Cognitive Decline After Cardiac Surgery: A Narrative Review of Current Knowledge in 2019. Med. Sci. Monit. 2019, 25, 3262–3270. [Google Scholar] [CrossRef]
- Ito, A.; Goto, T.; Maekawa, K.; Baba, T.; Mishima, Y.; Ushijima, K. Postoperative neurological complications and risk factors for pre-existing silent brain infarction in elderly patients undergoing coronary artery bypass grafting. J. Anesth. 2012, 26, 405–411. [Google Scholar] [CrossRef]
- Nuttall, G.A.; Cook, D.J.; Fulgham, J.R.; Oliver, W.C.; Proper, J.A. The Relationship Between Cerebral Blood Flow and Transcranial Doppler Blood Flow Velocity During Hypothermic Cardiopulmonary Bypass in Adults. Anesth. Analg. 1996, 82, 1146–1151. [Google Scholar] [CrossRef]
- O’Neil, M.P.; Fleming, J.C.; Badhwar, A.; Guo, L.R. Pulsatile Versus Nonpulsatile Flow During Cardiopulmonary Bypass: Microcirculatory and Systemic Effects. Ann. Thorac. Surg. 2012, 94, 2046–2053. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, M.P.; Alie, R.; Guo, L.; Myers, M.-L.; Murkin, J.M.; Ellis, C.G.; Ellis, C. Microvascular Responsiveness to Pulsatile and Nonpulsatile Flow During Cardiopulmonary Bypass. Ann. Thorac. Surg. 2018, 105, 1745–1753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veraar, C.M.; Rinösl, H.; Kühn, K.; Skhirtladze-Dworschak, K.; Felli, A.; Mouhieddine, M.; Menger, J.; Pataraia, E.; Ankersmit, H.J.; Dworschak, M. Non-pulsatile blood flow is associated with enhanced cerebrovascular carbon dioxide reactivity and an attenuated relationship between cerebral blood flow and regional brain oxygenation. Crit. Care 2019, 23, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, H.; Etani, H.; Handa, N.; Tagaya, M.; Oku, N.; Kim, B.-H.; Naka, M.; Kinoshita, N.; Nukada, T.; Fukunaga, R.; et al. A validation study on the reproducibility of transcranial doppler velocimetry. Ultrasound Med. Biol. 1990, 16, 9–14. [Google Scholar] [CrossRef]
Non-dNCR Group | dNCR Group | p Value | |
---|---|---|---|
Sex: male (n, %) | 42 (70) | 26 (63.40) | 0.523 |
Age (years) | 66.76(4.69) n | 72.00 (59; 77) | <0.01 |
Surgery type: CABG (n, %) Valve surgery (n, %) CABG + valve surgery (n, %) | 40 (66.70) 15 (25.00) 5 (8.30) | 26 (63.40) 10 (24.40) 5 (2.20) | 0.815 |
Post myocardial infarction (n, %) | 20 (33.30) | 7 (7.10) | 0.124 |
Atrial fibrillation (n, %) | 9 (15) | 9(22) | 0.490 |
Duration of CPB (min) | 97.07 (25.72) n | 92 (46; 173) | 0.745 |
Duration of aortic cross-clamp (min) | 53.12 (20.77) n | 49 (26; 138) | 0.920 |
Haematocrit (Hct) CPB (%) n | 27.90 (1.46) | 27.02 (1.47) | <0.01 |
CO2 CPB n | 42.29 (2.19) | 41.01 (1.54) | 0.01 |
CPB pump flow | 3.96 (2.8; 9.94) | 3.93 (0.44) n | 0.934 |
Ejection fraction (%) | 50 (25; 60) | 50 (20; 60) | 0.724 |
Postoperative AF (n, %) | 9 (15.00) | 7 (17.10) | 0.788 |
Non-dNCR Group | dNCR Group | p | |
---|---|---|---|
GFAP induction (ng/mL) | 0.008 (0.008; 0.43) | 0.008 (0.0002; 0.54) | 0.382 |
GFAP after 24 h (ng/mL) | 0.13 (0.0005; 0.11) | 0.009 (0.0001; 0.93) | 0.342 |
GFAP after 48 h (ng/mL) | 0.013 (0.0004; 0.11) | 0.012 (0.000; 0.85) | 0.273 |
p | <0.01 | <0.01 |
Non-dNCR Group | dNCR Group | p | |
---|---|---|---|
Nf-H induction (pg/mL) | 25.70 (2.88; 180) | 41.16 (0.43; 180) | 0.131 |
Nf-H after 24 h (pg/mL) | 50.00 (2; 198) | 54.20 (4.97; 180) | 0.240 |
Nf- after 48 h (pg/mL) | 45.49 (2.20; 198) | 49.76 (0.72; 180) | 0.597 |
p | <0.01 | <0.01 |
Non-dNCR Group | dNCR Group | p-Value | |
---|---|---|---|
MCA BFV before surgery (cm/s) | 45.92 (13.17) | 41.83 (12.82) | 0.125 |
MCA BFV after induction (cm/s) | 44.96 (12.31) | 40.99 (11.91) | 0.110 |
MCA BFV bypass (cm/s) | 43.40 (9.56) | 37.13 (7.70) | 0.001 |
MCA BFV post-surgery (cm/s) | 47.76 (12.01) | 40.54 (11.21) | 0.003 |
Pearson Correlation | p | |
---|---|---|
CO2 concentration during bypass (mmHg) | 0.40 | <0.01 |
Hematocrit during bypass (%) | 0.42 | <0.01 |
MCA BFV bypass (cm/s) | 0.41 | <0.01 |
Age (years) | −0.53 | <0.01 |
B | SE | Wald | Df | Sig. | Exp(B) | 95% C.I. for EXP (B) Lower/Upper | |
---|---|---|---|---|---|---|---|
Age | 0.197 | 0.05 | 13.90 | 1 | <0.01 | 1.22 | 1.098/1.351 |
MCA BFV bypass | −0.71 | 0.03 | 5.42 | 1 | 0.020 | 0.93 | 0.877/0.989 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukauskienė, R.; Širvinskas, E.; Lenkutis, T.; Benetis, R.; Steponavičiūtė, R. Risk Factors for Delayed Neurocognitive Recovery According to Brain Biomarkers and Cerebral Blood Flow Velocity. Medicina 2020, 56, 288. https://doi.org/10.3390/medicina56060288
Bukauskienė R, Širvinskas E, Lenkutis T, Benetis R, Steponavičiūtė R. Risk Factors for Delayed Neurocognitive Recovery According to Brain Biomarkers and Cerebral Blood Flow Velocity. Medicina. 2020; 56(6):288. https://doi.org/10.3390/medicina56060288
Chicago/Turabian StyleBukauskienė, Rasa, Edmundas Širvinskas, Tadas Lenkutis, Rimantas Benetis, and Rasa Steponavičiūtė. 2020. "Risk Factors for Delayed Neurocognitive Recovery According to Brain Biomarkers and Cerebral Blood Flow Velocity" Medicina 56, no. 6: 288. https://doi.org/10.3390/medicina56060288
APA StyleBukauskienė, R., Širvinskas, E., Lenkutis, T., Benetis, R., & Steponavičiūtė, R. (2020). Risk Factors for Delayed Neurocognitive Recovery According to Brain Biomarkers and Cerebral Blood Flow Velocity. Medicina, 56(6), 288. https://doi.org/10.3390/medicina56060288