Prognostic Factors for All-Cause Mortality in Thai Patients with Fragility Fracture of Hip: Comorbidities and Laboratory Evaluations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Statistical Analysis
3. Results
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hartholt, K.A.; van Beeck, E.F.; Polinder, S.; van der Velde, N.; van Lieshout, E.M.M.; Panneman, M.J.M.; van der Cammen, T.J.M.; Patka, P. Societal Consequences of Falls in the Older Population: Injuries, Healthcare Costs, and Long-Term Reduced Quality of Life. J. Trauma: Inj. Infect. Crit. Care 2011, 71, 748–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, C.; Campion, G.; Melton, L.J., III. Hip fractures in the elderly: A world-wide projection. Osteoporos. Int. 1992, 2, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Nijmeijer, W.S.; Folbert, E.C.; Vermeer, M.; Slaets, J.P.; Hegeman, J.H. Prediction of early mortality following hip fracture surgery in frail elderly: The Almelo Hip Fracture Score (AHFS). Injury 2016, 47, 2138–2143. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, U.; Cannata, G.; Lecce, D.; Celi, M.; Cerocchi, I.; Iundusi, R. Incidence of fragility fractures. Aging Clin. Exp. Res. 2007, 19, 7–11. [Google Scholar]
- Abrahamsen, B.; van Staa, T.; Ariely, R.; Olson, M.; Cooper, C. Excess mortality following hip fracture: A systematic epidemiological review. Osteoporos. Int. 2009, 20, 1633–1650. [Google Scholar] [CrossRef]
- Gullberg, B.; Johnell, O.; Kanis, J.A. World-wide Projections for Hip Fracture. Osteoporos. Int. 1997, 7, 407–413. [Google Scholar] [CrossRef]
- Ferguson, K.B.; Halai, M.; Winter, A.; Elswood, T.; Smith, R.; Hutchison, J.D.; Holt, G. National audits of hip fractures: Are yearly audits required? Injury 2016, 47, 439–443. [Google Scholar] [CrossRef]
- Voeten, S.C.; Krijnen, P.; Voeten, D.M.; Hegeman, J.H.; Wouters, M.W.J.M.; Schipper, I.B. Quality indicators for hip fracture care, a systematic review. Osteoporos. Int. 2018, 29, 1963–1985. [Google Scholar] [CrossRef] [Green Version]
- Freeman, C.; Todd, C.; Camilleri-Ferrant, C.; Laxton, C.; Murrell, P.; Palmer, C.R.; Parker, M.; Payne, B.; Rushton, N. Quality improvement for patients with hip fracture: Experience from a multi-site audit. Qual. Saf. Health Care 2002, 11, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Haleem, S.; Lutchman, L.; Mayahi, R.; Grice, J.E.; Parker, M.J. Mortality following hip fracture: Trends and geographical variations over the last 40 years. Injury 2008, 39, 1157–1163. [Google Scholar] [CrossRef]
- Jürisson, M.; Raag, M.; Kallikorm, R.; Lember, M.; Uusküla, A. The impact of hip fracture on mortality in Estonia: A retrospective population-based cohort study. BMC Musculoskelet. Disord. 2017, 18, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vosoughi, A.R.; Emami, M.J.; Pourabbas, B.; Mahdaviazad, H. Factors increasing mortality of the elderly following hip fracture surgery: Role of body mass index, age, and smoking. Musculoskelet. Surg. 2017, 101, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Sun, T.; Liu, Z. Excess mortality of 1 year in elderly hip fracture patients compared with the general population in Beijing, China. Arch. Osteoporos. 2016, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- von Friesendorff, M.; McGuigan, F.E.; Wizert, A.; Rogmark, C.; Holmberg, A.H.; Woolf, A.D.; Akesson, K. Hip fracture, mortality risk, and cause of death over two decades. Osteoporos. Int. 2016, 27, 2945–2953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Man, L.p.; Ho, A.W.; Wong, S.H. Excess mortality for operated geriatric hip fracture in Hong Kong. Hong Kong Med. J. 2016, 22, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, M.J.; Moran, C.G.; Moppett, I.K. Development and validation of a preoperative scoring system to predict 30 day mortality in patients undergoing hip fracture surgery. Br. J. Anaesth. 2008, 101, 511–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Öztürk, A.; Ozkan, Y.; Akgöz, S.; Yalçýn, N.; Ozdemir, R.M.; Aykut, S. The risk factors for mortality in elderly patients with hip fractures: Postoperative one-year results. Singap. Med J. 2010, 51, 137–143. [Google Scholar]
- Khan, M.A.A.; Hossain, F.S.; Ahmed, I.; Muthukumar, N.; Mohsen, A. Predictors of early mortality after hip fracture surgery. Int. Orthop. 2013, 37, 2119–2124. [Google Scholar] [CrossRef] [Green Version]
- Aranguren-Ruiz, M.I.; Acha-Arrieta, M.V.; de Tejerina, J.C.-F.; Arteaga-Mazuelas, M.; Jarne-Betrán, V.; Arnáez-Solis, R. Risk Factors for Mortality After Surgery of Osteoporotic Hip Fracture in Patients Over 65 Years of Age. Rev. Esp. Cir. Ortop Traumatol. 2017, 61, 185–192. [Google Scholar] [CrossRef]
- Heyes, G.J.; Tucker, A.; Marley, D.; Foster, A. Predictors for 1-year mortality following hip fracture: A retrospective review of 465 consecutive patients. Eur. J. Trauma Emerg. Surg. 2017, 43, 113–119. [Google Scholar] [CrossRef]
- Sofu, H.; Ucpunar, H.; Camurcu, Y.; Duman, S.; Konya, M.N.; Gursu, S.; Sahin, V. Predictive factors for early hospital readmission and 1-year mortality in elder patients following surgical treatment of a hip fracture. Turk. J. Trauma Emerg. Surg. 2017, 23, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Endo, A.; Baer, H.J.; Nagao, M.; Weaver, M.J. Prediction Model of In-Hospital Mortality After Hip Fracture Surgery. J. Orthop. Trauma 2018, 32, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Lo, L.W.T.; Yanling, X.; Chou, A.; Howe, T.S.; Allen, J.C.; Koh, J.S.B. End-Stage Renal Failure Is an Independent Risk Factor for 1-Year Mortality After Hip Fracture Surgery. Geriatr. Orthop. Surg. Rehabil. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanz-Reig, J.; Marín, J.S.; Martínez, J.F.; Beltrán, D.O.; López, J.M.; Rico, J.Q. Prognostic factors and predictive model for in-hospital mortality following hip fractures in the elderly. Chin. J. Traumatol. 2018, 21, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Karres, J.; Kieviet, N.; Eerenberg, J.-P.; Vrouenraets, B.C. Predicting Early Mortality After Hip Fracture Surgery. J. Orthop. Trauma 2018, 32, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Temiz, A.; Ersozlu, S. Admission Neutrophile to Lymphocyte Ratio and Postoperative Mortality in Elderly Hip Fracture Patients. Turk. J. Trauma Emerg. Surg. 2019, 25, 71–74. [Google Scholar] [CrossRef]
- Traven, S.A.; Reeves, R.A.; Althoff, A.D.; Slone, H.S.; Walton, Z.J. New Five-Factor Modified Frailty Index Predicts Morbidity and Mortality in Geriatric Hip Fractures. J. Orthop. Trauma 2019, 33, 319–323. [Google Scholar] [CrossRef]
- Chao, C.-T.; Yang, R.-S.; Huang, W.-J.; Tsai, K.-S.; Chan, D.-C. Risk Factors for Poor Functional Recovery, Mortality, Recurrent Fractures, and Falls Among Patients Participating in a Fracture Liaison Service Program. J. Am. Med Dir. Assoc. 2019, 20, 1129–1136.e1. [Google Scholar] [CrossRef]
- Belangero, W.D.; Barla, J.D.; Bergalli, D.H.R.; Salazar, C.M.O.; Fernandez, D.S.; Vivar, M.A.M.; Zylberberg, A.; Carabelli, G.S.; Kfuri, M. Nutrition and Inflammation Influence 1-Year Mortality of Surgically Treated Elderly Intertrochanteric Fractures: A Prospective International Multicenter Case Series. Geriatr. Orthop. Surg. Rehabil. 2019, 10. [Google Scholar] [CrossRef]
- Whitehouse, M.R.; Berstock, J.R.; Kelly, M.B.; Gregson, C.L.; Judge, A.; Sayers, A.; Chesser, T.J. Higher 30-day mortality associated with the use of intramedullary nails compared with sliding hip screws for the treatment of trochanteric hip fractures. Bone Jt. J. 2019, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.; Lee, J.S.; Kim, S.; Kim, B.S.; Choi, H.; Song, D.Y.; Kim, W.B.; Won, C.W. Length of hospital stay after hip fracture surgery and 1-year mortality. Osteoporos. Int. 2018, 30, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Norring-Agerskov, D.; Bathum, L.; Pedersen, O.B.; Abrahamsen, B.; Lauritzen, J.B.; Jørgensen, N.R.; Jørgensen, H.L. Biochemical markers of inflammation are associated with increased mortality in hip fracture patients: The Bispebjerg Hip Fracture Biobank. Aging Clin. Exp. Res. 2019, 31, 1727–1734. [Google Scholar] [CrossRef] [PubMed]
- Guzón-Illescas, O.; Fernandez, E.P.; Villarias, N.C.; Donate, F.J.Q.; Peña, M.; Alonso-Blas, C.; García-Vadillo, A.; Mazzucchelli, R. Mortality after osteoporotic hip fracture: Incidence, trends, and associated factors. J. Orthop. Surg. Res. 2019, 14, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaseenon, T.; Luevitoonvechkij, S.; Wongtriratanachai, P.; Rojanasthien, S. Long-Term Mortality After Osteoporotic Hip Fracture in Chiang Mai, Thailand. J. Clin. Densitom. 2010, 13, 63–67. [Google Scholar] [CrossRef]
- Chaysri, R.; Leerapun, T.; Klunklin, K.; Chiewchantanakit, S.; Luevitoonvechkij, S.; Rojanasthien, S. Factors related to mortality after osteoporotic hip fracture treatment at Chiang Mai University Hospital, Thailand, during 2006 and 2007. J. Med Assoc. Thail. 2015, 98, 59–64. [Google Scholar]
- Chariyalertsak, S.; Suriyawongpisal, P.; Thakkinstain, A. Mortality after hip fractures in Thailand. Int. Orthop. 2001, 25, 294–297. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.; Lv, H.; Feng, C.; Yuwen, P.; Wei, N.; Chen, W.; Zhang, Y. Preventable risk factors of mortality after hip fracture surgery: Systematic review and meta-analysis. Int. J. Surg. 2018, 52, 320–328. [Google Scholar] [CrossRef]
- Stijacic-Cenzer, I.; Tang, V.; Boscardin, W.J.; Smith, A.K.; Ritchie, C.; Wallhagen, M.I.; Espaldon, R.; E Covinsky, K. One-Year Mortality After Hip Fracture: Development and Validation of a Prognostic Index. J. Am. Geriatr. Soc. 2016, 64, 1863–1868. [Google Scholar] [CrossRef] [Green Version]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. BMJ 2015, 350, g7594. [Google Scholar] [CrossRef] [Green Version]
- Madley-Dowd, P.; Hughes, R.; Tilling, K.; Heron, J. The proportion of missing data should not be used to guide decisions on multiple imputation. J. Clin. Epidemiol. 2019, 110, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Vittinghoff, E.; McCulloch, C.E. Relaxing the Rule of Ten Events per Variable in Logistic and Cox Regression. Am. J. Epidemiol. 2007, 165, 710–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- Peduzzi, P.; Concato, J.; Feinstein, A.R.; Holford, T.R. Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates. J. Clin. Epidemiol. 1995, 48, 1503–1510. [Google Scholar] [CrossRef]
- Concato, J.; Peduzzi, P.; Holford, T.R.; Feinstein, A.R. Importance of events per independent variable in proportional hazards analysis I. Background, goals, and general strategy. J. Clin. Epidemiol. 1995, 48, 1495–1501. [Google Scholar] [CrossRef]
- Härstedt, M.; Rogmark, C.; Sutton, R.; Melander, O.; Fedorowski, A. Impact of comorbidity on 6-month hospital readmission and mortality after hip fracture surgery. Injury 2015, 46, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Tolppanen, A.-M.; Taipale, H.; Tanskanen, A.; Tiihonen, L.; Hartikainen, S. Comparison of predictors of hip fracture and mortality after hip fracture in community-dwellers with and without Alzheimer’s disease—Exposure-matched cohort study. BMC Geriatr. 2016, 16, 204. [Google Scholar] [CrossRef]
- Baker, N.L.; Cook, M.N.; Arrighi, M.H.; Bullock, R. Hip fracture risk and subsequent mortality among Alzheimer’s disease patients in the United Kingdom, 1988–2007. Age Ageing 2010, 40, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seitz, D.P.; Gill, S.S.; Gruneir, A.; Austin, P.C.; Anderson, G.M.; Bell, C.M.; Rochon, P.A. Effects of Dementia on Postoperative Outcomes of Older Adults With Hip Fractures: A Population-Based Study. J. Am. Med Dir. Assoc. 2014, 15, 334–341. [Google Scholar] [CrossRef]
- Friedman, S.M.; Mendelson, D.A. Epidemiology of Fragility Fractures. Clin. Geriatr. Med. 2014, 30, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Stauder, R.; Valent, P.; Theurl, I. Anemia at older age: Etiologies, clinical implications, and management. Blood 2018, 131, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic Kidney Disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Lameire, N.; Van Biesen, W.; Vanholder, R. Acute renal failure. Lancet 2005, 365, 417–430. [Google Scholar] [CrossRef]
- Prommik, P.; Kolk, H.; Sarap, P.; Puuorg, E.; Harak, E.; Kukner, A.; Pääsuke, M.; Märtson, A. Estonian hip fracture data from 2009 to 2017: High rates of nonoperative management and high 1-year mortality. Acta Orthop. 2019, 90, 159–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Dead n, (%) (n = 108) | Alive n, (%) (n = 667) | p-Value |
---|---|---|---|
General Factors | |||
Gender, n (%) | |||
Male | 36 (33.33) | 178 (26.69) | 0.164 |
Female | 72 (66.67) | 489 (73.31) | |
Age (years), Mean ± SD c | 81.63 ± 8.52 | 78.68 ± 9.65 | 0.003 |
Age at admission ≥85 years, n (%) | 46 (42.59) | 188 (28.19) | 0.003 |
BMI a at admission (kg/m2), Mean ± SD c (n = 769) | 19.82 ± 3.13 | 21.18 ± 4.05 | <0.001 |
BMI a at admission ≥25 kg/m2, n (%) (n = 769) | 8 (7.48) | 96 (14.50) | 0.048 |
Pre-fracture walking ability by oneself, n (%) (n = 606) | 72 (91.14) | 504 (95.64) | 0.095 |
Living with family, n (%) (n = 774) | 108 (100) | 663 (99.55) | 1.000 |
Comorbidities | |||
Active malignancy, n (%) | 12 (11.11) | 9 (1.35) | <0.001 |
Dementia or Alzheimer’s disease, n (%) | 13 (12.04) | 31 (4.65) | 0.005 |
Hemiplegia, n (%) | 2 (1.85) | 34 (5.10) | 0.213 |
Hypertension, n (%) | 69 (63.89) | 448 (67.17) | 0.510 |
History of myocardial infraction, n (%) | 4 (3.70) | 11 (1.65) | 0.144 |
Congestive heart failure, n (%) | 2 (1.85) | 5 (0.75) | 0.254 |
Atrial fibrillation, n (%) | 9 (8.33) | 32 (4.80) | 0.160 |
Chronic obstructive pulmonary disorder, n (%) | 18 (16.67) | 49 (7.35) | 0.003 |
Diabetes mellitus, n (%) | 36 (33.33) | 185 (27.74) | 0.251 |
Asthma, n (%) | 1 (0.93) | 16 (2.40) | 0.492 |
Rheumatologic disease, n (%) | 15 (13.89) | 73 (10.94) | 0.413 |
Cerebrovascular disease, n (%) | 14 (12.96) | 79 (11.34) | 0.750 |
Current pneumonia, n (%) | 1 (0.93) | 5 (0.75) | 0.595 |
Peptic ulcer, n (%) | 3 (2.78) | 9 (1.35) | 0.227 |
ASA score b, n (%) (n = 688) | <0.001 | ||
Class 1 | 0 (0) | 7 (1.15) | |
Class 2 | 29 (36.71) | 397 (65.19) | |
Class 3 | 49 (62.03) | 202 (33.17) | |
Class 4 | 1 (1.27) | 3 (0.49) | |
Type of fracture, n (%) | |||
Fractured neck of femur | 32 (29.63) | 255 (38.23) | 0.107 |
Intertrochanteric fracture | 76 (70.37) | 412 (61.77) | |
Investigative Factors | |||
Admission hemoglobin (g/dL), Mean ± SD c | 9.93 ± 1.89 | 10.85 ± 1.83 | <0.001 |
Admission hemoglobin concentration <10 g/dL, n (%) | 57 (52.78) | 202 (30.28) | <0.001 |
Admission glomerular filtration rate (mL/min/1.73 m2), Mean ± SD c | 48.38 ± 56.90 | 67.31 ± 41.77 | <0.001 |
Admission glomerular filtration rate <30 mL/min/1.73 m2, n (%) | 36 (33.33) | 87 (13.04) | <0.001 |
Admission serum albumin level (g/dL), Mean ± SD c (n = 151) | 3.30 ± 0.63 | 3.58 ± 0.51 | 0.018 |
Neutrophil to lymphocyte ratio, Median ± IQR d | 7.36 ± 5.74 | 6.08 ± 5.90 | 0.276 |
Neutrophil to lymphocyte ratio ≥4.7, n (%) | 73 (67.59) | 433 (64.92) | 0.663 |
Treatment Factors, n (%) | <0.001 | ||
Nonoperative treatment | 29 (26.85) | 58 (8.70) | |
Dynamic hip screw | 15 (13.89) | 100 (14.99) | |
Cephalomedullary nailing | 36 (33.33) | 262 (39.28) | |
Stable angle plating | 2 (1.85) | 15 (2.25) | |
Multiple screw fixation | 2 (1.85) | 38 (5.70) | |
Arthroplasty | 24 (22.22) | 194 (29.09) | |
Time from injury to operation (days), Median ± IQR d (n = 688) | 9 ± 10 | 8 ± 8 | 0.020 |
Time from injury to operation ≥48 h, n (%) (n = 688) | 78 (98.73) | 586 (96.22) | 0.508 |
Peripheral nerve or spinal block, n (%) (n = 688) | 20 (25.32) | 146 (23.97) | 0.781 |
Characteristics | Hazard Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
General Factors | |||
Male | 1.36 | 0.91–2.03 | 0.131 |
Age at admission ≥85 years | 1.83 | 1.25–2.69 | 0.002 |
BMI a at admission ≥25 kg/m2 | 0.50 | 0.24–1.02 | 0.056 |
Pre-fracture walking ability by oneself | 0.52 | 0.24–1.13 | 0.101 |
Comorbidities | |||
Active malignancy | 6.82 | 3.73–12.47 | <0.001 |
Dementia or Alzheimer ’s disease | 2.63 | 1.47–4.70 | 0.001 |
Hemiplegia | 0.35 | 0.09–1.41 | 0.139 |
Hypertension | 0.88 | 0.59–1.30 | 0.520 |
History of myocardial infraction | 2.02 | 0.74–5.48 | 0.168 |
Congestive heart failure | 2.34 | 0.57–9.47 | 0.234 |
Atrial fibrillation | 1.82 | 0.92–3.60 | 0.086 |
Chronic obstructive pulmonary disorder | 2.26 | 1.36–3.75 | 0.002 |
Diabetes mellitus | 1.29 | 0.86–1.92 | 0.216 |
Asthma | 0.44 | 0.06–3.18 | 0.419 |
Rheumatologic disease | 1.31 | 0.76–2.25 | 0.336 |
Cerebrovascular disease | 1.05 | 0.60–1.85 | 0.854 |
Current pneumonia | 1.34 | 0.19–9.60 | 0.771 |
Peptic ulcer | 2.26 | 0.72–7.12 | 0.164 |
ASA score b > 2 | 3.27 | 2.07–5.17 | <0.001 |
Fracture neck of femur | 0.67 | 0.45–1.01 | 0.062 |
Investigative Factors | |||
Admission hemoglobin concentration <10 g/dL | 2.38 | 1.63–3.47 | <0.001 |
Admission glomerular filtration rate <30 mL/min/1.73 m2 | 3.10 | 2.07–4.62 | <0.001 |
Admission serum albumin level <3.5 g/dL | 1.49 | 0.68–3.27 | 0.318 |
Neutrophil to lymphocyte ratio ≥4.7 | 1.14 | 0.76–1.70 | 0.534 |
Treatment Factors | |||
Nonoperative treatment | 3.53 | 2.30–5.40 | <0.001 |
Time from injury to operation ≥48 h | 2.48 | 0.35–17.85 | 0.366 |
Peripheral nerve or spinal block | 1.09 | 0.66–1.80 | 0.742 |
Characteristics | Hazard Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
Nonoperative treatment | 3.29 | 2.13–5.08 | <0.001 |
Admission glomerular filtration rate <30 mL/min/1.73 m2 | 3.40 | 2.21–5.21 | <0.001 |
Admission hemoglobin concentration <10 g/dL | 2.31 | 1.57–3.40 | <0.001 |
Chronic obstructive pulmonary disorder | 2.63 | 1.56–4.42 | <0.001 |
Dementia or Alzheimer’s disease | 4.06 | 2.22–7.41 | <0.001 |
Active malignancy | 6.80 | 3.68–12.59 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atthakomol, P.; Manosroi, W.; Phinyo, P.; Pipanmekaporn, T.; Vaseenon, T.; Rojanasthien, S. Prognostic Factors for All-Cause Mortality in Thai Patients with Fragility Fracture of Hip: Comorbidities and Laboratory Evaluations. Medicina 2020, 56, 311. https://doi.org/10.3390/medicina56060311
Atthakomol P, Manosroi W, Phinyo P, Pipanmekaporn T, Vaseenon T, Rojanasthien S. Prognostic Factors for All-Cause Mortality in Thai Patients with Fragility Fracture of Hip: Comorbidities and Laboratory Evaluations. Medicina. 2020; 56(6):311. https://doi.org/10.3390/medicina56060311
Chicago/Turabian StyleAtthakomol, Pichitchai, Worapaka Manosroi, Phichayut Phinyo, Tanyong Pipanmekaporn, Tanawat Vaseenon, and Sattaya Rojanasthien. 2020. "Prognostic Factors for All-Cause Mortality in Thai Patients with Fragility Fracture of Hip: Comorbidities and Laboratory Evaluations" Medicina 56, no. 6: 311. https://doi.org/10.3390/medicina56060311
APA StyleAtthakomol, P., Manosroi, W., Phinyo, P., Pipanmekaporn, T., Vaseenon, T., & Rojanasthien, S. (2020). Prognostic Factors for All-Cause Mortality in Thai Patients with Fragility Fracture of Hip: Comorbidities and Laboratory Evaluations. Medicina, 56(6), 311. https://doi.org/10.3390/medicina56060311