1. Introduction
The definitions of health and beauty have varied over time, but the general standard for men has always been an image of being slim and muscular [
1]. As with many issues, body image has become a concern in our society. Body image is the perception of one’s body size and appearance and the emotional responses to this perception [
2]. Cash [
3] reported that body image is a multidimensional construct and refers to a person’s perceptions and attitudes, including feelings, thoughts, and behaviors regarding their own body and appearance. Cash [
4] also reported that the cognitive-behavioral model of the body image, which includes personality, physical or interpersonal attributes, and cultural socialization, plays a role in how invested individuals are in their body image and how they evaluate it. One facet of attitudinal body image is referred to as body satisfaction or dissatisfaction [
5]. Inaccurate perceptions of body size and negative emotional reactions can result in varying degrees of body image dissatisfaction. Negative views towards obesity have been internalized. Many people have adopted the belief that obese individuals are unattractive, psychologically impaired, or medically sick [
6]. Obesity caused from a sedentary lifestyle is associated with inappropriate food intake and energy imbalances [
7]. Among the kinds of obesity, abdominal obesity is mainly seen in males and is a dangerous factor that causes heart and metabolic diseases, as well as blood vessel problems. Moreover, the larger number of adipocytes in the abdominal region increases metabolic complications [
8,
9]. This association seems to be due to a higher lipolytic rate in the visceral and deep subcutaneous adipose tissue, promoting an increase of free fatty acids in the blood circulation [
10] and an increase in the hepatic synthesis of triglycerides, which translates into dyslipidemia [
11]. Additionally, adipose tissue plays an important role in the development of systemic inflammation by secreting several cytokines and chemokines [
12,
13].
Physical activity, controlled diet, anti-obesity medication, and liposuction represent significant modalities in the treatment of obesity, resulting in increased energy expenditure, decreased energy uptake, reduced fat tissue, and an increased lean body mass. Additionally, regular physical activity and exercise have long been known to increase the metabolism and reduce fat mass, contributing to a more positive body image or shape [
14,
15], as well as self-esteem [
16]. However, attempts to resolve obesity through traditional exercise or diets are somewhat inadequate for people who want fast results or those with metabolic syndromes. In addition, if abdominal obesity cannot be resolved within a short period of time, various complications can result, such as those described above. Therefore, other nonconventional methods have been devised.
Whole-body electromyostimulation (WB-EMS) is a somewhat newly adopted device that provides exercise-like effects in which artificial contractions are induced by electric currents from an external source [
17,
18], unlike natural contractions induced by the motor nerve of the central nervous system. Electrical muscle stimulation (EMS) delivers a stimulus to local muscles in a static state at sufficient intensities to evoke muscle contractions [
19]. WB-EMS is time-efficient and less debilitating than localized EMS, thus producing a higher acceptance among nonathletes or athletes [
20]. Maffiuletti [
21] suggested that electrical stimulation increases the maximal strength and improves physical fitness. The authors von Stengel and Kemmler [
22] analyzed the changes in the maximum isokinetic leg/hip extensor strength and leg/hip flexor strength after WB-EMS interventions in men from different periods of life. They found that, although there was an inconsistent tendency in terms of WB-EMS-induced lower extremity strength, WB-EMS significantly increased the maximal hip/leg strength throughout the adult male lifespan. Furthermore, Kemmler et al. [
23] demonstrated that WB-EMS had positive effects on muscle mass and fat mass, as well as improved functional capacity, even in older, sedentary people. They also reported that WB-EMS is gentle on the joints and reduces the risk of injury due to excessive loads resulting from weight training. Recently, Kim and Jee [
24] reported that obese elderly women who exercised with music while wearing WB-EMS suits resulted in improved body composition and cholesterol levels after eight weeks. In addition, they also found that there were decreased tendencies in some cytokines such as tumor necrosis factor-a, C-reactive protein, resistin, and carcinoembryonic antigen in the WB-EMS intervention group.
However, even though there is some evidence that WB-EMS favorably improves the body composition, biomarkers, and muscle mass or strength, few studies clearly address those benefits. Particularly, it has not been confirmed that a dose-response relationship exists between different impulse intensities and how WB-EMS affects the psychological factors such as body image or shape and self-esteem. Therefore, this study investigated the various impulse effects of WB-EMS on psychological conditions (body image, body shape, and self-esteem) and physical conditions (body composition and abdominal fatness) in healthy young men in accordance with dose responses using electrical stimulation composed of different impulse intensities.
4. Discussion
This study found that three psychological scales in the CON showed insignificant or negative changing tendencies, whereas those in the LIG, MIG, and HIG showed positive changing tendencies. Furthermore, the BI-AAQ for body image, BSQ for body shape, and SEQ for self-esteem were significantly different among the groups, which showed that higher impulse intensities resulted in greater positive changes. In other words, the HIG, which received the highest impulse intensity, showed the most improved values from week 0 to week 12. As for body composition and psychological variables, the WB-EMS groups, which were given stronger stimulations, improved their body weight, fat mass, and muscle mass, especially in the ASF and ATF. The physiological variables also showed a positive relationship between higher impulse intensities and a greater degree of improvement.
Everyone knows that exercise leads to physical development. Particularly, exercise can provide greater benefits when the intensity is higher than that of daily physical activity. However, if the intensity of exercise is too high or excessive, it can cause severe damage to stressed joints, as well as muscle ruptures. The WB-EMS suit, which has been used since several years ago to compensate for this, protects the muscle joints of the human body by reducing the burden caused by the weight from isotonic exercise but can maximize the effect of exercise by increasing the intensity of exercise. The effects of the high WB-EMS impulse intensity used in this study were similar to the results of another research study that showed increased lipid oxidation leading to positive effects on the metabolic indicators and body composition in obese men [
49]. This study also showed that electrical current thresholds were higher in obese than in nonobese subjects and that the stimulation tolerance of obese subjects appeared to diminish within one EMS session [
19]. Similarly, this study observed the physiological responses of the patients in accordance with the electrical impulse intensities. According to our results, the ∆% of body weight in the CON, LIG, MIG, and HIG changed from baseline to −0.74%, −1.34%, −1.28%, and −1.40% at week 4; −0.52%, −1.48%, −1.43%, and −2.04% at week 8; and −0.38%, −2.57%, −5.76%, and −8.88% at week 12, respectively. Similarly, the ∆% of fat mass in the CON, LIG, MIG, and HIG changed from baseline to −1.69%, −5.49%, −6.27%, and −5.95% at week 4; −1.96%, −6.50%, −7.13%, and −6.99% at week 8; and 0.34%, −3.66%, −13.94%, and −28.33% at week 12, respectively. The ∆% of the BMI and percent fat were similar to body weight and fat mass. It can be interpreted that stronger EMS impulse intensities result in decreased body fat.
Unlike the previous studies, Porcari et al. [
50] reported that there were no significant changes in the circumferences of the arms or thighs, sum of skinfolds, body weight, percent fat, fat mass, or lean mass between the experimental and control groups after applying EMS. They also reported that the claims relative to the effectiveness of EMS for apparently healthy individuals were not supported by the findings of their studies. These findings may be explained and interpreted as follows. Subsequent stimulation sessions by Porcari et al. [
50] were performed three times per week for eight weeks. The areas stimulated during each session were the biceps, triceps, quadriceps, hamstrings, and abdominal muscles. Using such parts of the body for EMS may be problematic, since the sites were no more than a part of the whole body. The second problem was that the electrodes repeatedly detached from the subjects’ skin because of the use of Velcro straps. The third problem was that the number of channels was low, and the fourth problem was that the time off period after EMS was too long. The longer the resting time for muscles after EMS, the longer the time required for the pulse to fall below the threshold value of the muscles to induce muscle contractions again, which may reduce the efficiency of the muscle contractions. Hortobágyi and Maffiuletti [
25] suggested that EMS programs that last up to six weeks may induce alterations in the muscle metabolism. Gondin et al. [
26,
42] and Ruther et al. [
27] reported that the techniques of applying EMS for time periods longer than six weeks may cause muscle hypertrophy in the late phases of such programs. Regarding muscle mass, this study found that the ∆% of muscle mass in the CON, LIG, MIG, and HIG changed from baseline to −0.73%, 0.34%, 0.14%, and 0.20% at week 4; −0.67%, 0.73%, 0.61%, and 1.69% at week 8; and −2.21%, 1.38%, 5.31%, and 7.64% at week 12, respectively. In other words, muscle mass showed greater gains as the impulse intensity became higher. A substantial amount of research has also pointed to the positive effects of EMS on the body composition when performed for a period of over 12 weeks [
20].
This study measured abdominal CT images four times from week zero to week 12 to examine the extent to which WB-EMS affects the abdominal circumference. According to the results, the ∆% of the ASF in the CON changed from baseline to −0.43% at week 4, −1.91% at week 8, and −1.86% at week 12, whereas those of LIG, MIG, and HIG changed from baseline to 0.56%, −0.46%, and −0.44% at week 4; −3.69%, −2.76%, and −2.22% at week 8; and −0.47%, −16.40%, and −25.91% at week 12, respectively. Meanwhile, this study found that the ∆% of the ATF in the LIG, MIG, and HIG-performed isometric exercises combined with WB-EMS changed from baseline to −2.68%, −1.10%, and −1.95% at week 4; −6.44%, −3.65%, and −9.74% at week 8; and −5.21%, −14.99%, and −27.44% at week 12 compared with the ∆% of ATF, which changed from baseline to 1.23% at week 4, −1.76% at week 8, and −0.86% at week 12. These results were similar to those reported by several previous studies, and it was found that the thickness of the abdominal subcutaneous fat can be reliably reduced when wearing WB-EMS and performing isometric exercises. Banerjee et al. [
51] confirmed that EMS can be used on sedentary adults to improve physical fitness and may provide a viable alternative to more conventional forms of exercise in this population, as our results and previous studies also suggest.
Psychologically, it is not easy to tolerate exercise with high levels of electrical stimulation. That is, among the three types of WB-EMS intensities applied in this study, we investigated what kind of EMS impulse intensity has the greatest effect on the subjects’ body image and satisfaction. In addition, we looked into whether changes in body image and satisfaction can lead to changes in self-esteem. Originally, body image or body image flexibility was known to be associated with psychological flexibility regarding body image [
52]. The BI-AAQ has also been used to measure and evaluate eating disorders, poor psychological health [
53,
54], distressing thoughts and feelings associated with binge eating [
55], anorexia [
56], and bulimia [
57]. However, this study investigated the psychological changes by using body image questionnaires such as BI-AAQ to measure the body image flexibility after the application of WB-EMS. Body image flexibility is defined as the capacity to experience the ongoing perceptions, sensations, feelings, thoughts, and beliefs associated with one’s body fully and intentionally while pursuing chosen values [
30]. Along with the BI-AAQ, this study used the BSQ and SES for observing psychological changes from pretests to posttests. Prior to investigating the effects of WB-EMS on the above variables, Marsh et al. [
58] reported that the highest correlations existed between the body and physical appearance factors, with the three correlations relating competence to strength, body, and physical activity. These results indicated that body attractiveness is due to both body traits and physical appearances.
This study assigned the same isometric exercise to young male adults but provided low-, medium-, and high-intensity EMS impulses. We measured the effects of the three types of EMS impulses on the feelings of the participants, as well as the intensities that were most helpful in improving their body image. In addition, this study also used the BSQ to measure psychological satisfaction regarding body image after performing isometric exercises combined with WB-EMS. The results of this study revealed that the ∆% of the BI-AAQ in the CON changed from the baseline to 0.75% at week 4, −0.63% at week 8, and 0.24% at week 12. The ∆% of the BI-AAQ in the LIG changed from the baseline to −4.76% at week 4, 1.11% at week 8, and 2.14% at week 12. The ∆% of the BI-AAQ in the MIG and HIG changed from the baseline to −4.22% and −2.65% at week 4, −5.18% and −7.78% at week 8, and −11.50% and −24.12% at week 12, respectively. Lower BI-AAQ scores indicate higher levels of body image flexibility. In other words, it can be interpreted that the stronger the EMS impulse is, the higher the person’s body image satisfaction. The BSQ showed similar results: −1.45% in the CON, −7.10% in the LIG, −22.95% in the MIG, and −25.09% in the HIG at week 12. Although the ∆% of self-esteem in the CON and LIG changed from the baseline to −3.89% and −4.04% at week 4, −11.62% and −5.41% at week 8, and −13.17% and −7.55% at week 12, those of self-esteem in the MIG and HIG changed from the baseline to 2.25% and 13.25% at week 4, 13.02% and 15.20% at week 8, and 18.81% and 29.68% at week 12. In other words, it can be said that a higher EMS intensity impulse leads to greater physical development and exercise intensity, which can be mentally challenging.
According to some researchers, increased skeletal muscles, improved muscle strength without lifting weights, and even preserving muscle mass can result from the use of EMS [
59,
60,
61]. This combination of both EMS and exercise training can cause additional tension, thus creating more effective results. Gerovasili et al. [
60] reported that the electrically induced contractions must be in the range of 60–80% of the maximal voluntary contraction. Based on scientific evidence, this study found that the psychological scores were steadily increased each week, showing that only high-intensity electrical stimulation can improve body image, satisfaction, and self-esteem in healthy men. These findings were supported by the results of studies by Ahmad and Hasbullah [
59], Gerovasili et al. [
60], and Iwasaki et al. [
61]. In addition, this study observed that the BSQ of the HIG showed the lowest score, indicating a very positive result and that the scores for health and physical activity in the HIG were higher than those of the other three groups after 12 weeks. Self-esteem in the HIG also showed a higher tendency compared with those of the other three groups from week zero to week 12.
It can be hypothesized that repeated exposure to WB-EMS training may result in increased physical fitness and muscle function, reduced body fat mass, and improved psychological health. Ahmad and Hasbullah [
59] reported that EMS training was able to improve the male body composition. Many studies, including the results from this study, showed that EMS training combined with isometric exercise can decrease fat mass and percent body fat. These results suggest that improved body composition can also increase self-esteem through greater satisfaction with body image and body shape. Similarly, Harvey et al. [
62] suggested that the physiological benefits gained from functional electrical stimulation training led to significant psychological benefits as well. Anderson et al. [
63] reported that 37 sedentary healthy women participated in baseline testing on a range of anthropometric measures, body composition, and self-perception measures. Subsequently, participants were randomly assigned to one of three groups: walking group, walking + EMS group, or the control group. When comparing the results with the control group after eight weeks, both walking groups had a significant reduction in the number of anthropometric measures and improvements in the self-perception measures. The improvements of both the anthropometric measures and self-perceptions were greater for the walking + EMS group, which indicates that changes in self-perception may be affected by physiological changes.
Compared to the no stimulation EMS control group, all three of the EMS groups exhibited improved tendencies in self-esteem and significant improvements in body image and body shape. This effect was particularly apparent in the mid- and/or high-impulse EMS groups. These results are similar to previous research studies that suggested that exercise enhances self-perception [
64,
65,
66,
67,
68,
69] and is contrary to other studies that have found that exercise does not improve self-perception [
70]. Ultimately, this study suggests that a WB-EMS suit equipped with an electrical muscle stimulation device can reduce fat and increase muscle mass, which, in turn, improves the psychological factors. However, this effect only appeared in the EMS group in which a high-impulse-intensity was applied.