The Relationship between Selected Demographic Factors and Speech Organ Dysfunction in Sporadic ALS Patients
Abstract
:1. Background
2. Material and Methods
2.1. Patients
- (a)
- probable or certain sporadic ALS form diagnosed in compliance with the El Escorial Revised Criteria,
- (b)
- ability to express informed consent,
- (c)
- mild to moderate disability documented by satisfactory bulbar and spinal motor functions (minimum score 3 on the ALS-FRSr scale for swallowing and two points for food preparation and walking-patients able to independently reach the research facility),
- (d)
- forced vital capacity (FVC) result ≥ 50%.
2.2. Speech Test—FDA
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- The male gender in patients with ALS is associated with an increased risk of deterioration of the phonation length function.
- Patients under 60 years of age are associated with more often pronouncing sentences’ disorders and spontaneous speech disorders.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ALS | Amyotrophic Lateral Sclerosis |
FDA | Frenchay Dysarthria Assessment |
ALSFRS–R | ALS Functional Rating Scale-Revised |
FVC | Forced Vital Capacity |
PD | Parkinson’s Disease |
SD | Standard Deviation |
References
- van Es, M.A.; Hardiman, O.; Chio, A.; Al-Chalabi, A.; Pasterkamp, R.J.; Veldink, J.H.; van den Berg, L.H. Amyotrophic lateral sclerosis. Lancet 2017, 4, 2084–2098. [Google Scholar] [CrossRef]
- Sutedja, N.A.; Veldink, J.H.; Fischer, K.; Kromhout, H.; Wokke, J.H.; Huisman, M.H.; Heederik, D.J.; Van den Berg, L.H. Lifetime occupation education, smoking, and risk of ALS. Neurology 2007, 69, 1508–1514. [Google Scholar] [CrossRef] [PubMed]
- Murphy, N.A.; Arthur, K.C.; Tienari, P.J.; Houlden, H.; Chiò, A.; Traynor, B.J. Age-related penetrance of the C9orf72 repeat expansion. Sci. Rep. 2017, 7, 2116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokoi, D.; Atsuta, N.; Watanabe, H.; Nakamura, R.; Hirakawa, A.; Ito, M.; Watanabe, H.; Katsuno, M.; Izumi, Y.; Morita, M.; et al. Age of onset differentially influences the progression of regional dysfunction in sporadic amyotrophic lateral sclerosis. J. Neurol. 2016, 263, 1129–1136. [Google Scholar] [CrossRef]
- Al-Chalabi, A.; Hardiman, O. The epidemiology of ALS: A conspiracy of genes, environment and time. Nat. Rev. Neurol. 2013, 9, 617–628. [Google Scholar] [CrossRef]
- Forbes, R.B.; Colville, S.; Swingler, R.J. Scottish ALS/MND register. The epidemiology of amyotrophic lateral sclerosis (ALS/MND) in people aged 80 or over. Age Ageing 2004, 33, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Scottish Motor Neuron Disease Research Group. The scottish motor neuron disease register: A prospective study of adult onset motor neuron disease in Scotland. Methodology, demography and clinical features of incident cases in 1989. J. Neurol. Neurosurg. Psychiatry 1992, 55, 536–541. [Google Scholar] [CrossRef] [Green Version]
- Chiò, A.; Logroscino, G.; Hardiman, O.; Swingler, R.; Mitchell, D.; Beghi, E.; Traynor, B.G. Eurals Consortium. Prognostic factors in ALS: A critical review. Amyotroph Lateral Scler. 2009, 10, 310–323. [Google Scholar] [CrossRef] [Green Version]
- Ames, B.N.; Cathcart, R.; Schwiers, E.; Hochstein, P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc. Natl. Acad. Sci. USA 1981, 78, 6858–6862. [Google Scholar] [CrossRef] [Green Version]
- Armon, C. Smoking may be considered an established risk factor for sporadic ALS. Neurology 2009, 73, 1693–1698. [Google Scholar] [CrossRef]
- Chiò, A.; Mora, G.; Calvo, A.; Mazzini, L.; Bottacchi, E.; Mutani, R. Epidemiology of ALS in Italy: A 10-year prospective population-based study. Neurology 2009, 72, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Beghi, E.; Logroscino, G.; Chiò, A.; Hardiman, O.; Millul, A.; Mitchell, D.; Swingler, R.; Traynor, B.J. Amyotrophic lateral sclerosis, physical exercise, trauma and sports: Results of a population-based pilot case-control study. Amyotroph. Lateral Scler. 2010, 11, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Sobuś, A.; Baumert, B.; Litwińska, Z.; Gołąb-Janowska, M.; Stępniewski, J.; Kotowski, M.; Pius-Sadowska, E.; Kawa, M.P.; Gródecka-Szwajkiewicz, D.; Peregud-Pogorzelski, J. Safety and feasibility of Lin- Cells administration to ALS patients: A novel view on humoral factors and miRNA profiles. Int. J. Mol. Sci. 2018, 27, 1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, B.R.; Miller, R.G.; Swash, M.; Munsat, T.L. El escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2000, 1, 293–299. [Google Scholar] [CrossRef]
- Mareschi, K.; Ferrero, I.; Rustichelli, D.; Aschero, S.; Gammaitoni, L.; Aglietta, M.; Madon, E.; Fagioli, F. Expansion of mesenchymal stem cells isolated from pediatric adult donor bone marrow. J. Cell. Biochem. 2006, 97, 744–754. [Google Scholar] [CrossRef] [Green Version]
- Enderby, P.; Palmer, R. Frenchay Dysarthria Assessment, 2nd ed.; (FDA-2); PRO-ED: Austin, TX, USA, 2008. [Google Scholar]
- Pawlukowska, W.; Szylińska, A.; Kotlęga, D.; Rotter, I.; Nowacki, P. Differences between subjective and objective assessment of speech deficiency in parkinson disease. J. Voice 2018, 32, 715–722. [Google Scholar] [CrossRef]
- Longinetti, E.; Fang, F. Epidemiology of amyotrophic lateral sclerosis: An update of recent literature. Curr. Opin. Neurol. 2019, 32, 771–776. [Google Scholar] [CrossRef]
- Palese, F.; Sartori, A.; Verriello, L.; Ros, S.; Passadore, P.; Manganotti, P.; Barbone, F.; Pisa, F.E. Epidemiology of amyotrophic lateral sclerosis in Friuli-Venezia Giulia, North-Eastern Italy, 2002–2014: A retrospective population-based study. Amyotroph. Lateral Scler. Front. Degener. 2019, 20, 90–99. [Google Scholar] [CrossRef]
- Benjaminsen, E.; Alstadhaug, K.B.; Gulsvik, M.; Baloch, F.K.; Odeh, F. Amyotrophic lateral sclerosis in Nordland County, Norway, 2000–2015: Prevalence, incidence, and clinical features. Amyotroph. Lateral Scler. Front. Degener. 2018, 19, 522–527. [Google Scholar] [CrossRef]
- Jun, K.Y.; Park, J.; Oh, K.W.; Kim, E.M.; Bae, J.S.; Kim, I.; Kim, S.H. Epidemiology of ALS in Korea using nationwide big data. J. Neurol. Neurosurg. Psychiatry 2019, 90, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Turgut, N.; Varol, S.; Coglu, G.; Kat, S.; Balci, K.; Guldiken, B.; Birgili, O.; Kabayel, L. An epidemiologic investigation of amyotrophic lateral sclerosis in Thrace, Turkey, 2006–2010. Amyotroph. Lateral Scler. Front. Degener. 2019, 20, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zhou, Y.; Qian, S.; Chang, W.; Wang, L.; Fan, D. Amyotrophic lateral sclerosis in Beijing: Epidemiologic features and prognosis from 2010 to 2015. Brain Behav. 2018, 8, e01131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leighton, D.J.; Newton, J.; Stephenson, L.J.; Colville, S.; Davenport, R.; Gorrie, G.; Morrison, I.; Swingler, R.; Chandran, S.; Pal, S. Changing epidemiology of motor neurone disease in Scotland. J. Neurol. 2019, 266, 817–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, M.; Zaldivar Vaillant, T.; McLaughlin, R.L.; Doherty, M.A.; Rooney, J.; Heverin, M.; Gutierrez, J.; Lara-Fernandez, G.E.; Rodriguez, M.P.; Hackembruch, J.; et al. Comparison of the clinical and genetic features of amyotrophic lateral sclerosis across Cuban, Uruguayan and Irish clinic-based populations. J. Neurol. Neurosurg. Psychiatry 2019, 90, 659–665. [Google Scholar] [CrossRef]
- Korner, S.; Kammeyer, J.; Zapf, A.; Kuzma-Kozakiewicz, M.; Piotrkiewicz, M.; Kuraszkiewicz, B.; Goszczynska, H.; Gromicho, M.; Grosskreutz, J.; Andersen, P.M.; et al. Influence of environment and lifestyle on incidence and progress of amyotrophic lateral sclerosis in a German ALS population. Aging Dis. 2019, 10, 205–216. [Google Scholar] [CrossRef] [Green Version]
- D’Ovidio, F.; Rooney, J.P.; Visser, A.E.; Manera, U.; Beghi, E.; Logroscino, G.; Vermeulen, R.C.H.; Veldink, J.H.; van den Berg, L.H.; Hardiman, O.; et al. Association between alcohol exposure and the risk of amyotrophic lateral sclerosis in the Euro-MOTOR study. J. Neurol. Neurosurg. Psychiatry 2019, 90, 11–19. [Google Scholar] [CrossRef]
- Zhou, M.; Goto, N.; Goto, J.; Moriyama, H.; He, H.J. Gender dimorphism of axons in the human lateral corticospinal tract. Okajimas Folia Anat. Jpn. 2000, 77, 21–27. [Google Scholar] [CrossRef]
- Yerdelen, D.; Koç, F.; Sarica, Y. The effects of gender and age on motor unit number estimation in a nor-mal population. Acta Neurol. Belg. 2006, 106, 5. [Google Scholar]
- Bae, J.S.; Sawai, S.; Misawa, S.; Kanai, K.; Isose, S.; Shibuya, K.; Kuwabara, S. Effects of age on excitability properties in human motor axons. Clin. Neurophysiol. 2008, 119, 2282–2286. [Google Scholar] [CrossRef]
- Fuller, P.I.; Reddrop, C.; Rodger, J.; Bellingham, M.C.; Phillips, J.K. Differential expression of the NMDA NR2B receptor subunit in motoneuron populations susceptible and resistant to amyotrophic lateral sclerosis. Neurosci. Lett. 2006, 399, 157–161. [Google Scholar] [CrossRef]
- Smith, C.C.; McMahon, L.L. Estradiol-induced increase in the magnitude of long-term potentiation is prevented by blocking NR2B-containing receptors. J. Neurosci. 2006, 26, 8517–8522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiò, A.; Calvo, C.; Moglia, C.; Mazzini, L.; Mora, G. Phenotypic heterogeneity of amyotrophic lateral sclerosis: A population based study. J. Neurol. Neurosurg. Psychiatry 2011, 82, 740–746. [Google Scholar] [CrossRef]
- Gunnarsson, L.G.; Lindberg, G.; Söderfeldt, B.; Axelson, O. Amyotrophic lateral sclerosis in Sweden in relation to occupation. Acta Neurol. Scand. 1991, 83, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Shirao, N.; Okamoto, Y.; Okada, G.; Ueda, K.; Yamawaki, S. Gender differences in brain activity toward unpleasant linguistic stimuli concerning interpersonal relationships: An fMRI study. Eur. Arch. Psychiatr. Clin. 2005, 255, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Ingalhalikar, M.; Smith, A.; Parker, D.; Satterthwaite, T.D.; Elliott, M.A.; Ruparel, K.; Hakonarson, H.; Gur, R.E.; Gur, R.C.; Verma, R. Sex differences in the structural connectome of the human brain. Proc. Natl. Acad. Sci. USA 2014, 111, 823–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grolez, G.; Kyheng, M.; Lopes, R.; Moreau, C.; Timmerman, K.; Auger, F.; Kuchcinski, G.; Duhamel, A.; Jissendi-Tchofo, P.; Besson, P.; et al. MRI of the cervical spinal cord predicts respiratory dysfunction in, ALS. Sci. Rep. 2018, 8, 1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleveland, D.W.; Rothstein, J.D. From Charcot to Lou Gehrig: Deciphering selective motor neuron death in ALS. Nature reviews. Neuroscience 2001, 2, 806–819. [Google Scholar] [PubMed]
- Gautier, G.; Verschueren, A.; Monnier, A.; Attarian, S.; Salort-Campana, E.; Pouget, J. ALS with respiratory onset: Clinical features and effects of non-invasive ventilation on the prognosis. Amyotroph. Lateral Scler. 2010, 11, 379–382. [Google Scholar] [CrossRef]
- Corcia, P.; Pradat, P.F.; Salachas, F.; Bruneteau, G.; Forestier, N.; Seilhean, D.; Hauw, J.-J.; Meininger, V. Causes of death in a post-mortem series of ALS patients. Amyotroph. Lateral Scler. 2008, 9, 59–62. [Google Scholar] [CrossRef]
- Bolser, D.C.; Jefferson, S.C.; Rose, M.J.; Tester, N.J.; Reier, P.J.; Fuller, D.D.; Davenport, P.W.; Howland, D.R. Recovery of airway protective behaviors after spinal cord injury. Respir. Physiol. Neurobiol. 2009, 169, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Hardiman, O. Management of respiratory symptoms in ALS. J. Neurol. 2011, 258, 359–365. [Google Scholar] [CrossRef]
- Miscio, G.; Gukov, B.; Pisano, F.; Mazzini, L.; Baudo, S.; Salvadori, A.; Mauro, A. The cortico-diaphragmatic pathway involvement in amyotrophic lateral sclerosis: Neurophysiological, respiratory and clinical considerations. J. Neurol. Sci. 2006, 251, 10–16. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.; Burke, T.; Heverin, M.; Vajda, A.; McLaughlin, R.; Gibbons, J.; Byrne, S.; Pinto-Grau, M.; Elamin, M.; Pender, N.; et al. Clustering of neuropsychiatric disease in first-degree and second-degree relatives of patients with amyotrophic lateral sclerosis. JAMA Neurol. 2017, 74, 1425–1430. [Google Scholar] [CrossRef] [PubMed]
- Rooney, J.; Fogh, I.; Westeneng, H.-J.; Vajda, A.; McLaughlin, R.; Heverin, M.; Jones, A.; van Eijk, R.; Calvo, A.; Mazzini, L.; et al. C9orf72 expansion differentially affects males with spinal onset amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2017, 88, 295–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil, J.; Funalot, B.; Verschueren, A.; Danel-Brunaud, V.; Camu, W.; Vandenberghe, N.; Desneuelle, C.; Guy, N.; Camdessanche, J.P.; Cintas, P.; et al. Causes of death amongst French patients with amyotrophic lateral sclerosis: A prospective study. Eur. J. Neurol. 2008, 15, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Abrahams, S.; Goldstein, L.H.; Kew, J.J.M.; Brocis, D.J.; Lloyd, C.M.; Frith, C.D.; Leigh, P.N. Frontal lobe dysfunction in amyotrophic lateral sclerosis: A PET study. Brain 1996, 119, 2105–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrahams, S.; Goldstein, L.H.; Simmons, A.; Brammer, M.; Williams, S.C.R.; Giampietro, V.; Leigh, P.N. Word retrieval in amyotrophic lateral sclerosis: A functional magnetic resonance imaging study. Brain 2004, 127, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Libon, D.J.; McMillan, C.; Avants, B.; Boller, A.; Morgan, B.; Burkholder, L.; Chandrasekaran, K.; Elman, L.; McCluskey, L.; Grossman, M. Deficit in concept formation in amyotrophic lateral sclerosis. Neuropsychology 2012, 26, 422–429. [Google Scholar] [CrossRef] [Green Version]
- Mioshi, E.; Lillo, P.; Yew, B.; Hsieh, S.; Savage, S.; Hodges, J.R.; Kiernan, M.C.; Hornberger, M. Cortical atrophy in ALS is critically associated with neuropsychiatric and cognitive changes. Neurology 2013, 80, 1117–1123. [Google Scholar] [CrossRef]
- Stojkovic, T.; Stefanova, E.; Pekmezovic, T.; Peric, S.; Stevic, Z. Executive dysfunction and survival in patients with amyotrophic lateral sclerosis: Preliminary report from a Serbian centre for motor neuron disease. Amyotroph. Lateral Scler. Front. Degener. 2016, 17, 543–547. [Google Scholar] [CrossRef]
Parameters | All Patients (n = 65) | |
---|---|---|
Age (years; mean ± SD) | 53.61 ± 9.15 | |
Age (years) | ≤60 | 49 (75.38%) |
>60 | 16 (24.61%) | |
Education | higher | 20 (30.76%) |
secondary | 33 (50.76%) | |
vocational | 12 (18.46%) | |
Disease duration (months; mean ± SD) | 24.61 ± 22.08 | |
Sex | females | 27 (41.53%) |
males | 38 (58.46%) | |
Onset of symptoms | spinal | 44 (67.69%) |
bulbar | 21 (32.30%) | |
Comorbidities: | n (% rate) | |
Hypertension | 15 (23.07%) | |
Hypothyroidism/hyperthyroidism | 8 (12.30%) | |
Degenerative spine disease | 16 (24.61%) | |
Depression | 10 (15.38%) | |
Allergy | 10 (15.38%) |
Articulatory Functions | Group I | Group II |
---|---|---|
Breathing | 48 (73.84%) | 17 (26.15%) |
Cough reflex | 36 (55.38%) | 29 (44.61%) |
Tongue mobility | 37 (56.92%) | 28 (43.07%) |
Swallowing reflex | 42 (64.61%) | 23 (35.38%) |
Lips performance | 40 (61.53%) | 25 (38.46%) |
Palate performance | 38 (58.46%) | 27 (41.53%) |
Voice loudness | 42 (64.61%) | 23 (35.38%) |
Pitch | 42 (64.61%) | 23 (35.38%) |
Phonation time | 23 (35.38%) | 42 (64.61%) |
Control of saliva | 42 (64.61%) | 23 (35.38%) |
Words | 55 (84.61%) | 10 (15.38%) |
Sentence | 49 (75.38%) | 16 (24.61%) |
Spontaneous speech | 40 (61.53%) | 25 (38.64%) |
Variables | OR | p-Value |
---|---|---|
Sex | ||
Lips | 2.6860 | 0.086 |
Soft palate | 3.1972 | 0.068 |
Length of phonation | 4.5441 | 0.013 * |
Voice loudness | 2.6110 | 0.073 |
age | ||
Sentence | 1.1084 | 0.016 * |
Spontaneous speech | 1.0747 | 0.046 * |
degenerative spine disease | ||
Breathing | 3.1121 | 0.083 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlukowska, W.; Baumert, B.; Gołąb-Janowska, M.; Meller, A.; Machowska-Sempruch, K.; Wełnicka, A.; Paczkowska, E.; Rotter, I.; Machaliński, B.; Nowacki, P. The Relationship between Selected Demographic Factors and Speech Organ Dysfunction in Sporadic ALS Patients. Medicina 2020, 56, 390. https://doi.org/10.3390/medicina56080390
Pawlukowska W, Baumert B, Gołąb-Janowska M, Meller A, Machowska-Sempruch K, Wełnicka A, Paczkowska E, Rotter I, Machaliński B, Nowacki P. The Relationship between Selected Demographic Factors and Speech Organ Dysfunction in Sporadic ALS Patients. Medicina. 2020; 56(8):390. https://doi.org/10.3390/medicina56080390
Chicago/Turabian StylePawlukowska, Wioletta, Bartłomiej Baumert, Monika Gołąb-Janowska, Agnieszka Meller, Karolina Machowska-Sempruch, Agnieszka Wełnicka, Edyta Paczkowska, Iwona Rotter, Bogusław Machaliński, and Przemysław Nowacki. 2020. "The Relationship between Selected Demographic Factors and Speech Organ Dysfunction in Sporadic ALS Patients" Medicina 56, no. 8: 390. https://doi.org/10.3390/medicina56080390
APA StylePawlukowska, W., Baumert, B., Gołąb-Janowska, M., Meller, A., Machowska-Sempruch, K., Wełnicka, A., Paczkowska, E., Rotter, I., Machaliński, B., & Nowacki, P. (2020). The Relationship between Selected Demographic Factors and Speech Organ Dysfunction in Sporadic ALS Patients. Medicina, 56(8), 390. https://doi.org/10.3390/medicina56080390