Possible Adrenal Involvement in Long COVID Syndrome
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021. [Google Scholar] [CrossRef]
- Ladds, E.; Rushforth, A.; Wieringa, S.; Taylor, S.; Rayner, C.; Husain, L.; Greenhalgh, T. Persistent symptoms after Covid-19: Qualitative study of 114 “long Covid” patients and draft quality principles for services. BMC Health Serv. Res. 2020, 20, 1144. [Google Scholar] [CrossRef] [PubMed]
- Mendelson, M.; Nel, J.; Blumberg, L.; Madhi, S.A.; Dryden, M.; Stevens, W. Long-COVID: An evolving problem with an extensive impact. S. Afr. Med. J. 2020, 111, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelma, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 16144. [Google Scholar] [CrossRef] [PubMed]
- Martimbianco, A.L.C.; Pacheco, R.L.; Bagattini, A.M.; Riera, R. Frequency, signs and symptoms, and criteria adopted for long COVID-19: A systematic review. Int. J. Clin. Pract. 2021, e14357. [Google Scholar] [CrossRef]
- Khoo, B.; Tan, T.; Clarke, S.A.; Mills, E.G.; Patel, B.; Modi, M.; Phylactou, M.; Eng, P.C.; Thurston, L.; Alexander, E.C. Thyroid Function Before, During, and After COVID-19. J. Clin. Endocrinol. Metab. 2021, 106, e803–e811. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.; Banerjee, M. COVID-19 and the endocrine system: Exploring the unexplored. J. Endocrinol. Investig. 2020, 43, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Lisco, G.; De Tullio, A.; Stragapede, A.; Solimando, A.G.; Albanese, F.; Capobianco, M.; Giagulli, V.A.; Guastamacchia, E.; de Pergola, G.; Vacca, A. COVID-19 and the Endocrine System: A Comprehensive Review on the Theme. J. Clin. Med. 2021, 10, 2920. [Google Scholar] [CrossRef] [PubMed]
- Piticchio, T.; Le Moli, R.; Tumino, D.; Frasca, F. Relationship between betacoronaviruses and the endocrine system: A new key to understand the COVID-19 pandemic—A comprehensive review. J. Endocrinol. Investig. 2021, 44, 1553–1570. [Google Scholar] [CrossRef] [PubMed]
- Brender, E.; Lynm, C.; Glass, R.M. JAMA patient page. Adrenal insufficiency. JAMA 2005, 294, 2528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naeije, R.; Caravita, S. Phenotyping long COVID. Eur. Respir. J. 2021, 58, 2101763. [Google Scholar] [CrossRef] [PubMed]
- Kamin, H.S.; Kertes, D.A. Cortisol and DHEA in development and psychopathology. Horm. Behav. 2017, 89, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, N.C.; Pavlaki, A.N.; Maria Alexandra, M.A.; Chrousos, G.P. Glucocorticoid Therapy and Adrenal Suppression. In Endotext [Internet]; Feingold, K.R., Anawalt, B., Boyce, A., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279156/ (accessed on 19 October 2018).
- Broersen, L.H.; Pereira, A.M.; Jørgensen, J.O.; Dekkers, O.M. Adrenal Insufficiency in Corticosteroids Use: Systematic Review and Meta-Analysis. J. Clin. Endocrinol. Metab. 2015, 100, 2171–2180. [Google Scholar] [CrossRef] [PubMed]
- Inder, W.J.; Dimeski, G.; Russell, A. Measurement of salivary cortisol in 2012–laboratory techniques and clinical indications. Clin. Endocrinol. 2012, 77, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Langelaan, M.L.P.; Kisters, J.M.H.; Oosterwerff, M.M.; Boer, A.K. Salivary cortisol in the diagnosis of adrenal insufficiency: Cost efficient and patient friendly. Endocr. Connect. 2018, 7, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Wheatland, R. Molecular mimicry of ACTH in SARS–implications for corticosteroid treatment and prophylaxis. Med. Hypotheses 2004, 63, 855–862. [Google Scholar] [CrossRef]
- Mao, Y.; Xu, B.; Guan, W.; Xu, D.; Li, F.; Ren, R.; Zhu, X.; Gao, Y.; Jiang, L. The Adrenal Cortex, an Underestimated Site of SARS-CoV-2 Infection. Front. Endocrinol. (Lausanne) 2021, 11, 593179. [Google Scholar] [CrossRef]
Complete Blood Count | |||
---|---|---|---|
Analyte | Value | Units | Reference Range |
Red blood cells (RBC) | 5.07 | 1012 cells/L | 4.0–5.4 |
Hemoglobin (Hb) | 136 | g/L | 120–160 |
Hematocrit (Hct) | 42.2 | % | 35–48 |
MCV | 83.2 | fL | 78–95 |
MCH | 26.9 | pg | 26–33 |
MCHC | 323 | g/L | 320–360 |
RDW | 14.4 | % | 11.0–15.5 |
Reticulocytes | 1 | % | 0.5–2.5 |
Platelets (PLT) | 339 | 109 cells/L | 130–400 |
MPV | 7.6 | fL | 7.2–11.1 |
PCT | 0.26 | % | 0.12–0.36 |
PDW | 50.3 | % | 25.0–65.0 |
White blood cells (WBC) | 9.28 | 109 cells/L | 4.8–10.8 |
Neutrophils | 5.94 | 109 cells/L | 1.90–8.10 |
Lymphocytes | 2.63 | 109 cells/L | 0.90–5.20 |
Monocytes | 0.41 | 109 cells/L | 0.16–1.20 |
Eosinophils | 0.19 | 109 cells/L | 0.00–0.80 |
Basophils | 0.03 | 109 cells/L | 0.00–0.20 |
LUC | 0.08 | 109 cells/L | 0.00–0.40 |
Monocytes to Lymphocytes Ratio (MLR) | 0.156 | 0.105–0.403 | |
Neutrophils to Lymphocytes Ratio (NLR) | 2.3 | 0.7–3.5 | |
Platelets to Lymphocytes Ratio (PLR) | 128.9 | 76.5–251.4 | |
Systemic Inflammation Index (SII) | 765.7 | 109 cells/L | 158–1028 |
Iron metabolism | |||
Iron | 21.3 | μmol/L | 5.0–30.4 |
Ferritin | 64.0 | μmol/L | 33.7–337.1 |
Transferrin | 31.3 | μmol/L | 25.1–50.3 |
Total Iron Binding Capacity (TIBC) | 62.5 | μmol/L | 50.2–100.6 |
Unsaturated Iron Binding Capacity (UIBC) | 41.2 | μmol/L | 21.0–84.0 |
Transferrin saturation | 34.1 | % | 15–50 |
Thyroid Function | |||
TSH | 2.035 | mU/L | 0.45–4.5 |
fT4 | 11.58 | pmol/L | 10–22 |
fT3 | 5.01 | pmol/L | 2.8–6.5 |
Liver Function | |||
Fibrinogen | 3.9 | g/L | 1.5–4.5 |
D-dimer | 349 | μg/L | 140–500 |
Aspartate Aminotransferase (AST) | 22 | U/L | 6–34 |
Alanine Aminotransferase (ALT) | 13 | U/L | 7–35 |
γ-Glutamyl transferase (GGT) | 11 | U/L | 7–38 |
AST/ALT | 1.7 | ≤1 | |
GGT/ALT | 0.8 | ≤1 | |
AST to Platelets Ratio Index (APRI) | 0.2 | ≤0.5 | |
Inflammatory Markers | |||
α2-Macroglobulin | 2.1 | g/L | 1.3–3.0 |
C-reactive protein (CRP) | 5.5 | mg/L | ≤10 |
Aptoglobin | 2.68 | g/L | 0.30–2.00 |
Erythrocyte sedimentation rate (ESR) | 38 | mm | ≤20 |
Uric acid | 2.97 | mmol/L | ≤1.78 |
SALIVARY CORTISOL | |||
---|---|---|---|
Hours | ng/mL | nmol/L | Range |
07:00–08:00 | 0.68 | 1.88 | 13–24 nmol/L |
11:00–12:00 | 0.77 | 2.12 | 5–10 nmol/L |
16:00–17:00 | 0.59 | 1.63 | 3–8 nmol/L |
23:00–24:00 | 0.44 | 1.21 | 1–4 nmol/L |
Cortisol area | 27.3 | 70–155 nmol/L/16 h | |
SALIVARY DHEA-S | |||
Hours | ng/mL | nmol/L | Range |
07:00–08:00 | 7.15 | 19.40 | Sex: Female-Age: 38 |
23:00–24:00 | 8.18 | 22.20 | |
Mean | 20.80 | 10.6–30.9 nmol/L | |
DHEA-S area | 332.8 | 169–495 nmol/L/16 h | |
DHEA-S–CORTISOL AREAS RATIO | |||
Ratio | Range | ||
12.2 | 1.1–7.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salzano, C.; Saracino, G.; Cardillo, G. Possible Adrenal Involvement in Long COVID Syndrome. Medicina 2021, 57, 1087. https://doi.org/10.3390/medicina57101087
Salzano C, Saracino G, Cardillo G. Possible Adrenal Involvement in Long COVID Syndrome. Medicina. 2021; 57(10):1087. https://doi.org/10.3390/medicina57101087
Chicago/Turabian StyleSalzano, Ciro, Giovanna Saracino, and Giuseppe Cardillo. 2021. "Possible Adrenal Involvement in Long COVID Syndrome" Medicina 57, no. 10: 1087. https://doi.org/10.3390/medicina57101087
APA StyleSalzano, C., Saracino, G., & Cardillo, G. (2021). Possible Adrenal Involvement in Long COVID Syndrome. Medicina, 57(10), 1087. https://doi.org/10.3390/medicina57101087