The Relationship between the IFNG (rs2430561) Polymorphism and Metabolic Syndrome in Perimenopausal Women
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- North American Menopause Society. Estrogen and progestogen use in postmenopausal women: 2010 position statement of The North American Menopause Society. Menopause 2010, 17, 242–552. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.L.; Murillo, A.G. Postmenopausal women have higher hdl and decreased incidence of low hdl than premenopausal women with metabolic syndrome. Healthcare 2016, 4, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Aggarwal, N.; Joshi, B.; Suri, V.; Badada, S. Prevalence of metabolic syndrome in pre-and post-menopausal women: A prospective study from apex institute of North India. J. Mid-Life Health 2016, 7, 169. [Google Scholar]
- Derby, C.A.; Crawford, S.L.; Pasternak, R.C.; Sowers, M.; Sternfeld, B.; Matthews, K.A. Lipid Changes During the Menopause Transition in Relation to Age and Weight The Study of Women’s Health Across the Nation. Am. J. Epidemiol. 2009, 169, 1352–1361. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.R.; Kim, H.N.; Song, S.W. Associations among inflammation, mental health, and quality of life in adults with metabolic syndrome. Diabetol. Metab. Syndr. 2018, 31, 66. [Google Scholar] [CrossRef]
- Grundy, S.M. Metabolic syndrome pandemic. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 629–636. [Google Scholar] [CrossRef] [Green Version]
- Soules, M.R.; Sherman, S.; Parrott, E.; Rebar, R.; Santoro, N.; Utian, W.; Woods, N. Executive summary: Stages of Reproductive Aging Workshop (STRAW). Climacteric 2001, 4, 267–272. [Google Scholar] [CrossRef]
- Lobo, R.A.; Davis, S.R.; De Villiers, T.J.; Gompel, A.; Henderson, V.W.; Hodis, H.N.; Lumsden, M.A.; Mack, W.J.; Shapiro, S.; Baber, R.J. Prevention of diseases after menopause. Climacteric 2014, 17, 540–556. [Google Scholar] [CrossRef]
- Rajewska, J.; Rybakowski, J.K. Depression in premenopausal women: Gonadal hormones and serotonergic system assessed by D-fenfluramine challenge test. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2003, 27, 705–709. [Google Scholar] [CrossRef]
- Carrasco, G.A.; Van de Kar, L.D. Neuroendocrine pharmacology of stress. Eur. J. Pharmacol. 2003, 463, 235–272. [Google Scholar] [CrossRef]
- Banks, A.D. Women and heart disease: Missed opportunities. J. Midwifery Women’s Health 2008, 53, 430–439. [Google Scholar] [CrossRef]
- Weinberg, M.E.; Manson, J.E.; Buring, J.E.; Cook, N.R.; Seely, E.W.; Ridker, P.M.; Rexrode, K.M. Low sex hormone—Binding globulin is associated with the metabolic syndrome in postmenopausal women. Metabolism 2006, 55, 1473–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira Silva, A.; Tibana, R.A.; Oliveira Karnikowski, M.G.; Schwerz Funghetto, S.; Prestes, J. Inflammatory status in older women with and without metabolic syndrome: Is there a correlation with risk factors? Clin. Interv. Aging 2013, 8, 361–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundy, S.M. Metabolic syndrome: A multiplex cardiovascular risk factor. J. Clin. Endocrinol. Metab. 2007, 92, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Ward, E.; Gold, E.B.; Johnson, W.O.; Ding, F.; Chang, P.Y.; Song, P.; El Khoudary, S.R.; Karvonen-Gutierrez, C.; Ylitalo, K.R.; Lee, J.S. Patterns of cardiometabolic health as midlife women transition to menopause: A prospective multiethnic. J. Clin. Endocrinol. Metab. 2019, 104, 1404–1412. [Google Scholar] [CrossRef]
- Ford, E.S.; Li, C.; Zhao, G.J. Prevalence and correlates of metabolic syndrome based on a harmonious definition among adults in the US. Diabetes 2010, 2, 180–193. [Google Scholar] [CrossRef] [Green Version]
- Lumeng, C.N.; Saltiel, A.R. Inflammatory links between obesity and metabolic disease. J. Clin. Investig. 2011, 121, 2111–2117. [Google Scholar] [CrossRef] [Green Version]
- Haffner, S.M. The metabolic syndrome: Inflammation, diabetes mellitus, and cardiovascular disease. Am. J. Cardiol. 2006, 97, 3A–11A. [Google Scholar] [CrossRef]
- Prestes, J.; Shiguemoto, G.; Botero, J.P.; Frollini, A.; Dias, R.; Leite, R.; Pereira, G.; Magosso, R.; Baldissera, V.; Cavaglieri, C.; et al. Effects of resistance training on resistin, leptin, cytokines, and muscle force in elderly post-menopausal women. J. Sports Sci. 2009, 27, 1607–1615. [Google Scholar] [CrossRef]
- Stenholm, S.; Koster, A.; Alley, D.E.; Visser, M.; Maggio, M.; Harris, T.B.; Egan, J.M.; Bandinelli, S.; Guralink, J.M.; Ferrucci, L. Adipocytokines and the metabolic syndrome among older persons with and without obesity: The InCHIANTI study. Clin. Endocrinol. 2010, 73, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Pravica, V.; Perrey, C.; Stevens, A.; Lee, J.H.; Hutchinson, I.V. A single nucleotide polymorphism in the firstintron of the human INF-gamma gene: Absolute correlation with a polymorphic CA microsatellite markerof high IFN-gamma production. Hum. Immunol. 2000, 61, 863–866. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Eckel, R.H.; Grandy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute American Heart Association; World Heart Federation; International Atherosclerosis Society and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed] [Green Version]
- Ogbera, A.; Azenabor, A.; Ogundahunsi, O.A.; Ekun, A.O.; Adejumo, E.N. Cytokines, type 2 DM and the metabolic syndrome. Nig. Q. J. Hosp. Med. 2013, 23, 318–322. [Google Scholar] [PubMed]
- Mirza, S.; Hossain, M.; Mathews, C.; Martinez, P.; Pino, P.; Gay, J.L.; Rentfro, A.; McCormick, J.B.; Fisher-Hoch, S.P. Type 2-diabetes is associated with elevated levels of TNF-alpha, IL-6 and adiponectin and low levels of leptin in a population of Mexican Americans: A cross-sectional study. Cytokine 2012, 57, 136–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsiavou, A.; Hatziagelaki, E.; Chaidaroglou, A.; Koniavitou, K.; Degiannis, D.; Raptis, S.A. Correlation between intracellular interferon-gamma (IFNγ) production byCD4+ and CD8+ lymphocytes and IFN-gamma gene polymorphism in patients with type 2 diabetes mellitus and latent autoimmune diabetes of adults (LADA). Cytokine 2005, 31, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Kolla, V.K.; Madhavi, G.; Reddy, B.P.; Srikanth Babu, B.M.V.; Yashovanthi, J.; Lakshmi, V.; Ramesh, J.; Akka, J. Association of tumor necrosis factor alpha, interferon gamma and interleukin 10 gene polymorphisms with peripheral neuropathy in South Indian patients with type 2 diabetes. Cytokine 2009, 47, 173–177. [Google Scholar] [CrossRef]
- Sóter, M.O.; Ferreira, C.N.; Sales, M.F.; Candido, A.L.; Reis, F.M.; Milagres, K.S.; Ronda, C.; Silva, I.O.; Sousa, M.O.; Gomes, K.B. Peripheral blood-derived cytokine gene polymorphisms and metabolic profile in women with polycystic ovary syndrome. Cytokine 2015, 76, 227–235. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, S.H.; Cho, J.Y. Socioeconomic Status in Association with Metabolic Syndrome and CoronaryHeart Disease Risk. Korean J. Fam. Med. 2013, 34, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Hoyas, I.; Sanz, M.L. Nutritional Challenges in Metabolic Syndrome. J. Clin. Med. 2019, 8, 1301. [Google Scholar] [CrossRef] [Green Version]
- Santulli, G.; Pascale, V.; Finelli, R.; Visco, V.; Giannotti, R.; Massari, A.; Morisco, C.; Ciccarelli, M.; Illario, M.; Iaccarino, G.; et al. We Are What We Eat: Impact of Food From Short Supply Chain On Metabolic Syndrome. J. Clin. Med. 2019, 8, 2061. [Google Scholar] [CrossRef] [Green Version]
- Assaf-Balut, C.; de la Garcia Torre, N.; Durán, A.; Bordiu, E.; del Valle, L.; Familiar, C.; Valerio, J.; Jimenez, I.; Herraiz, M.A.; Izquierdo, N.; et al. An Early, Universal Mediterranean Diet-Based Intervention in Pregnancy Reduces Cardiovascular Risk Factors in the “Fourth Trimester”. J. Clin. Med. 2019, 8, 1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
MetS+ N = 118 | MetS− N = 298 | p | |
---|---|---|---|
MetS Components | |||
waist size (cm) | 93.3 ± 11.0 | 85.4 ± 11.2 | <0.001 |
MetS symptom definition—waist size (cm); N (%) | 97 (82.2) | 62 (20.8) | <0.001 |
fasting glycemia (mg/dL) | 100.8 (86.9–119.0) | 83.2 (77.4–90.7) | <0.001 |
MetS symptom definition—hyperglycemia; N (%) | 60 (50.8) | 14 (4.7) | <0.001 |
TG (mg/dL) | 137.6 (102.0–189.8) | 84.8 (65.0–112.1) | <0.001 |
MetS symptom definition—TG; N (%) | 75 (63.6) | 32 (10.7) | <0.001 |
HDL (mg/dL) | 56.5 ± 16.8 | 70.0 ± 16.0 | <0.001 |
MetS symptom definition—HDL; N (%) | 61 (51.7) | 21 (7.1) | <0.001 |
systolic blood pressure (mmHg) | 137.2 ± 15.3 | 119.1 ± 14.8 | <0.001 |
diastolic blood pressure (mmHg) | 83.9 ± 9.4 | 75.9 ± 9.7 | <0.001 |
Mets symptom definition—hypertension; N (%) | 97 (82.2) | 62 (20.8) | <0.001 |
PICs | |||
IL-1α (pg/mL) | 1.85 (1.46–2.42) | 2.09 (1.50–2.59) | 0.079 |
IL-1β (pg/mL) | 13.64 (5.60–102.00) | 12.39 (3.41–218.30) | 0.801 |
IL-6 (pg/mL) | 11.23 (5.51–34.47) | 8.21 (3.65–21.46) | <0.05 |
TNFα (pg/mL) | 4.06 (2.00–6.85) | 0.05 (0.03–0.14) | 0.495 |
IFNγ (IU/mL) | 0.04 (0.03–0.21) | 1.90 (1.30–3.20) | 0.936 |
IFNGGenotype | MetS+ | MetS− | ||
---|---|---|---|---|
Mean Value (SE); N | Mean Value (SE); N | Δ | ±95% CI | |
log10 (IL-1α (pg/mL)) | ||||
T/T | 0.311 (0.045); 56 | 0.397 (0.040); 132 | −0.085 | −0.210 ÷ 0.040 |
A/T | 0.283 (0.027); 41 | 0.362 (0.033); 120 | −0.079 | −0.221 ÷ 0.063 |
A/A | 0.385 (0.127); 21 | 0.369 (0.064); 46 | 0.016 | −0.191 ÷ 0.222 |
log10 (IL-1β (pg/mL)) | ||||
T/T | 1.209 (0.129); 47 | 1.242 (0.097); 107 | −0.034 | −0.387 ÷ 0.319 |
A/T | 1.350 (0.155); 33 | 1.366 (0.110); 100 | −0.016 | −0.421 ÷ 0.389 |
A/A | 1.593 (0.220); 20 | 1.408 (0.203); 20 | 0.185 | −0.378 ÷ 0.748 |
log10 (IL-6 (pg/mL)) | ||||
T/T | 1.279 (0.103); 49 | 1.026 (0.059); 114 | 0.252 | 0.038 ÷ 0.467 * |
A/T | 1.320 (0.119); 37 | 1.045 (0.061); 110 | 0.275 | 0.037 ÷ 0.514 * |
A/A | 0.915 (0.146); 2 | 0.893 (0.072); 42 | 0.021 | −0.332 ÷ 0.375 |
log10 (TNFα (pg/mL)) | ||||
T/T | 0.641 (0.079); 43 | 0.553 (0.047); 107 | 0.087 | −0.078 ÷ 0.253 |
A/T | 0.561 (0.072); 31 | 0.535(0.044); 105 | 0.026 | −0.162 ÷ 0.213 |
A/A | 0.599 (0.115); 17 | 0.518 (0.067); 41 | 0.081 | −0.184 ÷ 0.346 |
log10 (INFγ (IU/mL)) | ||||
T/T | −1.048 (0.156); 23 | −1.187 (0.054); 71 | −0.138 | −0.123 ÷ 0.400 |
A/T | −0.951 (0.169); 20 | −1.077 (0.062); 67 | 0.126 | −0.152 ÷ 0.404 |
A/A | −1.245 (0.126); 9 | −1.040 (0.115); 27 | −0.205 | −0.625 ÷ 0.214 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneider-Matyka, D.; Szkup, M.; Owczarek, A.J.; Stanisławska, M.; Knyszyńska, A.; Lubkowska, A.; Grochans, E.; Jurczak, A. The Relationship between the IFNG (rs2430561) Polymorphism and Metabolic Syndrome in Perimenopausal Women. Medicina 2020, 56, 384. https://doi.org/10.3390/medicina56080384
Schneider-Matyka D, Szkup M, Owczarek AJ, Stanisławska M, Knyszyńska A, Lubkowska A, Grochans E, Jurczak A. The Relationship between the IFNG (rs2430561) Polymorphism and Metabolic Syndrome in Perimenopausal Women. Medicina. 2020; 56(8):384. https://doi.org/10.3390/medicina56080384
Chicago/Turabian StyleSchneider-Matyka, Daria, Małgorzata Szkup, Aleksander Jerzy Owczarek, Marzanna Stanisławska, Anna Knyszyńska, Anna Lubkowska, Elżbieta Grochans, and Anna Jurczak. 2020. "The Relationship between the IFNG (rs2430561) Polymorphism and Metabolic Syndrome in Perimenopausal Women" Medicina 56, no. 8: 384. https://doi.org/10.3390/medicina56080384
APA StyleSchneider-Matyka, D., Szkup, M., Owczarek, A. J., Stanisławska, M., Knyszyńska, A., Lubkowska, A., Grochans, E., & Jurczak, A. (2020). The Relationship between the IFNG (rs2430561) Polymorphism and Metabolic Syndrome in Perimenopausal Women. Medicina, 56(8), 384. https://doi.org/10.3390/medicina56080384