Quantitative Imaging and Radiomics in Multiple Myeloma: A Potential Opportunity?
Abstract
:1. Introduction
- -
- Whole-body low-dose CT is recommended by international reference organizations for detection of lytic bone lesions;
- -
- Focal myeloma lesions detected on whole-body MRI will indicate symptomatic multiple myeloma requiring therapy;
- -
- The IMWG recommends using cross-sectional imaging in the initial work-up: whole-body low-dose CT, MRI, or PET/CT, depending on availability and resources.
2. Quantitative Evaluation of Bone CT and Reader’s Experience
- On a series of 70 patients with total body CT available and acquired at the same center, the MSBDS criteria resulted as being fast, reproducible and easy to integrate in daily clinical practice;
- MSBDS resulted to be useful not only for radiologists specifically trained to assess the musculoskeletal system, but also for clinicians with no formal training in radiology [26];
- MSBDS correlated well with other quantitative evaluation systems such as the MY-RADS score, supporting the reliability of the MSBDS criteria and suggesting that this scoring system could be reliable for total-body CT in MM patients;
- MSBDS has the unique feature of being specifically designed and tailored to MM patients while, on the contrary, previously published scoring systems developed mainly in orthopedic environments were designed for spinal assessment in metastatic patients [27];
- MSBDS not only evaluates the bones to look for spinal instability, but the lytic bony damage is considered a prognostic target. Specific items of MSBDS are dedicated to the proximal femur involvement and to lytic lesions;
- MSBDS could be far more reliable and diffuse than other scores used for MM patients such as the MY-RADS score and the IMPeTUs criteria for PET or PET/CT [13].
- At a very practical level, MSDBS can be used on CT images that are far more available than MR images, is very fast and easily reproducible and requires the scoring of a low number of parameters.
3. Radiomics in MM
- Machine learning [44,48], in either its unsupervised or supervised version, is applied against the descriptors extracted by step 1 in order to both stratify the MM patients on the basis of their CT data characteristics and predict the disease outcome as far as post-transplantation relapse is concerned.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jameson, J.L.; Fauci, A.S.; Kasper, D.L.; Hauser, S.L.; Longo, D.L. Harrison’s Principles of Internal Medicine. JAMA J. Am. Med. Assoc. 2018. [Google Scholar] [CrossRef]
- Zamagni, E.; Cavo, M.; Fakhri, B.; Vij, R.; Roodman, D. Bones in Multiple Myeloma: Imaging and Therapy. Am. Soc. Clin. Oncol. Educ. Book 2018, 38, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Tagliafico, A.S.; Cea, M.; Rossi, F.; Valdora, F.; Bignotti, B.; Succio, G.; Gualco, S.; Conte, A.; Dominietto, A. Differentiating diffuse from focal pattern on Computed Tomography in multiple myeloma: Added value of a Radiomics approach. Eur. J. Radiol. 2019. [Google Scholar] [CrossRef]
- Hillengass, J.; Moulopoulos, L.A.; Delorme, S.; Koutoulidis, V.; Mosebach, J.; Hielscher, T.; Drake, M.; Rajkumar, S.V.; Oestergaard, B.; Abildgaard, N.; et al. Whole-body computed tomography versus conventional skeletal survey in patients with multiple myeloma: A study of the International Myeloma Working Group. Blood Cancer J. 2017, 7, e599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagliafico, A.S.; Belgioia, L.; Bonsignore, A.; Rossi, F.; Succio, G.; Bignotti, B.; Dominietto, A. Subspecialty second-opinion in multiple myeloma ct: Emphasis on clinically significant lytic lesions. Medicina 2020, 56, 195. [Google Scholar] [CrossRef] [Green Version]
- Rasche, L.; Angtuaco, E.J.; Alpe, T.L.; Gershner, G.H.; McDonald, J.E.; Samant, R.S.; Kumar, M.; Van Hemert, R.; Epstein, J.; Deshpande, S.; et al. The presence of large focal lesions is a strong independent prognostic factor in multiple myeloma. Blood 2018. [Google Scholar] [CrossRef]
- Rajkumar, S.V. Evolving diagnostic criteria for multiple myeloma. Hematology 2015. [Google Scholar] [CrossRef] [Green Version]
- Hillengass, J.; Fechtner, K.; Weber, M.-A.; Bäuerle, T.; Ayyaz, S.; Heiss, C.; Hielscher, T.; Moehler, T.M.; Egerer, G.; Neben, K.; et al. Prognostic Significance of Focal Lesions in Whole-Body Magnetic Resonance Imaging in Patients with Asymptomatic Multiple Myeloma. J. Clin. Oncol. 2010, 28, 1606–1610. [Google Scholar] [CrossRef]
- Ekert, K.; Hinterleitner, C.; Baumgartner, K.; Fritz, J.; Horger, M. Extended texture analysis of non-enhanced whole-body mri image data for response assessment in multiple myeloma patients undergoing systemic therapy. Cancers 2020, 12, 761. [Google Scholar] [CrossRef] [Green Version]
- Moulopoulos, L.A.; Koutoulidis, V.; Hillengass, J.; Zamagni, E.; Aquerreta, J.D.; Roche, C.L.; Lentzsch, S.; Moreau, P.; Cavo, M.; Miguel, J.S.; et al. Recommendations for acquisition, interpretation and reporting of whole body low dose CT in patients with multiple myeloma and other plasma cell disorders: A report of the IMWG Bone Working Group. Blood Cancer J. 2018, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Rossi, F.; Torri, L.; Dominietto, A.; Tagliafico, A.S. Spectrum of magnetic resonance imaging findings in transplanted multiple myeloma patients with hip/pelvic pain (according to MY-RADS): A single center experience. Eur. J. Radiol. 2020. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.-V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Nanni, C.; Versari, A.; Chauvie, S.; Bertone, E.; Bianchi, A.; Rensi, M.; Bellò, M.; Gallamini, A.; Patriarca, F.; Gay, F.; et al. Interpretation criteria for FDG PET/CT in multiple myeloma (IMPeTUs): Final results. IMPeTUs (Italian myeloma criteria for PET USe). Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 712–719. [Google Scholar] [CrossRef]
- Messiou, C.; Hillengass, J.; Delorme, S.; Lecouvet, F.E.; Moulopoulos, L.A.; Collins, D.J.; Blackledge, M.D.; Abildgaard, N.; Østergaard, B.; Schlemmer, H.-P.; et al. Guidelines for acquisition, interpretation, and reporting of whole-body MRI in myeloma: Myeloma response assessment and diagnosis system (MY-RADS). Radiology 2019. [Google Scholar] [CrossRef] [Green Version]
- Hillengass, J. Evolving Concepts in the Diagnosis and Staging of Multiple Myeloma. Natl. Compr. Cancer Netw. 2020, 18, 1770–1772. [Google Scholar] [CrossRef]
- Mutlu, U.; Balci, A.; Özsan, G.H.; Özkal, S.; Şeyhanli, A.; Özgül, H.A. Computed tomography characteristics of multiple myeloma and other osteolytic metastatic bone lesions. Acta Radiol. SAGE Publ. 2020. [Google Scholar] [CrossRef]
- Mosebach, J.; Thierjung, H.; Schlemmer, H.-P.; Delorme, S. Multiple Myeloma Guidelines and Their Recent Updates: Implications for Imaging. Rofo Geb. Rontgenstr. Nukl. 2019, 191, 998–1009. [Google Scholar] [CrossRef] [Green Version]
- Moreau, P.; Attal, M.; Caillot, D.; Macro, M.; Karlin, L.; Garderet, L.; Facon, T.; Benboubker, L.; Escoffre-Barbe, M.; Stoppa, A.-M.; et al. Prospective Evaluation of Magnetic Resonance Imaging and [18F]Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography at Diagnosis and Before Maintenance Therapy in Symptomatic Patients With Multiple Myeloma Included in the IFM/DFCI 2009 Trial: Results of the IMAJEM Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 2911–2918. [Google Scholar] [CrossRef]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report from International Myeloma Working Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef]
- Martinoli, C.; Bacigalupo, L.; Forni, G.L.; Balocco, M.; Garlaschi, G.; Tagliafico, A. Musculoskeletal manifestations of chronic anemias. Semin. Musculoskelet Radiol. 2011, 15. [Google Scholar] [CrossRef]
- Schenone, D.; Lai, R.; Cea, M.; Rossi, F.; Torri, L.; Bignotti, B.; Succio, G.; Gualco, S.; Conte, A.; Dominietto, A.; et al. Radiomics and artificial intelligence analysis of CT data for the identification of prognostic features in multiple myeloma. Med. Imaging 2020, 11314, 113144A. [Google Scholar]
- Reinert, C.P.; Krieg, E.M.; Bösmüller, H.; Horger, M. Mid-term response assessment in multiple myeloma using a texture analysis approach on dual energy-CT-derived bone marrow images a proof of principle study. Eur. J. Radiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kosmala, A.; Weng, A.M.; Krauss, B.; Knop, S.; Bley, T.A.; Petritsch, B. Dual-energy CT of the bone marrow in multiple myeloma: Diagnostic accuracy for quantitative differentiation of infiltration patterns. Eur. Radiol. 2018, 28, 5083–5090. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Abe, Y.; Narita, K.; Kitadate, A.; Takeuchi, M.; Matsue, K. Prognostic significance of medullary abnormalities of the appendicular skeleton detected by low-dose whole-body multidetector computed tomography in patients with multiple myeloma. Blood 2017, 130, 1763. [Google Scholar]
- Horger, M.; Fritz, J.; Thaiss, W.M.; Ditt, H.; Weisel, K.; Haap, M.; Kloth, C. Comparison of qualitative and quantitative CT and MRI parameters for monitoring of longitudinal spine involvement in patients with multiple myeloma. Skelet. Radiol. 2018, 47, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Tagliafico, A.S.; Belgioia, L.; Bonsignore, A.; Signori, A.; Formica, M.; Rossi, F.; Piana, M.; Schenone, D.; Dominietto, A. Development and definition of a simplified scoring system in patients with multiple myeloma undergoing stem cells transplantation on standard computed tomography: Myeloma spine and bone damage score (MSBDS). Cancer Imaging 2020, 20. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.G.; DiPaola, C.P.; Ryken, T.C.; Bilsky, M.H.; Shaffrey, C.I.; Berven, S.H.; Harrop, J.S.; Fehlings, M.G.; Boriani, S.; Chou, D.; et al. A novel classification system for spinal instability in neoplastic disease: An evidence-based approach and expert consensus from the spine oncology study group. Spine 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Society of Radiology (ESR). Medical imaging in personalised medicine: A white paper of the research committee of the European Society of Radiology (ESR). Insights Imaging 2015, 6, 141–155. [Google Scholar] [CrossRef] [PubMed]
- European Society of Radiology (ESR). ESR Statement on the Validation of Imaging Biomarkers. Insights Imaging 2020. [Google Scholar] [CrossRef]
- European Society of Radiology (ESR). Impact of coronavirus disease 2019 (COVID-19) emergency on Italian radiologists: A national survey. Eur. Radiol. 2020. [Google Scholar] [CrossRef]
- European Society of Radiology (ESR); American College of Radiology (ACR). European Society of Radiology (ESR) and American College of Radiology (ACR) report of the 2015 global summit on radiological quality and safety. Insights Imaging 2016. [Google Scholar] [CrossRef] [Green Version]
- Lalam, R.; Bloem, J.L.; Noebauer-Huhmann, I.M.; Wörtler, K.; Tagliafico, A.; Vanhoenacker, F.; Nikodinovska, V.V.; Sanal, H.T.; van der Woude, H.-J.; Papakonstantinou, O.; et al. ESSR Consensus Document for Detection, Characterization, and Referral Pathway for Tumors and Tumorlike Lesions of Bone. Semin. Musculoskelet Radiol. 2017, 21, 630–647. [Google Scholar] [CrossRef] [PubMed]
- Löfgren, J.; Loft, A.; Barbosa de Lima, V.A.; Østerlind, K.; von Benzon, E.; Højgaard, L. Clinical importance of re-interpretation of PET/CT scanning in patients referred to a tertiary care medical centre. Clin. Physiol. Funct. Imaging 2017, 37, 143–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatzoglou, V.; Omuro, A.M.; Haque, S.; Khakoo, Y.; Ganly, I.; Oh, J.H.; Shukla-Dave, A.; Fatovic, R.; Gaal, J.; Holodny, A.I. Second-opinion interpretations of neuroimaging studies by oncologic neuroradiologists can help reduce errors in cancer care. Cancer 2016, 122, 2708–2714. [Google Scholar] [CrossRef] [Green Version]
- Lakhman, Y.; D’Anastasi, M.; Miccò, M.; Scelzo, C.; Vargas, H.A.; Nougaret, S.; Sosa, R.E.; Chi, D.S.; Abu-Rustum, N.R.; Hricak, H.; et al. Second-Opinion Interpretations of Gynecologic Oncologic MRI Examinations by Sub-Specialized Radiologists Influence Patient Care Conclusions-Expert second-opinion review of GynOnc MRI influences patient care. HHS Public Access. Eur. Radiol. 2016, 26, 2089–2098. [Google Scholar] [CrossRef] [Green Version]
- Chalian, M.; Del Grande, F.; Thakkar, R.S.; Jalali, S.F.; Chhabra, A.; Carrino, J.A. Second-opinion subspecialty consultations in musculoskeletal radiology. Am. J. Roentgenol. 2016, 206, 1217–1221. [Google Scholar] [CrossRef]
- Rozenberg, A.; Kenneally, B.E.; Abraham, J.A.; Strogus, K.; Roedl, J.B.; Morrison, W.B.; Zoga, A.C. Second opinions in orthopedic oncology imaging: Can fellowship training reduce clinically significant discrepancies? Skeletal Radiol. Skelet. Radiol. 2019, 48, 143–147. [Google Scholar] [CrossRef]
- Snoj, Ž.; Hebar, T.; Sconfienza, L.M.; Vanhoenacker, F.M.H.M.; Shahabpour, M.; Salapura, V.; Isaac, A.; Drakonaki, E.; Vasilev, Y.; Drape, J.-L.; et al. Present Status of Musculoskeletal Radiology in Europe: International Survey by the European Society of Musculoskeletal Radiology. Semin. Musculoskelet Radiol. 2020. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer Oxf. Eng. 2012, 48, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Parmar, C.; Grossmann, P.; Bussink, J.; Lambin, P.; Aerts, H.J.W.L. Machine Learning methods for Quantitative Radiomic Biomarkers. Sci. Rep. Nat. Publ. Group 2015, 5, 13087. [Google Scholar] [CrossRef] [PubMed]
- Yip, S.S.F.; Aerts, H.J.W.L. Applications and limitations of radiomics. Phys. Med. Biol. 2016, 61, R150–R166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagliafico, A.S.; Piana, M.; Schenone, D.; Lai, R.; Massone, A.M.; Houssami, N. Overview of radiomics in breast cancer diagnosis and prognostication. Breast 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kothari, G.; Korte, J.; Lehrer, E.J.; Zaorsky, N.G.; Lazarakis, S.; Kron, T.; Hardcastle, N.; Siva, S. A systematic review and meta-analysis of the prognostic value of radiomics based models in non-small cell lung cancer treated with curative radiotherapy. Radiother. Oncol. J. Eur. Soc. Radiol. Oncol. 2020, 155, 188–203. [Google Scholar] [CrossRef]
- Manier, S.; Salem, K.Z.; Park, J.; Landau, D.A.; Getz, G.; Ghobrial, I.M. Genomic complexity of multiple myeloma and its clinical implications. Nat. Rev. Clin. Oncol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Fiz, F.; Marini, C.; Piva, R.; Miglino, M.; Massollo, M.; Bongioanni, F.; Morbelli, S.; Bottoni, G.; Campi, C.; Bacigalupo, A.; et al. Adult Advanced Chronic Lymphocytic Leukemia: Computational Analysis of Whole-Body CT Documents a Bone Structure Alteration. Radiology. Radiol. Soc. N. Am. 2014, 271, 805–813. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, S.; Botta, F.; Raimondi, S.; Origgi, D.; Fanciullo, C.; Morganti, A.G.; Bellomi, M. Radiomics: The facts and the challenges of image analysis. Eur. Radiol. Exp. 2018, 2, 36. [Google Scholar] [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef] [Green Version]
- Parekh, V.; Jacobs, M.A. Radiomics: A new application from established techniques. Expert Rev. Precis. Med. Drug Dev. 2016, 1, 207–226. [Google Scholar] [CrossRef] [Green Version]
Location | Points |
---|---|
Junctional Spine (C0–C2, C7–T2, T11–L1, L5–S1) | 3 |
Mobile Spine (C3–C6, L2–L4) | 2 |
Collapse/involvement > 50% | 3 |
Collapse < 50% * | 2 |
Posterolateral (facet, pedicle) involvement monolateral | 2 |
Posterolateral (facet, pedicle) bilateral monolateral | 3 |
Spinal Canal involvement | 5 |
Trochanteric region focal lesions < 10 mm | 2 |
Femoral neck or entire trochanteric region | 5 |
More 2/3 of bone diameter | 3 |
Focal lesion > 5 mm at any site * | 1 |
Diffuse Pattern | 1 ** |
Number of Detector Rows | 16 or More up to 128 |
---|---|
Minimum Scan coverage | Skull base to femur |
Tube voltage(kV)/time-current product (mAs) | 120/50–70, adjusted as clinically needed |
Reconstruction convolution kernel | Sharp, high-frequency (bone) and smooth (soft tissue). Middle-frequency kernel for all images are adjusted by the radiologist as deemed necessary |
Iterative reconstruction algorithms | Yes (to reduce image noise and streak artefacts) |
Thickness | ≤5 mm |
Multiplanar Reconstructions (MPRs) | Yes (sagittal, coronal and parallel to long axis of proximal limbs) |
Matrix, Rotation time, table speed, pith index | 128 × 128, 0.5 s, 24 mm per gantry rotation, 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tagliafico, A.S.; Dominietto, A.; Belgioia, L.; Campi, C.; Schenone, D.; Piana, M. Quantitative Imaging and Radiomics in Multiple Myeloma: A Potential Opportunity? Medicina 2021, 57, 94. https://doi.org/10.3390/medicina57020094
Tagliafico AS, Dominietto A, Belgioia L, Campi C, Schenone D, Piana M. Quantitative Imaging and Radiomics in Multiple Myeloma: A Potential Opportunity? Medicina. 2021; 57(2):94. https://doi.org/10.3390/medicina57020094
Chicago/Turabian StyleTagliafico, Alberto Stefano, Alida Dominietto, Liliana Belgioia, Cristina Campi, Daniela Schenone, and Michele Piana. 2021. "Quantitative Imaging and Radiomics in Multiple Myeloma: A Potential Opportunity?" Medicina 57, no. 2: 94. https://doi.org/10.3390/medicina57020094
APA StyleTagliafico, A. S., Dominietto, A., Belgioia, L., Campi, C., Schenone, D., & Piana, M. (2021). Quantitative Imaging and Radiomics in Multiple Myeloma: A Potential Opportunity? Medicina, 57(2), 94. https://doi.org/10.3390/medicina57020094