Monocyte-to-Lymphocyte Ratio as a Predictor of Worse Long-Term Survival after Off-Pump Surgical Revascularization-Initial Report
Abstract
:1. Introduction
2. Patients and Methods
2.1. Demographical and Clinical Characteristics
2.2. Laboratory Tests
2.3. OPCAB Procedures
2.4. Post-Discharge Mortality
2.5. Statistical Analysis
3. Results
4. Discussion
Study Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gerber, Y.; Gibbons, R.J.; Weston, S.A.; Fabbri, M.; Herrmann, J.; Manemann, S.M.; Frye, R.L.; Asleh, R.; Greason, K.; Killian, J.M.; et al. Coronary Disease Surveillance in the Community: Angiography and Revascularization. J. Am. Heart. Assoc. 2020, 9, e015231–e015239. [Google Scholar] [CrossRef] [PubMed]
- Sorbets, E.; Fox, K.M.; Elbez, Y.; Danchin, N.; Dorian, P.; Ferrari, R.; Ford, I.; Greenlaw, N.; Kalra, P.R.; Parma, Z.; et al. Long-term outcomes of chronic coronary syndrome worldwide: Insights from the international CLARIFY registry. Eur. Heart J. 2020, 41, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Cartier, R. Current trends and technique in OPCAB surgery. J. Card. Surg. 2003, 18, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Wang, J.; Tian, J.; Tang, Y.D. Coronary Artery Disease: From Mechanism to Clinical Practice. Adv. Exp. Med. Biol. 2020, 1177, 1–36. [Google Scholar] [PubMed]
- Ridker, P.M.; Libby, P.; MacFadyen, J.G.; Thuren, T.; Ballantyne, C.; Fonseca, F.; Koenig, W.; Shimokawa, H.; Everett, B.M.; Glynn, R.J. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: Analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur. Heart J. 2018, 39, 3499–3507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, H.; Li, Y.; Fan, Z.; Zuo, B.; Jian, X.; Li, L.; Liu, T. Monocyte/lymphocyte ratio predicts the severity of coronary artery disease: A syntax score assessment. BMC Cardiovasc. Disord. 2017, 17, 90–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaefi, S.; Mittel, A.; Loberman, D.; Ramakrishna, H. Off-Pump Versus On-Pump Coronary Artery Bypass Grafting-A Systematic Review and Analysis of Clinical Outcomes. J. Cardiothorac. Vasc. Anesth. 2019, 33, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Brettner, F.; Chappell, D.; Schwartz, L.; Lukasz, A.; Kümpers, P.; Becker, B.F.; Reichart, B.; Rehm, M.; Bruegger, D. Vascular Endothelial Dysfunction during Cardiac Surgery: On-Pump versus Off-Pump Coronary Surgery. Eur. Surg. Res. 2017, 58, 354–368. [Google Scholar] [CrossRef]
- Urbanowicz, T.K.; Michalak, M.; Gąsecka, A.; Olasińska-Wiśniewska, A.; Perek, B.; Rodzki, M.; Bociański, M.; Jemielity, M. A Risk Score for Predicting Long-Term Mortality Following Off-Pump Coronary Artery Bypass Grafting. J. Clin. Med. 2021, 10, 3032. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; David, E.M.; Makkar, R.R.; Wilentz, J.R. Molecular and cellular basis of restenosis after percutaneous coronary intervention: The intertwining roles of platelets, leukocytes, and the coagulation-fibrinolysis system. J. Pathol. 2004, 203, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, S.; Abe, S.; Kanaya, T.; Oda, K.; Nishino, S.; Kageyama, M.; Taguchi, I.; Masawa, N.; Inoue, T. Late-phase inflammatory response as a feature of in-stent restenosis after drug-eluting stent implantation. Coron. Artery Dis. 2013, 24, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Everett, B.M.; Pradhan, A.; MacFadyen, J.G.; Solomon, D.H.; Zaharris, E.; Mam, V.; Hasan, A.; Rosenberg, Y.; Iturriaga, E.; et al. Low-Dose Methotrexate for the Prevention of Atherosclerotic Events. N. Engl. J. Med. 2019, 380, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Seijkens, T.T.P.; van Tiel, C.M.; Kusters, P.J.H.; Atzler, D.; Soehnlein, O.; Zarzycka, B.; Aarts, S.A.B.M.; Lameijer, M.; Gijbels, M.J.; Beckers, L.; et al. Targeting CD40-Induced TRAF6 Signaling in Macrophages Reduces Atherosclerosis. J. Am. Coll. Cardiol. 2018, 71, 527–542. [Google Scholar] [CrossRef] [PubMed]
- Ajala, O.N.; Everett, B.M. Targeting Inflammation to Reduce Residual Cardiovascular Risk. Curr. Atheroscler. Rep. 2020, 22, 66–74. [Google Scholar] [CrossRef]
- Hazama, S.; Eishi, K.; Yamachika, S.; Noguchi, M.; Ariyoshi, T.; Takai, H.; Odate, T.; Matsukuma, S.; Onohara, D.; Yanatori, M. Inflammatory response after coronary revascularization: Off-pump versus on-pump (heparin-coated circuits and poly2methoxyethylacrylate-coated circuits). Ann. Thorac. Cardiovasc. Surg. 2004, 10, 90–96. [Google Scholar] [PubMed]
- Vukicevic, P.; Klisic, A.; Neskovic, V.; Babic, L.; Mikic, A.; Bogavac-Stanojevic, N.; Matkovic, M.; Milićević, V.; Aleksic, N.; Kotur-Stevuljevic, J. Oxidative Stress in Patients before and after On-Pump and Off-Pump Coronary Artery Bypass Grafting: Relationship with Syntax Score. Oxid. Med. Cell. Longev. 2021, 2021, 3315951. [Google Scholar] [CrossRef] [PubMed]
- Börgermann, J.; Scheubel, R.J.; Simm, A.; Silber, R.E.; Friedrich, I. Inflammatory response in on- versus off-pump myocardial revascularization: Is ECC really the culprit? Thorac. Cardiovasc. Surg. 2007, 55, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Yang, L.; Sun, P.; Li, Y.; Han, J.; Wang, G. Effect of dexmedetomidine on hemodynamic changes and inflammatory responses in patients undergoing off-pump coronary-artery bypass grafting. Exp. Ther. Med. 2020, 20, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Sahin, A.; Sisli, E. Retrospective Evaluation of the Pre- and Postoperative Neutrophil-Lymphocyte Ratio as a Predictor of Mortality in Patients Who Underwent Coronary Artery Bypass Grafting. Heart Surg. Forum. 2021, 24, E814–E820. [Google Scholar] [CrossRef] [PubMed]
- Cuculi, F.; Lim, C.C.; van Gaal, W.; Testa, L.; Westaby, S.; Arnold, J.R.; Neubauer, S.; Banning, A.P. Systemic levels of endothelin correlate with systemic inflammation and not with myocardial injury or left ventricular ejection fraction in patients undergoing percutaneous coronary intervention and on-pump coronary artery bypass grafting. Interact. Cardiovasc. Thorac. Surg. 2011, 13, 585–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oksuz, F.; Elcik, D.; Yarlioglues, M.; Duran, M.; Ozturk, S.; Celik, I.E.; Kurtul, A.; Kilic, A.; Murat, S.N. The relationship between lymphocyte-to-monocyte ratio and saphenous vein graft patency in patients with coronary artery bypass graft. Biomark. Med. 2017, 11, 867–876. [Google Scholar] [CrossRef]
- Cai, M.; Liang, D.; Gao, F.; Hong, X.; Feng, X.; Yang, Y.; Wu, S.; Huang, W. Association of lymphocyte-to-monocyte ratio with the long-term outcome after hospital discharge in patients with ST-elevation myocardial infarction: A retrospective cohort study. Coron. Artery Dis. 2020, 31, 248–254. [Google Scholar] [CrossRef]
- Quan, X.Q.; Wang, R.C.; Zhang, Q.; Zhang, C.T.; Sun, L. The predictive value of lymphocyte-to-monocyte ratio in the prognosis of acute coronary syndrome patients: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2020, 20, 338–345. [Google Scholar] [CrossRef]
- Kalyoncuoglu, M.; Biter, H.İ.; Ozturk, S.; Belen, E.; Can, M.M. Predictive accuracy of lymphocyte-to-monocyte ratio and monocyte-to-high-density-lipoprotein-cholesterol ratio in determining the slow flow/no-reflow phenomenon in patients with non-ST-elevated myocardial infarction. Coron. Artery Dis. 2020, 31, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Goldman, S.; Zadina, K.; Moritz, T.; Ovitt, T.; Sethi, G.; Copeland, J.G.; Thottapurathu, L.; Krasnicka, B.; Ellis, N.; Anderson, R.J.; et al. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: Results from a Department of Veterans Affairs Cooperative Study. J. Am. Coll. Cardiol. 2004, 44, 2149–2156. [Google Scholar] [CrossRef] [PubMed]
- Aydın, C.; Engin, M. The Value of Inflammation Indexes in Predicting Patency of Saphenous Vein Grafts in Patients with Coronary Artery Bypass Graft Surgery. Cureus 2021, 13, e16646. [Google Scholar] [CrossRef] [PubMed]
- Serra, R.; Ielapi, N.; Licastro, N.; Provenzano, M.; Andreucci, M.; Bracale, U.M.; Jiritano, F.; de Franciscis, S.; Mastroroberto, P.; Serraino, G.F. Neutrophil-to-lymphocyte Ratio and Platelet-to-lymphocyte Ratio as Biomarkers for Cardiovascular Surgery Procedures: A Literature Review. Rev. Recent Clin. Trials 2021, 16, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Magri, D.; Vasilas, P.; Muto, A.; Fitzgerald, T.N.; Fancher, T.T.; Feinstein, A.J.; Nishibe, T.; Dardik, A. Elevated monocytes in patients with critical limb ischemia diminish after bypass surgery. J. Surg. Res. 2011, 167, 140–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadareishvili, Z.; Luby, M.; Leigh, R.; Shah, J.; Lynch, J.K.; Hsia, A.W.; Benson, R.T.; Latour, L.L. An MRI Hyperintense Acute Reperfusion Marker Is Related to Elevated Peripheral Monocyte Count in Acute Ischemic Stroke. J. Neuroimaging 2018, 28, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liu, Y.; Tian, Y.; Rao, C.; Shi, F.; Bu, H.; Liu, J.; Zhang, Y.; Shan, W.; Ding, Z.; et al. Prognostic value of peripheral blood inflammatory cell subsets in patients with acute coronary syndrome undergoing percutaneous coronary intervention. J. Int. Med. Res. 2021, 49, 3000605211010059. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Li, Y.; Ji, H.; Jian, X. Prognostic utility of the combination of monocyte-to-lymphocyte ratio and neutrophil-to-lymphocyte ratio in patients with NSTEMI after primary percutaneous coronary intervention: A retrospective cohort study. BMJ Open 2018, 8, e023459. [Google Scholar] [CrossRef] [Green Version]
- Karauzum, I.; Karauzum, K.; Acar, B.; Hanci, K.; Bildirici, H.I.U.; Kilic, T.; Ural, E. Predictive Value of Lymphocyte-to-monocyte Ratio in Patients with Contrast-induced Nephropathy after Percutaneous Coronary Intervention for Acute Coronary Syndrome. J. Transl. Int. Med. 2021, 9, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Sucato, V.; Coppola, G.; Testa, G.; Amata, F.; Martello, M.; Siddique, R.; Galassi, A.R.; Novo, G.; Corrado, E. Evaluation of remnant cholesterol levels and Monocyte-to-HDL-cholesterol ratio in South Asian patients with acute coronary syndrome. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2144–2150. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Gao, R.; Liu, C.; Chen, H.; Zhang, X.; Guan, J.; Xie, X.; Qiu, Y.; Cheng, X.; Lv, P.; et al. Dynamic Change of Lymphocyte-to-Monocyte Is Associated with the Occurrence of POCD after Cardiovascular Surgery: A Prospective Observational Study. Front. Behav. Neurosci. 2021, 15, 646528–646537. [Google Scholar] [CrossRef] [PubMed]
- Zeynalova, S.; Bucksch, K.; Scholz, M.; Yahiaoui-Doktor, M.; Gross, M.; Löffler, M.; Melzer, S.; Tárnok, A. Monocyte subtype counts are associated with 10-year cardiovascular disease risk as determined by the Framingham Risk Score among subjects of the LIFE-Adult study. PLoS ONE 2021, 16, e0247480–e0247491. [Google Scholar] [CrossRef]
- Köse, N.; Yıldırım, T.; Akın, F.; Yıldırım, S.E.; Altun, İ. Prognostic role of NLR, PLR, and LMR in patients with pulmonary embolism. Bosn. J. Basic. Med. Sci. 2020, 20, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Bedel, C.; Korkut, M.; Armağan, H.H. Can NLR, PLR and LMR be used as prognostic indicators in patients with pulmonary embolism? A commentary. Bosn. J. Basic. Med. Sci. 2021, 21, 501. [Google Scholar] [CrossRef] [PubMed]
- Doustkami, H.; Avesta, L.; Babapour, B.; Boskabady, M.H.; Nikoukhesal, A.; Aslani, M.R. Correlation of Serum Decoy Receptor 3 and Interleukin-6 with Severity of Coronary Artery Diseases in Male Acute Myocardial Infarction Patients. Acta Biomed. 2021, 92, e2021285. [Google Scholar] [PubMed]
- Freitas, I.A.; Lima, N.A.; Silva, G.B.D., Jr.; Castro, R.L., Jr.; Patel, P.; Lima, C.C.V.; Lino, D.O.D.C. Novel biomarkers in the prognosis of patients with atherosclerotic coronary artery disease. Rev. Port. Cardiol. 2020, 39, 667–672. [Google Scholar] [CrossRef]
- Tanriverdi, Z.; Gungoren, F.; Tascanov, M.B.; Besli, F.; Altiparmak, I.H. Comparing the Diagnostic Value of the C-Reactive Protein to Albumin Ratio with Other Inflammatory Markers in Patients with Stable Angina Pectoris. Angiology 2020, 71, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Monti, C.B.; Codari, M.; De Cecco, C.N.; Secchi, F.; Sardanelli, F.; Stillman, A.E. Novel imaging biomarkers: Epicardial adipose tissue evaluation. Br. J. Radiol. 2020, 93, 20190770–20190778. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liang, M.; Jin, C.; Sun, Y.; Xu, D.; Lin, Y. Expression of inflammatory factors and oxidative stress markers in serum of patients with coronary heart disease and correlation with coronary artery calcium score. Exp. Ther. Med. 2020, 20, 2127–2133. [Google Scholar] [CrossRef] [PubMed]
Parameter | Group 1 (Survivors) No = 107 | Group 2 (Deceased) N = 22 | p-Value |
---|---|---|---|
Age (median (Q1–Q3) | 65 (58–70) | 68 (63–74) | 0.061 |
Gender (M (%)/K (%)) | 94 (88%)/13 (12%) | 19 (86%)/3 (14%) | 0.795 |
Coronary disease: | |||
1. Left main stem | 89 (83%) | 14 (64%) | 0.043 |
2. Two vessels disease | 12 (11%) | 6 (27%) | 0.047 |
3. Three vessels disease | 6 (6%) | 2 (10%) | 0.493 |
Euroscore II; median (Q1–Q3) | 1.5 (1.2–2.2)% | 1.6 (1.3–2.1)% | 0.548 |
Concomitant diseases: | |||
1. Arterial hypertension (%) | 62 (58%) | 9 (41%) | 0.144 |
2. Hypercholesterolemia (%) | 15 (14%) | 2 (11%) | 0.707 |
3. COPD (%) | 6 (9%) | 5 (23%) | 0.059 |
4. Diabetes mellitus (%) | 28 (26%) | 7 (32%) | 0.563 |
5. stroke (%) | 7 (7%) | 1 (5%) | 0.731 |
6. kidney dysfunction (%) | 7 (7%) | 4 (18%) | 0.098 |
Echocardiography: | |||
1. LVDd; median (Q1–Q3) | 46 (41–52) | 5 (44–55) | 0.066 |
2. RVDd; median (Q1–Q3) | 28 (26–31) | 28 (25–32) | 0.996 |
3. LAd; median (Q1–Q3) | 37 (33–41) | 4 (34–45) | 0.232 |
4. IVSs; median (Q1–Q3) | 13 (11–14) | 14 (13–16) | 0.049 |
5. LVEF; median (Q1–Q3) | 60 (53–60) | 60 (45–60) | 0.090 |
Preoperative laboratory-morphology: | |||
1. WBC (median (Q1–Q3) | 8 (6.9–9.4) | 8.3 (7.2–9.4) | 0.758 |
2. Neutrophils (median (Q1–Q3) | 5.2 (4.2–6.2) | 5 (4.8–6) | 0.631 |
3. Lymphocyte (median (Q1–Q3) | 2 (1.5–2.4) | 1.9 (1.4–2.4) | 0.588 |
4. Monocyte (median (Q1–Q3) | 0.5 (0.4–0.6) | 0.5 (0.4–0.6) | 0.960 |
5. Hb (median (Q1–Q3) | 8.9 (8.3–9.4) | 8.5 (8–9.1) | 0.114 |
6. Hct (median (Q1–Q3) | 0.41 (0.4–0.44) | 0.41 (0.38–0.43) | 0.321 |
7. MLR (median (Q1–Q3) | 0.3 (0.2–0.3) | 0.3 (0.2–0.4) | 0.417 |
8. NLR (median (Q1–Q3) | 2.6 (2.1–3.3) | 2.8 (2.1–3.7) | 0.512 |
9. Plt (median (Q1–Q3) | 229 (198–267) | 243 (207–278) | 0.554 |
Preoperative parameters: | |||
1. Creatinine (median (Q1–Q3) | 84 (75–97) | 87 (78–105) | 0.465 |
2. Fibrinogen (median (Q1–Q3) | 298 (264–358) | 311 (248–378) | 1.000 |
3. Troponin (median (Q1–Q3) | 0 (0–0.03) | 0 (0–0.03) | 0.234 |
Group 1 (Survivors) No = 107 | Group 2 (Deceased) No = 22 | p | |
---|---|---|---|
Number of grafts (mean): | 2 | 1.86 | |
Applied grafts: | |||
1. LIMA (%) | 107 (100%) | 22 (100%) | - |
2. RIMA (%) | 33 (31%) | 7 (32%) | 0.926 |
3. SVBG (%) | 74 (69%) | 12 (55%) | 0.204 |
Blood flow to: | |||
1. LAD mL/min (median (Q1–Q3) | 15 (9–24) | 18 (7–30) | 0.898 |
2. Cx mL/min (median (Q1–Q3) | 19 (12–29) | 17 (9–34) | 0.975 |
3. RCA ml/min (median (Q1–Q3) | 30 (22–38) | 45 (35–53) | 0.010 |
Postoperative laboratory-morphology (24 h): | |||
1. WBC x109/L (median (Q1–Q3) | 14.5 (12.5–16.8) | 14.5 (12.5–16.8) | 0.515 |
2. Neutrophils x109/L (median (Q1–Q3) | 12.5 (8.7–14.5) | 12.5 (8.7–14.5) | 0.797 |
3. Lymphocyte x109/L (median (Q1–Q3) | 0.8 (0.6–1.2) | 0.7 (0.5–0.8) | 0.023 |
4. Monocyte x109/L (median (Q1–Q3) | 0.9 (0.7–1.2) | 0.9 (0.7–1.3) | 0.907 |
5. mmol/L (median (Q1–Q3)Hb | 7.6. (7–8.1) | 7.7. (7–8.2) | 0.652 |
6. Hct (%) (median (Q1–Q3) | 0.35 (0.33–0.38) | 0.37 (0.35–0.39) | 0.152 |
7. MLR (median (Q1–Q3) | 1.0 (0.8–1.5) | 1.5 (1.1–2) | 0.037 |
8. NLR (median (Q1–Q3) | 14.6 (10–21) | 10 (11–25.5) | 0.231 |
9. Plt x103/uL (median (Q1–Q3) | 209 (183–255) | 205 (184–244) | 0.525 |
Postoperative parameters (24 h): | |||
1. Creatinine mmol/L (median (Q1–Q3) | 87 (78–105) | 91 (81–114) | 0.112 |
2. Fibrinogen mmol/L (median (Q1–Q3) | 367 (293–430) | 355 (315–429) | 0.933 |
3. Troponin mcg/L (median (Q1–Q3) | 1 (0.6–3.05) | 0.6 (0.4–3.3) | 0.247 |
HR | Std. Err. | Z | P > z | 95% Conf. Interval | |
---|---|---|---|---|---|
Age | 0.9713 | 0.029 | −0.97 | 0.334 | 0.92–1.03 |
Concomitant diseases: | |||||
1. DM | 1.13 | 0.52 | 0.27 | 0.786 | 0.46–2.78 |
2. HA | 0.61 | 0.26 | −1.16 | 0.246 | 0.2–1.42 |
3. COPD | 2.86 | 1.46 | 2.07 | 0.039 | 1.06–7.77 |
4. Stroke | 1.25 | 1.28 | 0.22 | 0.83 | 0.167–9.34 |
Coronary blood flow: | |||||
1. LAD blood flow | 0.99 | 0.02 | −0.04 | 0.971 | 0.97–1.03 |
2. Cx blood flow | 1.00 | 0.02 | 0.05 | 0.960 | 0.96–1.03 |
3. RCA blood flow | 1.06 | 0.03 | 2.08 | 0.038 | 1.01–1.11 |
LVEF od admission | 0.98 | 0.02 | −1.15 | 0.250 | 0.95–1.01 |
LVEF on discharge | 0.98 | 0.03 | −0.77 | 0.442 | 0.92–1.04 |
Morphology on 1st day: | |||||
1. WBC | 1.01 | 0.07 | 0.18 | 0.854 | 0.88–1.16 |
2. Neutrophils | 0.91 | 0.06 | −1.46 | 0.144 | 0.81–1.03 |
3. Lymphocytes | 0.10 | 0.10 | −2.28 | 0.122 | 0.02–0.72 |
4. Monocytes | 0.67 | 0.38 | −0.7 | 0.483 | 0.22–2.06 |
5. NLR | 1.04 | 0.027 | 1.43 | 0.152 | 0.99–1.09 |
6. MLR | 1.28 | 0.28 | 1.13 | 0.259 | 0.83–1.98 |
7. MLR >1.44 | 3.82 | 1.89 | 2.71 | 0.071 | 1.45–10.06 |
8. Hb | 1.01 | 0.33 | 0.02 | 0.981 | 0.53–1.90 |
9. Plt | 0.99 | 0.01 | −1.1 | 0.273 | 0.99–1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbanowicz, T.; Michalak, M.; Olasińska-Wiśniewska, A.; Witkowska, A.; Rodzki, M.; Błażejowska, E.; Gąsecka, A.; Perek, B.; Jemielity, M. Monocyte-to-Lymphocyte Ratio as a Predictor of Worse Long-Term Survival after Off-Pump Surgical Revascularization-Initial Report. Medicina 2021, 57, 1324. https://doi.org/10.3390/medicina57121324
Urbanowicz T, Michalak M, Olasińska-Wiśniewska A, Witkowska A, Rodzki M, Błażejowska E, Gąsecka A, Perek B, Jemielity M. Monocyte-to-Lymphocyte Ratio as a Predictor of Worse Long-Term Survival after Off-Pump Surgical Revascularization-Initial Report. Medicina. 2021; 57(12):1324. https://doi.org/10.3390/medicina57121324
Chicago/Turabian StyleUrbanowicz, Tomasz, Michał Michalak, Anna Olasińska-Wiśniewska, Anna Witkowska, Michał Rodzki, Ewelina Błażejowska, Aleksandra Gąsecka, Bartłomiej Perek, and Marek Jemielity. 2021. "Monocyte-to-Lymphocyte Ratio as a Predictor of Worse Long-Term Survival after Off-Pump Surgical Revascularization-Initial Report" Medicina 57, no. 12: 1324. https://doi.org/10.3390/medicina57121324
APA StyleUrbanowicz, T., Michalak, M., Olasińska-Wiśniewska, A., Witkowska, A., Rodzki, M., Błażejowska, E., Gąsecka, A., Perek, B., & Jemielity, M. (2021). Monocyte-to-Lymphocyte Ratio as a Predictor of Worse Long-Term Survival after Off-Pump Surgical Revascularization-Initial Report. Medicina, 57(12), 1324. https://doi.org/10.3390/medicina57121324