Evaluation of Antinociceptive Effects of Chitosan-Coated Liposomes Entrapping the Selective Kappa Opioid Receptor Agonist U50,488 in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Characterization of U50,488 Entrapped in Chitosan-Coated Liposomes
2.2. Nociceptive Sensitivity Testing
2.2.1. Animals
2.2.2. The Tail Flick Test
2.2.3. The Writhing Test
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Chitosan Vesicles
3.2. The Tail Flick Test
3.3. The Writhing Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boisseau, P.; Loubaton, B. Nanomedicine, nanotechnology in medicine. C. R. Phys. 2011, 12, 620. [Google Scholar] [CrossRef] [Green Version]
- Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem. Lett. Rev. 2020, 13, 223–245. [Google Scholar] [CrossRef]
- Paliwal, R.; Paliwal, S.R.; Kenwat, R.; Kurmi, B.D.; Sahu, M.K. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert Opin. Ther. Pat. 2020, 30, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Leitgeb, M.; Knez, Ž.; Primožič, M. Sustainable technologies for liposome preparation. J. Supercrit. Fluids 2020, 165, 104984. [Google Scholar]
- Lee, M.-K. Liposomes for Enhanced Bioavailability of Water-Insoluble Drugs: In Vivo Evidence and Recent Approaches. Pharmaceutics 2020, 12, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, S.; Mavrikaki, M.; Lintz, T.; Puttick, D.; Roberts, E.; Rosen, H.; Carroll, I.; Carlezon, W.; Chartoff, E. Behavioral Pharmacology of Novel Kappa Opioid Receptor Antagonists in Rats. Int. J. Neuropsychopharmacol. 2019, 22, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Conway, S.M.; Puttick, D.; Russell, S.; Potter, D.; Roitman, M.F.; Chartoff, E. Females are less sensitive than males to the motivational- and dopamine-suppressing effects of kappa opioid receptor activation. Neuropharmacology 2019, 146, 231–241. [Google Scholar] [CrossRef]
- Mores, K.L.; Cummins, B.R.; Cassell, R.J.; van Rijn, R.M. A Review of the Therapeutic Potential of Recently Developed G Protein-Biased Kappa Agonists. Front. Pharmacol. 2019, 10, 407. [Google Scholar] [CrossRef]
- Beck, T.C.; Reichel, C.M.; Helke, K.L.; Bhadsavle, S.S.; Dix, T.A. Non-addictive orally-active kappa opioid agonists for the treatment of peripheral pain in rats. Eur. J. Pharmacol. 2019, 856, 172396. [Google Scholar] [CrossRef] [PubMed]
- Paris, J.J.; Reilley, K.J.; McLaughlin, J.P. Kappa opioid receptor-mediated disruption of novel object recognition: Relevance for psychostimulant treatment. J. Addict. Res. Ther. 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobar, A.d.P.; Casanova, J.P.; Andrés, M.E.; Fuentealba, J.A. Crosstalk between kappa opioid and dopamine systems in compulsive behaviors. Front. Pharmacol. 2020, 11, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruijnzeel, A.W. Kappa-opioid receptor signaling and brain reward function. Brain Res. Rev. 2009, 62, 127–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azocar, V.H.; Sepúlveda, G.; Ruiz, C.; Aguilera, C.; Andrés, M.E.; Fuentealba, J.A. The blocking of kappa-opioid receptor reverses the changes in dorsolateral striatum dopamine dynamics during the amphetamine sensitization. J. Neurochem. 2019, 148, 348–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinsbroek, J.A.; Furbish, A.B.; Peters, J. A single, extinction-based treatment with a kappa opioid receptor agonist elicits a long-term reduction in cocaine relapse. Neuropsychopharmacology 2018, 43, 1492–1497. [Google Scholar] [CrossRef] [PubMed]
- Hahn, B.; Stolerman, I.P.; Shoaib, M. Kappa-opioid receptor modulation of nicotine-induced behaviour. Neuropharmacology 2000, 39, 2848–2855. [Google Scholar] [CrossRef]
- Kaski, S.W.; White, A.N.; Gross, J.D.; Trexler, K.R.; Wix, K.; Harland, A.A.; Prisinzano, T.E.; Aubé, J.; Kinsey, S.G.; Kenakin, T.; et al. Preclinical testing of nalfurafine as an opioid-sparing adjuvant that potentiates analgesia by the mu opioid receptor-targeting agonist morphine. J. Pharmacol. Exp. Ther. 2019, 371, 487–499. [Google Scholar] [CrossRef]
- Townsend, E.A. Effects of kappa opioid receptor agonists on fentanyl vs. food choice in male and female rats: Contingent vs. non-contingent administration. Psychopharmacology 2021. [Google Scholar] [CrossRef]
- Marin, C.; Bove, J.; Bonastre, M.; Tolosa, E. Effect of acute and chronic administration of U50,488, a kappa opioid receptor agonist, in 6-OHDA-lesioned rats chronically treated with levodopa. Exp. Neurol. 2003, 183, 66–73. [Google Scholar] [CrossRef]
- Cox, H.; Togasaki, D.M.; Chen, L.; Langston., J.W.; Di Monte, D.A.; Quik, M. The selective κ-opioid receptor agonist U50,488 reduces L-dopa-induced dyskinesias but worsens parkinsonism in MPTP-treated primates. Exp. Neurol. 2007, 205, 101–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakuragi, M.; Koiwai, K.; Nakamura, K.; Masunaga, H.; Ogawa, H.; Sakurai, K. Transformation from multilamellar to unilamellar vesicles by addition of a cationic lipid to pegylated liposomes explored with synchrotron small angle X-ray scattering. J. Phys. Conf. Ser. 2011, 272, 012011. [Google Scholar] [CrossRef] [Green Version]
- Gârlea, A.; Popa, M.I.; Pohoaţă, V.; Melnig, V. Ibuprofen/ketoprofen entrapment in chitosan based vesicle carrier. Rom. J. Biophys. 2007, 17, 157–168. [Google Scholar]
- Tartau, L.; Cazacu, A.; Melnig, V. Ketoprofen-liposomes formulation for clinical therapy. J. Mater. Sci. Mater. Med. 2012, 23, 2499–2507. [Google Scholar] [CrossRef] [PubMed]
- European Union. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes; European Union: Brussels, Belgium, 2010. [Google Scholar]
- Zimmerman, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16, 109–110. [Google Scholar] [CrossRef]
- Ma, C. Animal models of pain. Int. Anesthesiol. Clin. 2007, 45, 121–131. [Google Scholar] [CrossRef]
- Mogil, J.S. Animal models of pain: Progress and challenges. Nat. Rev. Neurosci. 2009, 10, 283–294. [Google Scholar] [CrossRef]
- Foroud, M.; Vesal, N. Evaluation of the anti-nociceptive effects of morphine, tramadol, meloxicam and their combinations using the tail-flick test in rats. Vet. Res. Forum 2015, 6, 313–318. [Google Scholar]
- Yam, M.F.; Loh, Y.C.; Oo, C.W.; Basir, R. Overview of neurological mechanism of pain profile used for animal “pain-like” behavioral study with proposed analgesic pathways. Int. J. Mol. Sci. 2020, 21, 4355. [Google Scholar] [CrossRef]
- Gawade, S.P. Acetic acid induced painful endogenous infliction in writhing test on mice. J. Pharmacol. Pharmacother. 2012, 3, 348. [Google Scholar] [CrossRef] [Green Version]
- Tarţău, L.; Andriţoiu, C.; Teslariu, E.; Dima, C.; Oprea, V. Antinociceptive effects of a selective kappa opioid agonist U50,488H in a visceral pain model in mice: Experimental data. Ann. Rom. Soc. Cell Biol. 2009, XIV, 251–256. [Google Scholar]
- Tartau, L.; Lupusoru, C.E.; Văleanu, A.S.; Melnig, V. Design, characterization and in vivo acute toxicity evaluation of k opioid agonist U50488 soft matter vesicles. In Proceedings of the Bulletin of the Romanian Society for Cell Biology; 3rd International Congress and 29th Annual Scientific Session of Romanian Society for Cell Biology, Arad, Romania–Szeged, Hungary, 8–12 June 2011; Volume 39, pp. 165–166. [Google Scholar]
- Albert-Vartanian, A.; Boyd, M.R.; Hall, A.L.; Morgado, S.J.; Nguyen, E.; Nguyen, V.P.H.; Patel, S.P.; Russo, L.; Sha, A.J.; Raffa, R.B. Will peripherally restricted kappa-opioid receptor agonists (pKORAs) relieve pain with less opioid adverse effects and abuse potential? J. Clin. Pharm. Ther. 2016, 41, 371–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brust, T.F.; Morgenweck, J.; Kim, S.A.; Rose, J.H.; Locke, J.L.; Schmid, C.L.; Zhou, L.; Stahl, E.L.; Cameron, M.D.; Scarry, S.M.; et al. Biased agonists of the kappa opioid receptor suppress pain and itch without causing sedation or dysphoria. Sci. Signal. 2016, 9, ra117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.-S.; Wang, J.; Chen, J.-C.; Tao, Y.-M.; Wang, Y.-H.; Xu, X.-J.; Chen, J.; Xu, Y.-G.; Xi, T.; Hu, X.-W.; et al. Novel κ-opioid receptor agonist MB-1C-OH produces potent analgesia with less depression and sedation. Acta Pharmacol. Sin. 2015, 36, 565–571. [Google Scholar] [CrossRef] [Green Version]
- Tarţău, L.; Andritoiu, C.; Teslariu, E.; Dima, C.; Sindrilar, E.V. Experimental researches on the effects of a selective kappa opioid agonist in cutaneous and visceral pain models in mice. Ther. Pharmacol. Clin. Toxicol. 2009, XIII, 277–280. [Google Scholar]
- Piercey, M.F.; Lahti, R.A.; Schroeder, L.A.; Einspahr, F.J.; Barsuhn, C. U-50488H, a pure kappa receptor agonist with spinal analgesic loci in the mouse. Life Sci. 1982, 31, 1197–1200. [Google Scholar] [CrossRef]
- Idänpään-Heikkilä, J.J.; Kalso, E.A.; Seppälä, T. Antinociceptive actions of dexmedetomidine and the kappa-opioid agonist U-50,488H against noxious thermal, mechanical and inflammatory stimuli. J. Pharmacol. Exp. Ther. 1994, 271, 1306–1313. [Google Scholar]
- Zambelli, V.O.; de Oliveira Fernandes, A.C.; Pacciari Gutierrez, V.; Ferreira, J.C.B.; Parada, C.A.; Mochly-Rosen, D.; Cury, Y. Peripheral sensitization increases opioid receptor expression and activation by crotalphine in rats. PLoS ONE 2014, 9, e90576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patrick, C.A.; Holden, M.C.; Woods, J.H. Comparison of antinociceptive effects induced by kappa opioid agonists in male and female mice. Analgesia 1999, 4, 397–404. [Google Scholar] [CrossRef]
- Pelissier, T.; Paeile, C.; Soto-Moyano, R.; Saavedra, H.; Hernández, A. Analgesia produced by intrathecal administration of the k opioid agonist, U-50,488H, on formalin-evoked cutaneous pain in the rat. Eur. J. Pharmacol. 1990, 190, 287–293. [Google Scholar] [CrossRef]
- Su, X.; Joshi, S.K.; Kardos, S.; Gebhart, G.F. Sodium channel blocking actions of the kappa-opioid receptor agonist U50,488 contribute to its visceral antinociceptive effects. J. Neurophysiol. 2002, 87, 1271–1279. [Google Scholar] [CrossRef] [Green Version]
- Hassan, B.; Ruiz-Velasco, V. The kappa opioid receptor agonist U-50488 blocks Ca2+ channels in a voltage-and G protein-independent manner in sensory neurons. Reg. Anesth. Pain Med. 2013, 38, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Chitosan Derivatives and Their Application in Biomedicine. Int. J. Mol. Sci. 2020, 21, 487. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Li, P. Antimicrobial Chitosan Conjugates: Current Synthetic Strategies and Potential Applications. Int. J. Mol. Sci. 2020, 21, 499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Rashidpour, A.; Almajano, M.P.; Metón, I. Chitosan-Based Drug Delivery System: Applications in Fish Biotechnology. Polymers 2020, 12, 1177. [Google Scholar] [CrossRef] [PubMed]
- Detsi, A.; Kavetsou, E.; Kostopoulou, I.; Pitterou, I.; Nefeli Pontillo, A.R.; Tzani, A.; Christodoulou, P.; Siliachli, A.; Zoumpoulakis, P. Nanosystems for the Encapsulation of Natural Products: The Case of Chitosan Biopolymer as a Matrix. Pharmaceutics 2020, 12, 669. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Gómez, C.P.; Cecilia, J.A. Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules 2020, 25, 3981. [Google Scholar] [CrossRef] [PubMed]
- Bandara, S.; Du, H.; Carson, L.; Bradford, D.; Kommalapati, R. Agricultural and Biomedical Applications of Chitosan-Based Nanomaterials. Nanomaterials 2020, 10, 1903. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Victor, R.; da Cunha Santos, A.M.; de Sousa, B.V.; de Araújo Neves, G.; de Lima Santana, L.N.; Menezes, R.R. A Review on Chitosan’s Uses as Biomaterial: Tissue Engineering, Drug Delivery Systems and Cancer Treatment. Materials 2020, 13, 4995. [Google Scholar] [CrossRef]
- Popescu, R.; Ghica, M.V.; Dinu-Pîrvu, C.E.; Anuța, V.; Lupuliasa, D.; Popa, L. New Opportunity to Formulate Intranasal Vaccines and Drug Delivery Systems Based on Chitosan. Int. J. Mol. Sci. 2020, 21, 5016. [Google Scholar] [CrossRef]
- Seyam, S.; Nordin, N.A.; Alfatama, M. Recent Progress of Chitosan and Chitosan Derivatives-Based Nanoparticles: Pharmaceutical Perspectives of Oral Insulin Delivery. Pharmaceuticals 2020, 13, 307. [Google Scholar] [CrossRef]
- Manek, E.; Darvas, F.; Petroianu, G.A. Use of Biodegradable, Chitosan-Based Nanoparticles in the Treatment of Alzheimer’s Disease. Molecules 2020, 25, 4866. [Google Scholar] [CrossRef]
- Cortés, H.; Alcalá-Alcalá, S.; Caballero-Florán, I.H.; Bernal-Chávez, S.A.; Ávalos-Fuentes, A.; González-Torres, M.; González-Del Carmen, M.; Figueroa-González, G.; Reyes-Hernández, O.D.; Floran, B.; et al. A Reevaluation of Chitosan-Decorated Nanoparticles to Cross the Blood-Brain Barrier. Membranes 2020, 10, 212. [Google Scholar] [CrossRef] [PubMed]
- Faouzi, A.; Varga, B.; Majumdar, S. Biased Opioid Ligands. Molecules 2020, 25, 4257. [Google Scholar] [CrossRef] [PubMed]
- Negus, S. Core Outcome Measures in Preclinical Assessment of Candidate Analgesics. Pharmacol. Rev. 2019, 71, 225–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, K.; Lei, W.; Keresztes, A.; LaVigne, J.; Streicher, J. Novel Molecular Strategies and Targets for Opioid Drug Discovery for the Treatment of Chronic Pain. Yale J. Biol. Med. 2017, 90, 97–110. [Google Scholar]
- Bedini, A.; Di Cesare, M.L.; Micheli, L.; Baiula, M.; Vaca, G.; De Marco, R.; Gentilucci, L.; Ghelardini, C.; Spampinato, S. Functional Selectivity and Antinociceptive Effects of a Novel KOPr Agonist. Front. Pharmacol. 2020, 11, 188. [Google Scholar] [CrossRef] [Green Version]
- Beck, T.; Hapstack, M.; Beck, K.; Dix, T. Therapeutic Potential of Kappa Opioid Agonists. Pharmaceuticals 2019, 12, 95. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mititelu Tartau, L.; Bogdan, M.; Buca, B.R.; Pauna, A.M.; Tartau, C.G.; Dijmarescu, L.A.; Popa, E.G. Evaluation of Antinociceptive Effects of Chitosan-Coated Liposomes Entrapping the Selective Kappa Opioid Receptor Agonist U50,488 in Mice. Medicina 2021, 57, 138. https://doi.org/10.3390/medicina57020138
Mititelu Tartau L, Bogdan M, Buca BR, Pauna AM, Tartau CG, Dijmarescu LA, Popa EG. Evaluation of Antinociceptive Effects of Chitosan-Coated Liposomes Entrapping the Selective Kappa Opioid Receptor Agonist U50,488 in Mice. Medicina. 2021; 57(2):138. https://doi.org/10.3390/medicina57020138
Chicago/Turabian StyleMititelu Tartau, Liliana, Maria Bogdan, Beatrice Rozalina Buca, Ana Maria Pauna, Cosmin Gabriel Tartau, Lorena Anda Dijmarescu, and Eliza Gratiela Popa. 2021. "Evaluation of Antinociceptive Effects of Chitosan-Coated Liposomes Entrapping the Selective Kappa Opioid Receptor Agonist U50,488 in Mice" Medicina 57, no. 2: 138. https://doi.org/10.3390/medicina57020138
APA StyleMititelu Tartau, L., Bogdan, M., Buca, B. R., Pauna, A. M., Tartau, C. G., Dijmarescu, L. A., & Popa, E. G. (2021). Evaluation of Antinociceptive Effects of Chitosan-Coated Liposomes Entrapping the Selective Kappa Opioid Receptor Agonist U50,488 in Mice. Medicina, 57(2), 138. https://doi.org/10.3390/medicina57020138