Allometric Modeling of Wingate Test among Adult Male Athletes from Combat Sports
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedures, Ethics Statement and Participants
2.2. Anthropometry
2.3. Air Displacement Plethysmography (ADP)
2.4. Dual-Energy X-ray Absorptiometry (DXA)
2.5. Wingate Anaerobic Test (WAnT)
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Green, S.A. Definition and systems view of anaerobic capacity. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 69, 168–173. [Google Scholar] [CrossRef]
- Winter, E.M.; MacLaren, D.P. Assessment of maximal-intensity exercise. In Kinanthropometry and Exercise Physiology Laboratory Manual: Tests, Procedures and Data; Eston, R.G., Reilly, T., Eds.; Routledge: London, UK, 2001; Volume 2, pp. 319–352. [Google Scholar]
- Khanna, G.L.; Manna, I. Study of physiological profile of Indian boxers. J. Sports Sci. Med. 2006, 5, 90–98. [Google Scholar] [PubMed]
- Gacesa, J.Z.P.; Barak, O.F.; Grujic, N.G. Maximal anaerobic power test in athletes of different sport disciplines. J. Strength Cond. Res. 2009, 23, 751–755. [Google Scholar] [CrossRef]
- Bridge, C.A.; da Silva Santos, J.F.; Chaabene, H.; Pieter, W.; Franchini, E. Physical and physiological profiles of taekwondo athletes. Sports Med. 2014, 44, 713–733. [Google Scholar] [CrossRef]
- Ayalon, A.; Inbar, O.; Bar-Or, O. Relationships among measurements of explosive strength and anaerobic power. In Biomechanics IV; International Series on Sport Sciences; Nelson, R.C., Morehouse, C.A., Eds.; University Press: Baltimore, MD, USA, 1974; Volume 1, pp. 572–577. [Google Scholar]
- Bar-Or, O. The Wingate anaerobic test. An update on methodology, reliability and validity. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef]
- Inbar, O.; Bar-Or, O.; Skinner, J.S. The Wingate Anaerobic Test; Human Kinetics: Champaign, IL, USA, 1996. [Google Scholar]
- Van Praagh, E.; Dore, E. Short-term muscle power during growth and maturation. Sports Med. 2012, 32, 701–728. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.M. Fallacy of per-weight and per-surface area standards, and their relation to spurious correlation. J. Appl. Physiol. 1949, 2, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Nevill, A.M.; Ramsbottom, R.; Williams, C. Scaling physiological measurements for individuals of different body size. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 65, 110–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, H.M.; Coelho-e-Silva, M.J.; Figueiredo, A.J.; Gonçalves, C.E.; Phillippaerts, R.M.; Castagna, C.; Malina, R.M. Predictors of maximal short-term power outputs in basketball players 14–16 years. Eur. J. Appl. Physiol. 2011, 111, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Nevill, A.M.; Holder, R.L. Modelling maximum oxygen uptake: A case-study in non-linear regression model formulation and comparison. J. R. Stat. Soc. Ser. C Appl. Stat. 1994, 43, 653–666. [Google Scholar] [CrossRef]
- Nevill, A.M.; Stewart, A.D.; Olds, T.; Holder, R. Are adult physiques geometrically similar? The dangers of allometric scaling using body mass power laws. Am. J. Phys. Anthrop. 2004, 124, 177–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valente-dos-Santos, J.; Coelho-e-Silva, M.J.; Castanheira, J.; Machado-Rodrigues, A.M.; Cyrino, E.S.; Sherar, L.B.; Esliger, D.W.; Elferink-Gemser, M.T.; Malina, R.M. The effects of sports participation on the development of left ventricular mass in adolescent boys. Am. J. Hum. Biol. 2015, 27, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Coelho-e-Silva, M.J.; Rebelo-Gonçalves, R.; Martinho, D.; Ahmed, A.; Luz, L.G.O.; Duarte, J.P.; Severino, V.; Baptista, R.C.; Valente-dos-Santos, J.; Vaz, V.; et al. Reproducibility of estimated optimal peak output using a force-velocity test on a cycle ergometer. PLoS ONE 2018, 13, e0193234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siri, W.E. Body composition from fluid spaces and density: Analysis of methods. Nutrition 1993, 9, 480–491. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, A.J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Sardinha, L.B.; Santos, D.A.; Silva, A.M.; Coelho-e-Silva, M.J.; Raimundo, A.M.; Moreira, H.; Santos, R.; Vale, S.; Baptista, F.; Mota, J. Prevalence of overweight, obesity, and abdominal obesity in a representative sample of Portuguese adults. PLoS ONE 2012, 7, e47883. [Google Scholar] [CrossRef]
- Doria, C.; Veicsteinas, A.; Limonta, E.; Maggioni, M.A.; Aschieri, P.; Eusebi, F.; Fanò, G.; Pietrangelo, T. Energetics of karate (kata and kumite techniques) in top-level athletes. Eur. J. Appl. Physiol. 2009, 107, 603–610. [Google Scholar] [CrossRef]
- Sbriccoli, P.; Bazzucchi, I.; Di Mario, A.; Marzattinocci, G.; Felici, F. Assessment of maximal cardiorespiratory performance and muscle power in the Italian Olympic judoka. J. Strength Cond. Res. 2007, 21, 738–744. [Google Scholar]
- Taaffe, D.; Pieter, W. Physical and physiological characteristics of elite taekwondo athletes. In Commonwealth and International Conference Proceedings; Sport Science Part 1; New Zealand Association of Health, Physical Education, and Recreation: Auckland, New Zealand, 1990; Volume 3, pp. 80–88. [Google Scholar]
- Zabukovec, R.; Tiidus, P.M. Physiological and anthropometric profile of elite kickboxers. J. Strength Cond. Res. 1995, 9, 240–242. [Google Scholar]
- Yoon, J. Physiological profiles of elite senior wrestlers. Sports Med. 2002, 32, 225–233. [Google Scholar] [CrossRef]
- Lovell, D.I.; Bousson, M.; McLellan, C.A. The Use of Performance Tests for the Physiological Monitoring of Training in Combat Sports: A Case Study of a World Ranked Mixed Martial Arts Fighter. J. Athl. Enhanc. 2013, 2, 2–6. [Google Scholar] [CrossRef]
- Jaafar, H. Allometric scaling of power-force-velocity ergometry profiles in men. Ann. Hum. Biol. 2017, 44, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Lolli, L.; Batterham, A.M.; Weston, K.L.; Atkinson, G. Size Exponents for scaling maximal oxygen uptake in over 6500 humans: A systematic review and meta-analysis. Sports Med. 2017, 47, 1405–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubner-Wozniak, E.; Kosmol, A.; Lutoslawska, G.; Bem, E.Z. Anaerobic performance of arms and legs in male and female free style wrestlers. J. Sci. Med. Sport 2004, 7, 473–480. [Google Scholar] [CrossRef]
- Demirkan, E.; Koz, M.; Kutlu, M.; Favre, M. Comparison of physical and physiological profiles in elite and amateur young wrestlers. J. Strength Cond. Res. 2015, 29, 1876–1883. [Google Scholar] [CrossRef]
- Chaabene, H.; Negra, Y.; Bouguezzi, R.; Mkaouer, B.; Franchini, E.; Julio, U.; Hachana, Y. Physical and physiological attributes of wrestlers: An update. J. Strength Cond. Res. 2017, 31, 1411–1442. [Google Scholar] [CrossRef]
- Bussweiler, J.; Hartmann, U. Energetics of basic karate kata. Eur. J. Appl. Physiol. 2012, 112, 3991–3996. [Google Scholar] [CrossRef]
- Nevill, A.M.; Holder, R.L.; Baxter-Jones, A.; Round, J.M.; Jones, D.A. Modeling developmental changes in strength and aerobic power in children. J. Appl. Physiol. 1998, 84, 963–970. [Google Scholar] [CrossRef] [Green Version]
- McMahon, T. Size and shape in biology. Science 1973, 179, 1201–1204. [Google Scholar] [CrossRef]
- Reljic, D.; Hassler, E.; Jost, J.; Friedmann-Bette, B. Rapid weight loss and the body fluid balance and hemoglobin mass of elite amateur boxers. J. Athl. Train. 2013, 48, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Giovani, N.; Nicolaidis, P. Differences in force-velocity characteristics of upper and lower limbs of non-competitive male boxers. Int. J. Exerc. Sci. 2012, 5, 106–113. [Google Scholar] [PubMed]
- Chaabène, H.; Tabben, M.; Mkaouer, B.; Franchini, E.; Negra, Y.; Amara, S.; Chaabène, R.B.; Hachana, Y. Amateur boxing: Physical and physiological attributes. Sports Med. 2015, 45, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Vandewalle, H.; Peres, G.; Monod, H. Standard anaerobic exercise tests. Sports Med. 1987, 4, 268–289. [Google Scholar] [CrossRef]
- Jaafar, H.; Rouis, M.; Attiogbe, E.; Vandewalle, H.; Driss, T.A. Comparative study between the wingate and force-velocity anaerobic cycling tests: Effect of physical fitness. Int. J. Sports Physiol. Perform. 2016, 11, 48–54. [Google Scholar] [CrossRef] [PubMed]
Variables (Xi) | Unit | Range | Mean | Standard Deviation | Normality | Correlation (Xi·Yi) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(min–max) | Value | SEM | (95% CI) | K-S Value | p | Y1: WAnT-PP | Y2: WAnT-MP | |||||
r | p | r | p | |||||||||
Anthropometry | ||||||||||||
Stature | cm | 156.7–190.8 | 174.3 | 0.9 | (172.5 to 176.1) | 7.2 | 0.064 | 0.20 | 0.478 | ≤0.01 | 0.650 | ≤0.01 |
Body Mass | kg | 49.5–113.5 | 73.6 | 1.5 | (70.6 to 76.7) | 12.1 | 0.110 | ≤0.05 | 0.513 | ≤0.01 | 0.676 | ≤0.01 |
Air Displacement Plethysmography | ||||||||||||
Body Volume | L | 46.6–110.2 | 69 | 1.5 | (66.0 to 72.1) | 12.1 | 0.111 | ≤0.05 | ||||
Body Density | kg/L | 1.013–1.093 | 1.071 | 0.002 | (1.067 to 1.075) | 0.016 | 0.144 | ≤0.01 | ||||
Thoracic Gas Volume | L | 2.870–4.574 | 3.751 | 0.044 | (3.664 to 3.839) | 0.351 | 0.058 | 0.20 | ||||
Fat Mass | % | 2.7–38.8 | 12.7 | 0.9 | (10.9 to 14.4) | 7.0 | 0.140 | ≤0.01 | ||||
kg | 2.2–42.4 | 9.9 | 0.9 | (8.0 to 11.7) | 7.4 | 0.212 | ≤0.01 | |||||
Fat-Free Mass | kg | 42.9–85.1 | 64.0 | 1.01 | (62.0 to 66) | 8.1 | 0.090 | 0.20 | 0.717 | ≤0.01 | 0.718 | ≤0.01 |
Dual energy X-Ray Absorptiometry | ||||||||||||
Lower Limbs Lean Soft Tissue | kg | 11.9–29 | 20.5 | 0.4 | (19.7 to 21.2) | 2.9 | 0.072 | 0.20 | 0.622 | ≤0.01 | 0.746 | ≤0.01 |
Wingate Test | ||||||||||||
Load (Braking Force) | kg | 3.8–8.6 | 5.6 | 0.1 | (5.3 to 5.8) | 0.9 | 0.130 | ≤0.01 | ||||
WAnT-PP | watt | 514–1527 | 923 | 21 | (882 to 965) | 166 | 0.070 | 0.20 | ||||
WAnT-MP | watt | 357–871 | 606 | 10 | (585 to 627) | 83 | 0.069 | 0.20 |
Yi: Performance Outputs | Xi: Size Descriptor | log a + k × log (Size Descriptor) + log ε | Correlation (Yi/Xik, Xi) | |||||
---|---|---|---|---|---|---|---|---|
Intercept | k Exponent (95% CI) | r | R2 | p | r | (95% CI) * | ||
WAnT-PP | Stature | −4.725 | 2.236 (1.281 to 3.191) | 0.511 | 0.261 | <0.01 | −0.018 | (−0.262 to 0.228) |
Body Mass | 4.057 | 0.643 (0.400 to 0.886) | 0.558 | 0.311 | <0.01 | −0.031 | (−0.274 to 0.216) | |
FFM | 2.473 | 1.045 (0.801 to 1.290) | 0.735 | 0.540 | <0.01 | −0.011 | (−0.256 to 0.235) | |
LL-LST | 4.200 | 0.868 (0.635 to 1.101) | 0.687 | 0.472 | <0.01 | −0.015 | (−0.259 to 0.231) | |
WAnT-MP | Stature | −4.990 | 2.207 (1.547 to 2.867) | 0.647 | 0.420 | <0.01 | −0.016 | (−0.260 to 0.230) |
Body Mass | 3.675 | 0.635 (0.474 to 0.796) | 0.708 | 0.501 | <0.01 | −0.041 | (−0.283 to 0.206) | |
FFM | 2.912 | 0.840 (0.656 to 1.023) | 0.758 | 0.574 | <0.01 | −0.019 | (−0.263 to 0.227) | |
LL-LST | 4.053 | 0.779 (0.627 to 0.932) | 0.792 | 0.627 | <0.01 | −0.024 | (−0.268 to 0.223) |
log a + k1 × log (X1) + k2 × log (X2) + log ε | Model Summary | |||||||
---|---|---|---|---|---|---|---|---|
Yi: Performance Outputs | Constant | Xi: Size Descriptors | k Exponent | Partial Correlation | R | R2 Adjusted | ||
Value | p | value | (95% CI) | |||||
WAnT-PP | 2.736 | ≤0.01 | X1: FFM | 0.800 | 0.307 to 1.293 | 0.384 | 0.742 | 0.550 |
WAnT-MP | 3.474 | ≤0.01 | X1: FFM | 0.316 | −0.024 to 0.656 | 0.232 | 0.804 | 0.647 |
n | CA (Years) | Stature (cm) | BM (kg) | FM | WAnT-PP | WAnT-MP | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
% | Technique | (watt) | (watt.kg−1) | (watt) | (watt.kg−1) | ||||||
Present study | all | 64 | 24 ± 5 | 174.3 ± 7.2 | 73.6 ± 12.1 | 12.7 ± 7.0 | ADP | 923 ± 166 | 696 ± 83 | ||
Boxing | 11 | 26 ± 4 | 178.2 ± 7.1 | 78.3 ± 15.3 | 16.2 ± 8.4 | ADP | 890 ± 134 | 627 ± 100 | |||
Kickboxing | 10 | 23 ± 3 | 173.9 ± 6.8 | 71.3 ± 10.1 | 9.2 ± 2.3 | ADP | 970 ± 135 | 608 ± 78 | |||
Taekwondo | 9 | 23 ± 3 | 174.5 ± 6.5 | 75.7 ± 14.8 | 16.8 ± 9.9 | ADP | 907 ± 146 | 601 ± 86 | |||
Karate | 9 | 22 ± 2 | 176.2 ± 6.5 | 71.2 ± 8.4 | 10.6 ± 7.0 | ADP | 1036 ± 112 | 650 ± 66 | |||
Judo | 10 | 22 ± 2 | 173.5 ± 5.7 | 74.1 ± 10.7 | 7.5 ± 4.1 | ADP | 1014 ± 212 | 598 ± 60 | |||
Wrestling | 5 | 25 ± 8 | 163.0 ± 6.4 | 62.2 ± 9.2 | 12.9 ± 3.3 | ADP | 743 ± 174 | 507 ± 99 | |||
Jiu-Jitsu | 10 | 28 ± 6 | 174.9 ± 6.7 | 76.5 ± 11.5 | 15.5 ± 4.8 | ADP | 828 ± 105 | 604 ± 68 | |||
Popadic Gacesa et al. [4] | Boxing | 14 | 22.2 | 179.5 | 77 | 715 | 9.3 | 517 | 6.7 | ||
Zabukovec & Tiidus [23] | Kickboxing | 4 | 27 | 176.7 | 72.6 | 1360 | 18.8 | 761 | 10.5 | ||
Taaffe & Pieter [22] | Taekwondo | 14 | 72.5 | 7.5 | Skinfolds | 865 | 11.8 | 671 | 9.2 | ||
Doria et al. [20] | Karate (Kata) | 3 | 30.7 | 176 | 78.5 | 9.7 | 5.7 | ||||
Karate (Kumite) | 3 | 24 | 181 | 76.3 | 9.6 | 7.8 | |||||
Sbriccoli et al. [21] | Judo | 6 | 26 | 180 | 109 | 1236 | 558 | ||||
Popadic Gacesa et al. [4] | Wrestling | 17 | 20.6 | 175.4 | 79.4 | 765 | 9.9 | 516 | 6.6 | ||
Yoon [24] | Wrestling | 8 | 11.2 | 6.7 | |||||||
Lovell et. [25] | Jiu-Jitsu | 1 | 25 | 182 | 90.2 | 8.5 | Skinfolds | 798 | 8.9 | 521 | 5.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho-e-Silva, M.J.; Sousa-e-Silva, P.; Morato, V.S.; Costa, D.C.; Martinho, D.V.; Rama, L.M.; Valente-dos-Santos, J.; Werneck, A.O.; Tavares, Ó.M.; Conde, J.; et al. Allometric Modeling of Wingate Test among Adult Male Athletes from Combat Sports. Medicina 2020, 56, 480. https://doi.org/10.3390/medicina56090480
Coelho-e-Silva MJ, Sousa-e-Silva P, Morato VS, Costa DC, Martinho DV, Rama LM, Valente-dos-Santos J, Werneck AO, Tavares ÓM, Conde J, et al. Allometric Modeling of Wingate Test among Adult Male Athletes from Combat Sports. Medicina. 2020; 56(9):480. https://doi.org/10.3390/medicina56090480
Chicago/Turabian StyleCoelho-e-Silva, Manuel J., Paulo Sousa-e-Silva, Vinícius S. Morato, Daniela C. Costa, Diogo V. Martinho, Luís M. Rama, João Valente-dos-Santos, André O. Werneck, Óscar M. Tavares, Jorge Conde, and et al. 2020. "Allometric Modeling of Wingate Test among Adult Male Athletes from Combat Sports" Medicina 56, no. 9: 480. https://doi.org/10.3390/medicina56090480
APA StyleCoelho-e-Silva, M. J., Sousa-e-Silva, P., Morato, V. S., Costa, D. C., Martinho, D. V., Rama, L. M., Valente-dos-Santos, J., Werneck, A. O., Tavares, Ó. M., Conde, J., Castanheira, J. M., Soles-Gonçalves, R., & Duarte, J. P. (2020). Allometric Modeling of Wingate Test among Adult Male Athletes from Combat Sports. Medicina, 56(9), 480. https://doi.org/10.3390/medicina56090480