Could a Multi-Marker and Machine Learning Approach Help Stratify Patients with Heart Failure?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Logistic Regression Analysis
3.2. Multivariate Factorial Discriminant Analysis
3.3. Machine Learning
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fernández-Ruiz, I. The search for an effective HFpEF treatment continues. Nat. Rev. Cardiol. 2019, 16, 647. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, C.M.; Defilippi, C. PARAGON-HF—Why We Do Randomized, Controlled Clinical Trials. N. Engl. J. Med. 2019, 381, 1675–1676. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; McMurray, J.J.; Anand, I.S.; Bayes-Genis, A.; Lam, C.S.; Maggioni, A.P.; Martinez, F.; Packer, M.; Pfeffer, M.A.; Pieske, B.; et al. Angiotensin–Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2019, 381, 1609–1620. [Google Scholar] [CrossRef] [Green Version]
- Hunter, W.; Kelly, J.P.; McGarrah, R.W.; Khouri, M.G.; Craig, D.; Haynes, C.; Ilkayeva, O.; Stevens, R.D.; Bain, J.R.; Muehlbauer, M.J.; et al. Metabolomic Profiling Identifies Novel Circulating Biomarkers of Mitochondrial Dysfunction Differentially Elevated in Heart Failure With Preserved Versus Reduced Ejection Fraction: Evidence for Shared Metabolic Impairments in Clinical Heart Failure. J. Am. Heart Assoc. 2016, 5, e003190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Bauersachs, J.; Langer, H.F. Immune mechanisms in heart failure. Eur. J. Heart Fail. 2017, 19, 1379–1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadini, G.P.; Mehta, A.; Dhindsa, D.S.; Bonora, B.M.; Sreejit, G.; Nagareddy, P.; Quyyumi, A.A. Circulating stem cells and cardiovascular outcomes: From basic science to the clinic. Eur. Heart J. 2020, 41, 4271–4282. [Google Scholar] [CrossRef] [PubMed]
- Farinacci, M.; Krahn, T.; Dinh, W.; Volk, H.-D.; Düngen, H.-D.; Wagner, J.; Konen, T.; Von Ahsen, O. Circulating endothelial cells as biomarker for cardiovascular diseases. Res. Pr. Thromb. Haemost. 2018, 3, 49–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotierzo, M.; Dupuy, A.M.; Kalmanovich, E.; Roubille, F.; Cristol, J.P. sST2 as a value-added biomarker in heart failure. Clin. Chim. Acta 2020, 501, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Najjar, E.; Faxén, U.L.; Hage, C.; Donal, E.; Daubert, J.-C.; Linde, C.; Lund, L.H. ST2 in heart failure with preserved and reduced ejection fraction. Scand. Cardiovasc. J. 2019, 53, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohavi, R. A Study of Cross Validation and Bootstrap for Accuracy Estimation and Model Selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA; 20–25 August 1995.
- Beale, A.L.; Warren, J.L.; Roberts, N.; Meyer, P.; Townsend, N.; Kaye, D. Iron deficiency in heart failure with preserved ejection fraction: A systematic review and meta-analysis. Open Heart 2019, 6, e001012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcaide-Aldeano, A.; Garay, A.; Alcoberro, L.; Jiménez-Marrero, S.; Yun, S.; Tajes, M.; García-Romero, E.; Díez-López, C.; González-Costello, J.; Mateus-Porta, G.; et al. Iron Deficiency: Impact on Functional Capacity and Quality of Life in Heart Failure with Preserved Ejection Fraction. J. Clin. Med. 2020, 9, 1199. [Google Scholar] [CrossRef] [PubMed]
- Chopra, V.K.; Anker, S.D. Anaemia, iron deficiency and heart failure in 2020: Facts and numbers. ESC Heart Fail. 2020, 7, 2007–2011. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.E.; Enserro, D.; Brouwers, F.P.; Kizer, J.R.; Shah, S.J.; Psaty, B.M.; Bartz, T.M.; Santhanakrishnan, R.; Lee, D.S.; Chan, C.; et al. Predicting Heart Failure With Preserved and Reduced Ejection Fraction: The International Collaboration on Heart Failure Subtypes. Circ. Heart Fail. 2016, 9, e003116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Guo, Z.; Wang, B.; Wu, Y.; Li, Z.; Yao, H.; Fang, R.; Yang, H.; Cao, H.; Cui, Y. Risk Prediction in Patients With Heart Failure With Preserved Ejection Fraction Using Gene Expression Data and Machine Learning. Front. Genet. 2021, 12, 652315. [Google Scholar] [CrossRef] [PubMed]
- Tromp, J.; Westenbrink, B.D.; Ouwerkerk, W.; van Veldhuisen, D.J.; Samani, N.J.; Ponikowski, P.; Metra, M.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; et al. Identifying Pathophysiological Mechanisms in Heart Failure With Reduced Versus Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2018, 72, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Wong, L.L.; Liew, O.W.; Richards, A.M. Heart Failure with Reduced Ejection Fraction (HFrEF) and Preserved Ejection Fraction (HFpEF): The Diagnostic Value of Circulating MicroRNAs. Cells 2019, 8, 1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, D.S.; Grubenhoff, J. Machine Learning in Clinical Medicine Still Finding Its Way. JAMA Netw. Open 2019, 2, e186926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakarmath, S.; Golas, S.; Felsted, J.; Kvedar, J.; Jethwani, K.; Agboola, S. Validating a Machine Learning Algorithm to Predict 30-Day Re-Admissions in Patients With Heart Failure: Protocol for a Prospective Cohort Study. JMIR Res. Protoc. 2018, 7, e176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goto, T.; Camargo, C.A.; Faridi, M.K.; Freishtat, R.; Hasegawa, K. Machine Learning–Based Prediction of Clinical Outcomes for Children During Emergency Department Triage. JAMA Netw. Open 2019, 2, e186937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, Y.N.V.; Carter, R.E.; Obokata, M.; Redfield, M.M.; Borlaug, B.A. A Simple, Evidence-Based Approach to Help Guide Diagnosis of Heart Failure With Preserved Ejection Fraction. Circulation 2018, 138, 861–870. [Google Scholar] [CrossRef] [PubMed]
Study Population, n = 58 | Control Group, n = 34, HFrEF | Study Group, n = 24, HFpEF | p Value | |
---|---|---|---|---|
Median (1°–3° Quartile), | ||||
Age, years | All= 68 (59–79) F = 75 (67–82) M = 67 (55–78) | 69 (59–78) | 74 (60–82) | |
Gender, n (%) | F = 18 (32) M = 40 (68) | 7 (21) 27 (79) | 11 (50) 13 (50) | 0.321 |
LVEF, % | 40 (30–50) | 30 (23–37) | 60 (50–60) | NA |
Urea, mmol/L | 8.3 (6.55–12) | 8.75 (6.75–12) | 7.6 (6–10) | 0.553 |
Creatinine, µmol/L | 101(87–130) | 105 (95–139) | 87 (75–104) | 0.663 |
eGFR, mL/min–1,73 m2 | 61 (45–78) | 56 (41–77) | 65 (47–81) | 0.779 |
NT-proBNP, pg/mL | 1457 (465–3675) | 1546 (491–4092) | 1090 (460–2803) | 0.237 |
hs-cTnT | 33 (16–48) | 33 (27–48) | 27 (11–45) | 0.488 |
CRP, mg/L | 2.6 (1–6) | 2.4 (1–4.3) | 5 (1–8.6) | 0.485 |
sST2, ng/mL | 33.4 (24–56) | 32.0 (22–52) | 44 (25–64) | 0.256 |
Ferritin, µg/L | 146 (87–296) | 154 (122–338) | 138 (60–183) | 0.526 |
TSC, % | 21.0 (16–28) | 25.0 (18–29) | 17 (13–24) | 0.232 |
Samples | Accuracy, % | Sensitivity, % | Specificity, % | Precision, % | |
---|---|---|---|---|---|
Validation | 16 | 69 | 100 | 44 | 58 |
Test | 17 | 64 | 75 | 55 | 60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lotierzo, M.; Bruno, R.; Finan-Marchi, A.; Huet, F.; Kalmanovich, E.; Rodrigues, G.; Dupuy, A.-M.; Adda, J.; Piquemal, D.; Richard, S.; et al. Could a Multi-Marker and Machine Learning Approach Help Stratify Patients with Heart Failure? Medicina 2021, 57, 996. https://doi.org/10.3390/medicina57100996
Lotierzo M, Bruno R, Finan-Marchi A, Huet F, Kalmanovich E, Rodrigues G, Dupuy A-M, Adda J, Piquemal D, Richard S, et al. Could a Multi-Marker and Machine Learning Approach Help Stratify Patients with Heart Failure? Medicina. 2021; 57(10):996. https://doi.org/10.3390/medicina57100996
Chicago/Turabian StyleLotierzo, Manuela, Romain Bruno, Amanda Finan-Marchi, Fabien Huet, Eran Kalmanovich, Glaucy Rodrigues, Anne-Marie Dupuy, Jérôme Adda, David Piquemal, Sylvain Richard, and et al. 2021. "Could a Multi-Marker and Machine Learning Approach Help Stratify Patients with Heart Failure?" Medicina 57, no. 10: 996. https://doi.org/10.3390/medicina57100996
APA StyleLotierzo, M., Bruno, R., Finan-Marchi, A., Huet, F., Kalmanovich, E., Rodrigues, G., Dupuy, A. -M., Adda, J., Piquemal, D., Richard, S., Cristol, J. -P., & Roubille, F. (2021). Could a Multi-Marker and Machine Learning Approach Help Stratify Patients with Heart Failure? Medicina, 57(10), 996. https://doi.org/10.3390/medicina57100996