Acceleration of Skin Wound-Healing Reactions by Autologous Micrograft Tissue Suspension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Experiments
2.2. MG Technique on Wound-Healing
2.3. Wound Tissue Evaluation
2.4. Histological Examination
2.5. Morphometrical Analysis
2.6. Statistical Analyses
3. Results
3.1. Histological Alterations and Their Relations
3.2. Granulation Tissue
3.3. Neovascularization
3.4. Epidermal Extension and Migration
3.5. Distribution of α-SMA Expressing Myofibroblasts
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baltzis, D.; Eleftheriadou, I.; Veves, A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: New insights. Adv. Ther. 2014, 31, 817–836. [Google Scholar] [CrossRef]
- Barchitta, M.; Maugeri, A.; Favara, G.; Magnano San Lio, R.; Evola, G.; Agodi, A.; Basile, G. Nutrition and Wound Healing: An Overview Focusing on the Beneficial Effects of Curcumin. Int. J. Mol. Sci. 2019, 20, 1119. [Google Scholar] [CrossRef] [Green Version]
- Gallico, G.G., 3rd; O’Connor, N.E.; Compton, C.C.; Kehinde, O.; Green, H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N. Engl. J. Med. 1984, 311, 448–451. [Google Scholar] [CrossRef]
- Vig, K.; Chaudhari, A.; Tripathi, S.; Dixit, S.; Sahu, R.; Pillai, S.; Dennis, V.A.; Singh, S.R. Advances in Skin Regeneration Using Tissue Engineering. Int. J. Mol. Sci. 2017, 18, 789. [Google Scholar] [CrossRef]
- Apelqvist, J.; Willy, C.; Fagerdahl, A.M.; Fraccalvieri, M.; Malmsjo, M.; Piaggesi, A.; Probst, A.; Vowden, P. EWMA Document: Negative Pressure Wound Therapy. J. Wound Care 2017, 26 (Suppl. 3), S1–S154. [Google Scholar] [CrossRef]
- Barrientos, S.; Brem, H.; Stojadinovic, O.; Tomic-Canic, M. Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen. 2014, 22, 569–578. [Google Scholar] [CrossRef] [Green Version]
- Phillips, C.J.; Humphreys, I.; Fletcher, J.; Harding, K.; Chamberlain, G.; Macey, S. Estimating the costs associated with the management of patients with chronic wounds using linked routine data. Int. Wound J. 2016, 13, 1193–1197. [Google Scholar] [CrossRef]
- Sanada, H.; Nakagami, G.; Mizokami, Y.; Minami, Y.; Yamamoto, A.; Oe, M.; Kaitani, T.; Iizaka, S. Evaluating the effect of the new incentive system for high-risk pressure ulcer patients on wound healing and cost-effectiveness: A cohort study. Int. J. Nurs. Stud. 2010, 47, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Rousselle, P.; Braye, F.; Dayan, G. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Adv. Drug Deliv. Rev. 2019, 146, 344–365. [Google Scholar] [CrossRef] [PubMed]
- Kado, M.; Tanaka, R.; Arita, K.; Okada, K.; Ito-Hirano, R.; Fujimura, S.; Mizuno, H. Human peripheral blood mononuclear cells enriched in endothelial progenitor cells via quality and quantity controlled culture accelerate vascularization and wound healing in a porcine wound model. Cell Transpl. 2018, 27, 1068–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farina-Perez, L.A. Jaques-Louis Reverdin (1842–1929): The surgeon and the needle. Arch. Esp. Urol. 2010, 63, 269–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graziano, M.; Brunetti, M.; Camandona, M.; Trovato, L.; Graziano, A. A New Medical Device, Based on Rigenera Protocol, in the Management of Complex Wounds. J. Stem Cells Res. Rev. Rep. 2014, 1, 1–3. [Google Scholar]
- Baglioni, E.; Trovato, L.; Marcarelli, M.; Frenello, A.; Bocchiotti, M.A. Treatment of Oncological Post-surgical Wound Dehiscence with Autologous Skin Micrografts. Anticancer Res. 2016, 36, 975–979. [Google Scholar] [PubMed]
- De Francesco, F.; Graziano, A.; Trovato, L.; Ceccarelli, G.; Romano, M.; Marcarelli, M.; Cusella De Angelis, G.M.; Cillo, U.; Riccio, M.; Ferraro, G.A. A Regenerative Approach with Dermal Micrografts in the Treatment of Chronic Ulcers. Stem Cell Rev. Rep. 2017, 13, 139–148. [Google Scholar] [CrossRef]
- Miranda, R.; Farina, E.; Farina, M.A. Micrografting chronic lower extremity ulcers with mechanically disaggregated skin using a micrograft preparation system. J. Wound Care 2018, 27, 60–65. [Google Scholar] [CrossRef]
- Svolacchia, F.; De Francesco, F.; Trovato, L.; Graziano, A.; Ferraro, G.A. An innovative regenerative treatment of scars with dermal micrografts. J. Cosmet Derm. 2016, 15, 245–253. [Google Scholar] [CrossRef]
- Marcarelli, M.; Trovato, L.; Novarese, E.; Riccio, M.; Graziano, A. Rigenera protocol in the treatment of surgical wound dehiscence. Int. Wound J. 2017, 14, 277–281. [Google Scholar] [CrossRef]
- Riccio, M.; Marchesini, A.; Zingaretti, N.; Carella, S.; Senesi, L.; Onesti, M.G.; Parodi, P.C.; Ribuffo, D.; Vaienti, L.; De Francesco, F. A Multicentre Study: The Use of Micrografts in the Reconstruction of Full-Thickness Posttraumatic Skin Defects of the Limbs-A Whole Innovative Concept in Regenerative Surgery. Stem Cells Int. 2019, 2019, 5043518. [Google Scholar] [CrossRef] [PubMed]
- Jimi, S.; Kimura, M.; De Francesco, F.; Riccio, M.; Hara, S.; Ohjimi, H. Acceleration Mechanisms of Skin Wound Healing by Autologous Micrograft in Mice. Int. J. Mol. Sci. 2017, 18, 1675. [Google Scholar] [CrossRef] [PubMed]
- Jimi, S.; De Francesco, F.; Ferraro, G.A.; Riccio, M.; Hara, S. A Novel Skin Splint for Accurately Mapping Dermal Remodeling and Epithelialization During Wound Healing. J. Cell Physiol. 2017, 232, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Balli, M.; Vitali, F.; Janiszewski, A.; Caluwe, E.; Cortes-Calabuig, A.; Carpentier, S.; Duelen, R.; Ronzoni, F.; Marcelis, L.; Bosisio, F.M.; et al. Autologous micrograft accelerates endogenous wound healing response through ERK-induced cell migration. Cell Death Differ. 2019, 27, 1520–1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okonkwo, U.A.; DiPietro, L.A. Diabetes and Wound Angiogenesis. Int. J. Mol. Sci. 2017, 18, 1419. [Google Scholar] [CrossRef] [Green Version]
- Bocchiotti, M.A.; Bogetti, P.; Parisi, A.; Rivarossa, F.; Frenello, A.; Baglioni, E.A. Management of Fournier’s gangrene non-healing wounds by autologous skin micrograft biotechnology: A new technique. J. Wound Care 2017, 26, 314–317. [Google Scholar] [CrossRef]
- Uehara, M.; Shimizu, F. Progress report for intractable ulcer and osteomyelitis cases using autologous micrografts. SAGE Open Med. Case Rep. 2019, 7, 1–4. [Google Scholar] [CrossRef]
- Ridiandries, A.; Tan, J.T.M.; Bursill, C.A. The Role of Chemokines in Wound Healing. Int. J. Mol. Sci. 2018, 19, 3217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Wu, S.; Tang, Q.; Li, S.; Peng, C. KGF-1 accelerates wound contraction through the TGF-beta1/Smad signaling pathway in a double-paracrine manner. J. Biol. Chem. 2019, 294, 8361–8370. [Google Scholar] [CrossRef]
- Lichtman, M.K.; Otero-Vinas, M.; Falanga, V. Transforming growth factor beta (TGF-beta) isoforms in wound healing and fibrosis. Wound Repair Regen. 2016, 24, 215–222. [Google Scholar] [CrossRef]
- Xie, J.; Wang, C.L.; Yang, W.; Wang, J.; Chen, C.; Zheng, L.; Sung, K.L.P.; Zhou, X. Modulation of MMP-2 and MMP-9 through connected pathways and growth factors is critical for extracellular matrix balance of intra-articular ligaments. J. Tissue Eng. Regen. Med. 2018, 12, e550–e565. [Google Scholar] [CrossRef]
- Ibsen, B. Intensive therapy. Ugeskr Laeger 1970, 132, 2317–2320. [Google Scholar]
- Jimi, S.; Sato, K.; Kimura, M.; Suzumiya, J.; Hara, S.; De Francesco, F.; Ohjimi, H. G-CSF Administration Accelerates Cutaneous Wound Healing Accompanied With Increased Pro-Hyp Production In db/db Mice. Clin. Res. Derm. 2017, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Jimi, S.; Kusubata, M. Generation of bioactive prolyl-hydroxyproline (Pro-Hyp) by oral administration of collagen hydrolysate and degradation of endogenous collagen. Int. J. Food Technol. 2019, 54, 5. [Google Scholar] [CrossRef] [Green Version]
- Mansurov, N.; Chen, W.C.W.; Awada, H.; Huard, J.; Wang, Y.; Saparov, A. A controlled release system for simultaneous delivery of three human perivascular stem cell-derived factors for tissue repair and regeneration. J. Tissue Eng. Regen. Med. 2018, 12, e1164–e1172. [Google Scholar] [CrossRef] [PubMed]
- Jimi, S.; Jaguparov, A.; Nurkesh, A.; Sultankulov, B.; Saparov, A. Sequential Delivery of Cryogel Released Growth Factors and Cytokines Accelerates Wound Healing and Improves Tissue Regeneration. Front. Bioeng. Biotechnol. 2020, 8, 345. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Nieves, J.A.; Patalano, S.C.; Almanza, D.; Gharaee-Kermani, M.; Macoska, J.A. CXCL12/CXCR4 Axis Activation Mediates Prostate Myofibroblast Phenoconversion through Non-Canonical EGFR/MEK/ERK Signaling. PLoS ONE 2016, 11, e0159490. [Google Scholar] [CrossRef]
- Krzyszczyk, P.; Schloss, R.; Palmer, A.; Berthiaume, F. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes. Front. Physiol. 2018, 9, 419. [Google Scholar] [CrossRef]
- Balli, M.; Chui, J.; Athanasouli, P.; De Oliveira, W.; Laithy, Y.; Sampaolesi, M.; Lluis, F. Activator Protein-1 Transcriptional Activity Drives Soluble Micrograft-Mediated Cell Migration and Promotes the Matrix Remodeling Machinery. Stem Cells Int. 2019, 2019, 6461580. [Google Scholar] [CrossRef] [Green Version]
Wound Area (%) | Granulation Area (×103 µm) | Neovessels (Points) | REL (µm) | CEL (µm) | TEL (µm) | α-SMA (Area (%)) | |
---|---|---|---|---|---|---|---|
Mean ± SD | 57.0 ± 36.7 | 185.4 ± 92.9 | 25.3 ± 19.1 | 1213 ± 984 | 3098 ± 807 | 4311 ± 1706 | 1.1 ± 1.3 |
Wound area | – | – | – | – | – | – | – |
Granulation area | −0.851 (p = 0.0004) | – | – | – | – | – | – |
Neovessels | −0.757 (p = 0.0044) | 0.881 (p = 0.0002) | – | – | – | – | – |
REL | −0.932 (p < 0.0001) | 0.790 (p = 0.0022) | 0.643 (p = 0.0240) | – | – | – | – |
CEL | −0.848 (p = 0.0005) | 0.881 (p = 0.0002) | 0.755 (p = 0.0045) | 0.804 (p = 0.0016) | – | – | – |
TEL | −0.911 (p < 0.0001) | 0.881 (p = 0.0002) | 0.762 (p = 0.0040) | – | – | – | – |
α-SMA | −0.753 (p = 0.0047) | 0.678 (p = 0.0153) | 0.699 (p = 0.0114) | 0.776 (p = 0.0030) | 0.762 (p = 0.0040) | 0.727 (p = 0.0074) | – |
Histological Values | Control | MG | p-Value |
---|---|---|---|
Wound area (%) | 82.2 ± 14.6 | 31.3 ± 35.0 | 0.0088 |
Granulation area (×103 µm) | 109.9 ± 34.8 | 260.9 ± 64.0 | 0.0005 |
Neovessels (points) | 12.3 ± 7.9 | 38.2 ± 18.3 | 0.01 |
Epithelial healing | |||
REL (µm) | 631 ± 371 | 1796 ± 1086 | 0.0322 |
CEL (µm) | 2473 ± 445 | 3722 ± 545 | 0.0014 |
TEL (µm) | 3104 ± 734 | 5519 ± 1538 | 0.006 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimi, S.; Takagi, S.; De Francesco, F.; Miyazaki, M.; Saparov, A. Acceleration of Skin Wound-Healing Reactions by Autologous Micrograft Tissue Suspension. Medicina 2020, 56, 321. https://doi.org/10.3390/medicina56070321
Jimi S, Takagi S, De Francesco F, Miyazaki M, Saparov A. Acceleration of Skin Wound-Healing Reactions by Autologous Micrograft Tissue Suspension. Medicina. 2020; 56(7):321. https://doi.org/10.3390/medicina56070321
Chicago/Turabian StyleJimi, Shiro, Satoshi Takagi, Francesco De Francesco, Motoyasu Miyazaki, and Arman Saparov. 2020. "Acceleration of Skin Wound-Healing Reactions by Autologous Micrograft Tissue Suspension" Medicina 56, no. 7: 321. https://doi.org/10.3390/medicina56070321
APA StyleJimi, S., Takagi, S., De Francesco, F., Miyazaki, M., & Saparov, A. (2020). Acceleration of Skin Wound-Healing Reactions by Autologous Micrograft Tissue Suspension. Medicina, 56(7), 321. https://doi.org/10.3390/medicina56070321