Relationship between Quadriceps Tendon Young’s Modulus and Maximum Knee Flexion Angle in the Swing Phase of Gait in Patients with Severe Knee Osteoarthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Ethics Statement
2.3. Measurement of Knee ROM
2.4. Measurement of Quadriceps Tendon Young’s Modulus
2.5. Measurement of Gait Parameters
2.6. Measurement of Pain during Gait
2.7. Statistical Analysis
3. Results
3.1. Participants’ Physical Characteristics and Measured Values
3.2. Multiple Regression Analysis
3.3. Correlation Coefficients
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef]
- Kwon, S.B.; Ro, D.H.; Song, M.K.; Han, H.S.; Lee, M.C.; Kim, H.C. Identifying key gait features associated with the radiological grade of knee osteoarthritis. Osteoarthr. Cartil. 2019, 27, 1755–1760. [Google Scholar] [CrossRef]
- Tsonga, T.; Michalopoulou, M.; Malliou, P.; Godolia, G.; Kapetanakis, S.; Gkasdaris, G.; Soucacos, P. Analyzing the history of falls in patients with severe knee osteoarthritis. Clin. Orthop. Surg. 2015, 7, 449–456. [Google Scholar] [CrossRef]
- Barrett, R.S.; Mills, P.M.; Begg, R.K. A systematic review of the effect of ageing and falls history on minimum foot clearance characteristics during level walking. Gait Posture 2010, 32, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Chiba, H.; Ebihara, S.; Tomita, N.; Sasaki, H.; Butler, J.P.B. Differential gait kinematics between fallers and non-fallers in community-dwelling elderly people. Geriatr. Gerontol. Int. 2005, 5, 127–134. [Google Scholar] [CrossRef]
- Winter, D.A. Foot trajectory in human gait: A precise and multifactorial motor control task. Phys. Ther. 1992, 72, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.; Burnfield, J.M. Gait Analysis Normal and Pathological Function, 2nd ed.; Slack Incorporated: Thorofare, NJ, USA, 2010; pp. 85–98. [Google Scholar]
- Astephen, J.L.; Deluzio, K.J.; Caldwell, G.E.; Dunbar, M.J.; Hubley-Kozey, C.L. Gait and neuromuscular pattern changes are associated with differences in knee osteoarthritis severity levels. J. Biomech. 2008, 41, 868–876. [Google Scholar] [CrossRef]
- Mannering, N.; Young, T.; Spelman, T.; Choong, P.F. Three-dimensional knee kinematic analysis during treadmill gait: Slow imposed speed versus normal self-selected speed. Bone Joint Res. 2017, 6, 514–521. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, L.Y.; Liu, H.X.; Wen, H. Quadriceps tendon pie-crusting release of stiff knees in total knee arthroplasty. J. Orthop. Sci. 2015, 20, 669–674. [Google Scholar] [CrossRef]
- Bercoff, J. ShearWave Elastography. Available online: https://www.konicaminolta.jp/healthcare/products/us/aixplorer/pdf/whitepaper_swe_eng.pdf (accessed on 10 May 2020).
- Taljanovic, M.S.; Gimber, L.H.; Becker, G.W.; Latt, L.D.; Klauser, A.S.; Melville, D.M.; Gao, L.; Witte, R.S. Shear-wave elastography: Basic physics and musculoskeletal applications. Radiographics 2017, 37, 855–870. [Google Scholar] [CrossRef] [Green Version]
- Gomes, J.; Neto, T.; Vaz, J.R.; Schoenfeld, B.J.; Freitas, S.R. Is there a relationship between back squat depth, ankle flexibility, and Achilles tendon stiffness? Sports Biomech. 2020, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kellgren, J.H.; Lawrence, J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Yu, J.; Liu, C.; Tang, C.; Zhang, Z. Regional elastic properties of the Achilles tendon is heterogeneously influenced by individual muscle of the gastrocnemius. Appl. Bionics Biomech. 2019, 2019, 8452717. [Google Scholar] [CrossRef] [PubMed]
- Ebihara, B.; Mutsuzaki, H.; Fukaya, T. Relationships between quadriceps tendon elasticity and knee flexion angle in young healthy adults. Medicina 2019, 55, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eby, S.F.; Song, P.; Chen, S.; Chen, Q.; Greenleaf, J.F.; An, K.N. Validation of shear wave elastography in skeletal muscle. J. Biomech. 2013, 46, 2381–2387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peltz, C.D.; Haladik, J.A.; Divine, G.; Siegal, D.; van Holsbeeck, M.; Bey, M.J. ShearWave elastography: Repeatability for measurement of tendon stiffness. Skeletal Radiol. 2013, 42, 1151–1156. [Google Scholar] [CrossRef]
- Kot, B.C.; Zhang, Z.J.; Lee, A.W.; Leung, V.Y.; Fu, S.N. Elastic modulus of muscle and tendon with shear wave ultrasound elastography: Variations with different technical settings. PLoS ONE 2012, 7, e44348. [Google Scholar] [CrossRef] [Green Version]
- Joyce, C.R.; Zutshi, D.W.; Hrubes, V.; Mason, R.M. Comparison of fixed interval and visual analogue scales for rating chronic pain. Eur. J. Clin. Pharmacol. 1975, 8, 415–420. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Kanazawa, K.; Hagiwara, Y.; Sekiguchi, T.; Fujita, R.; Suzuki, K.; Koide, M.; Ando, A.; Yabe, Y. Correlations between range of motion and elasticity of the coracohumeral ligament evaluated with shear-wave elastography. J. Sport Rehabil. 2020, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, N.; Hirata, K. Moderate associations of muscle elasticity of the hamstring with hip joint flexibility. Int. J. Sports Med. 2019, 40, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Coombes, B.K.; Ziegenfuss, B.; David, M.; Badya, R.; van den Hoorn, W.; Hug, F.; Tucker, K. Heterogeneity of passive elastic properties within the quadriceps femoris muscle-tendon unit. Eur. J. Appl. Physiol. 2018, 118, 213–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muraki, T.; Ishikawa, H.; Morise, S.; Yamamoto, N.; Sano, H.; Itoi, E.; Izumi, S. Ultrasound elastography-based assessment of the elasticity of the supraspinatus muscle and tendon during muscle contraction. J. Shoulder Elbow Surg. 2015, 24, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Anderson, F.C.; Goldberg, S.R.; Pandy, M.G.; Delp, S.L. Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: An induced position analysis. J. Biomech. 2004, 37, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.M.; Galna, B.; Murphy, A.T.; Williams, C.M.; Haines, T.P. Effect of footwear on minimum foot clearance, heel slippage and spatiotemporal measures of gait in older women. Gait Posture 2016, 44, 43–47. [Google Scholar] [CrossRef] [PubMed]
Physical Characteristics | Knee OA (n = 30) |
---|---|
Age (years) | 75.0 (67.5–76.0) 2 |
Sex (men/women) | 10/20 |
Height (m) | 1.54 ± 0.09 1 |
Weight (kg) | 61.0 (48.8–65.9) 2 |
BMI (kg/m2) | 24.9 (22.1–29.1) 2 |
FTA (°) | 181.0 (178.5–184.0) 2 |
KL grade (3/4) | 12/18 |
Measurement Values | Knee OA (n = 30) |
---|---|
Active extension angle (°) | −4.3 ± 8.5 1 |
Active flexion angle (°) | 124.1 ± 13.0 1 |
Quadriceps tendon Young’s modulus (kPa) | 271.2 (198.9–424.8) 2 |
Gait speed (m/s) | 0.81 ± 0.21 1 |
Cadence (step/min) | 103.7 ± 15.0 1 |
Step length (m) | 0.46 ± 0.08 1 |
Maximum knee flexion angle in the swing phase (°) | 54.9 (48.7–59.5) 2 |
Pain during gait (points) | 25.0 (1.5–61.3) 2 |
Variables | B | 95% CI of B | p-Values | β | VIF |
---|---|---|---|---|---|
Constant | 45.109 | 25.968–64.249 | <0.001 * | ||
Quadriceps tendon Young’s modulus (kPa) | −0.035 | −0.062–−0.008 | 0.013 * | −0.410 | 1.391 |
Gait speed (m/s) | 22.367 | 6.100–38.634 | 0.009 * | 0.433 | 1.391 |
Quadriceps Tendon Young’s Modulus | Maximum Knee Flexion Angle in the Swing Phase | |||
---|---|---|---|---|
rs | p-Value | rs | p-Value | |
Active extension angle | −0.222 | 0.238 | −0.007 | 0.971 |
Active flexion angle | −0.557 | 0.001 * | 0.325 | 0.079 |
Quadriceps tendon Young’s modulus | - | - | −0.559 | 0.001 * |
Gait speed | −0.426 | 0.019 * | 0.532 | 0.002 * |
Cadence | −0.252 | 0.179 | 0.503 | 0.005 * |
Step length | −0.508 | 0.004 * | 0.457 | 0.011 * |
Maximum knee flexion angle in the swing phase | −0.559 | 0.001 * | - | - |
Pain during gait | 0.145 | 0.445 | −0.285 | 0.126 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebihara, B.; Fukaya, T.; Mutsuzaki, H. Relationship between Quadriceps Tendon Young’s Modulus and Maximum Knee Flexion Angle in the Swing Phase of Gait in Patients with Severe Knee Osteoarthritis. Medicina 2020, 56, 437. https://doi.org/10.3390/medicina56090437
Ebihara B, Fukaya T, Mutsuzaki H. Relationship between Quadriceps Tendon Young’s Modulus and Maximum Knee Flexion Angle in the Swing Phase of Gait in Patients with Severe Knee Osteoarthritis. Medicina. 2020; 56(9):437. https://doi.org/10.3390/medicina56090437
Chicago/Turabian StyleEbihara, Bungo, Takashi Fukaya, and Hirotaka Mutsuzaki. 2020. "Relationship between Quadriceps Tendon Young’s Modulus and Maximum Knee Flexion Angle in the Swing Phase of Gait in Patients with Severe Knee Osteoarthritis" Medicina 56, no. 9: 437. https://doi.org/10.3390/medicina56090437
APA StyleEbihara, B., Fukaya, T., & Mutsuzaki, H. (2020). Relationship between Quadriceps Tendon Young’s Modulus and Maximum Knee Flexion Angle in the Swing Phase of Gait in Patients with Severe Knee Osteoarthritis. Medicina, 56(9), 437. https://doi.org/10.3390/medicina56090437