Idazoxan and Efaroxan Potentiate the Endurance Performances and the Antioxidant Activity of Ephedrine in Rats
Abstract
:1. Introduction
2. Materials and Methods
- a decrease in the time interval for applying electric shocks or increasing the number of electric shocks corresponding to an increase of resistance to effort by the tested drug(s);
- on the contrary, prolonging the time duration of applying electric shocks or the number of electric shocks needed to be applied to the animal considered to be correlated to a decrease of resistance to effort induced by the investigated drug(s);
- the longer distance run by the animal on the belt during the recorded time indicating an increase of resistance to effort and a stimulation of motor activity by the tested drug(s);
- within the same experimental conditions, a shorter distance run by the animal on the belt during the recorded time corresponds to a diminution of resistance to effort, thus indicating a reduction of motor activity induced by the investigated drug.
3. Results
3.1. Evaluation of Endurance Capacity
3.2. Evaluation of Oxidative Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lowry, J.A.; Brown, J.T. Significance of the imidazoline receptors in toxicology. Clin. Toxicol. 2014, 52, 454–469. [Google Scholar] [CrossRef]
- Gawali, N.B.; Bulani, V.D.; Gursahani, M.S.; Deshpande, P.S.; Kothavade, P.S.; Juvekar, A.R. Agmatine attenuates chronic unpredictable mild stress-induced anxiety, depression-like behaviors and cognitive impairment by modulating nitrergic signaling pathway. Brain Res. 2017, 1663, 66–77. [Google Scholar] [CrossRef]
- Li, J.X. Imidazoline I2 receptors: An update. Pharmacol. Ther. 2017, 178, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, P.; Hudson, A.; García-Sevilla, J.A.; Li, J.X. Imidazoline receptor system: The past, the present, and the future. Pharmacol. Rev. 2020, 72, 50–79. [Google Scholar] [CrossRef]
- Uys, M.M.; Shahid, M.; Harvey, B.H. Therapeutic potential of selectively targeting the α2C-adrenoceptor in cognition, depression, and schizophrenia—new developments and future perspective. Front. Psychiatry 2017, 8, 144. [Google Scholar] [CrossRef] [Green Version]
- Khokhar, J.Y.; Green, A.I. Effects of iloperidone, combined with desipramine, on alcohol drinking in the Syrian golden hamster. Neuropharmacology 2016, 105, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Hamadjida, A.; Frouni, I.; Kwan, C.; Huot, P. Classic animal models of Parkinson’s disease: A historical perspective. Behav. Pharmacol. 2019, 30, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Yssel, J.D.; O’Neill, E.; Nolan, Y.M.; Connor, T.J.; Harkin, A. Treatment with the noradrenaline re-uptake inhibitor atomoxetine alone and in combination with the α2-adrenoceptor antagonist idazoxan attenuates loss of dopamine and associated motor deficits in the LPS inflammatory rat model of Parkinson’s disease. Brain Behav. Immun. 2018, 69, 456–469. [Google Scholar] [CrossRef] [PubMed]
- Francis, B.M.; Yang, J.; Hajderi, E.; Brown, M.E.; Michalski, B.; McLaurin, J.; Fahnestock, M.; Mount, H.T. Reduced tissue levels of noradrenaline are associated with behavioral phenotypes of the TgCRND8 mouse model of Alzheimer’s disease. Neuropsychopharmacology 2012, 37, 1934–1944. [Google Scholar] [CrossRef]
- Michel, M.C.; Michel-Reher, M.B.; Hein, P. A systematic review of inverse agonism at adrenoceptor subtypes. Cells 2020, 9, 1923. [Google Scholar] [CrossRef]
- Mirzaei, N.; Mota, B.C.; Birch, A.M.; Davis, N.; Romero-Molina, C.; Katsouri, L.; Sastre, M.; Palmer, E.O.C.; Golbano, A.; Riggall, L.J.; et al. Imidazoline ligand BU224 reverses cognitive deficits, reduces microgliosis and enhances synaptic connectivity in a mouse model of Alzheimer’s disease. Br. J. Pharmacol. 2021, 178, 654–671. [Google Scholar] [CrossRef] [PubMed]
- Eliwa, H.; Belzung, C.; Surget, A. Adult hippocampal neurogenesis: Is it the alpha and omega of antidepressant action? Biochem. Pharmacol. 2017, 141, 86–99. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, E.; Harkin, A. Targeting the noradrenergic system for anti-inflammatory and neuroprotective effects: Implications for Parkinson’s disease. Neural Regen. Res. 2018, 13, 1332. [Google Scholar] [PubMed]
- Lynch, J.J.; Castagne, V.; Moser, P.C.; Mittelstadt, S.W. Comparison of methods for the assessment of locomotor activity in rodent safety pharmacology studies. J. Pharmacol. Toxicol. Method 2011, 64, 74–80. [Google Scholar] [CrossRef]
- Avila, J.J.; Kim, S.K.; Massett, M.P. Differences in exercise capacity and responses to training in 24 inbred mouse strains. Front. Physiol 2017, 8, 974. [Google Scholar] [CrossRef] [PubMed]
- Vanzella, C.; Neves, J.D.; Vizuete, A.F.; Aristimunha, D.; Kolling, J.; Longoni, A.; Gonçalves, C.A.S.; Wyse, A.T.; Netto, C.A. Treadmill running prevents age-related memory deficit and alters neurotrophic factors and oxidative damage in the hippocampus of Wistar rats. Behav. Brain Res. 2017, 334, 78–85. [Google Scholar] [CrossRef]
- Wan, J.J.; Qin, Z.; Wang, P.Y.; Sun, Y.; Liu, S. Muscle fatigue: General understanding and treatment. Exp. Mol. Med. 2017, 49, e384. [Google Scholar] [CrossRef]
- Pérez-Torres, I.; Manzano-Pech, L.; Rubio-Ruíz, M.E.; Soto, M.E.; Guarner-Lans, V. Nitrosative Stress and Its Association with Cardiometabolic Disorders. Molecules 2020, 25, 2555. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R.; Maiorino, M. Glutathione peroxidases. Biochim. Biophys. Acta 2013, 1830, 3289–3303. [Google Scholar] [CrossRef] [PubMed]
- Olsson, I.A.; Silva, S.P.; Townend, D.; Sandøe, P. Protecting animals and enabling research in the European Union: An overview of development and implementation of directive 2010/63/EU. ILAR J. 2017, 57, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Steinbacher, P.; Eckl, P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules 2015, 5, 356–377. [Google Scholar] [CrossRef] [PubMed]
- Serban, D.; Anton, E.; Chirita, R.; Bild, V.; Ciobica, A.; Alexinschi, O.; Arcan, O.; Popescu, R.; Paduraru, L.; Timofte, D. Current aspects of the interactions between dementia, the brain renin-angiotensin system and oxidative stress. Arch. Biol. Sci. 2015, 67, 903–907. [Google Scholar] [CrossRef]
- Stefanescu, R.; Stanciu, G.D.; Luca, A.; Paduraru, L.; Tamba, B.I. Secondary Metabolites from Plants Possessing Inhibitory Properties against Beta-Amyloid Aggregation as Revealed by Thioflavin-T Assay and Correlations with Investigations on Transgenic Mouse Models of Alzheimer’s Disease. Biomolecules 2020, 10, 870. [Google Scholar] [CrossRef] [PubMed]
- Stanciu, G.D.; Bild, V.; Ababei, D.C.; Rusu, R.N.; Cobzaru, A.; Paduraru, L.; Bulea, D. Link between diabetes and Alzheimer’s disease due to the shared amyloid aggregation and deposition involving both neurodegenerative changes and neurovascular damages. J. Clin. Med. 2020, 9, 1713. [Google Scholar] [CrossRef]
- Chalimoniuk, M.; Jagsz, S.; Sadowska-Krepa, E.; Chrapusta, S.J.; Klapcinska, B.; Langfort, J. Diversity of endurance training effects on antioxidant defenses and oxidative damage in different brain regions of adolescent male rats. J. Physiol. Pharmacol. 2015, 66, 539–547. [Google Scholar]
- Powers, S.K.; Ji, L.L.; Kavazis, A.N.; Jackson, M.J. Reactive oxygen species: Impact on skeletal muscle. Compr. Physiol. 2011, 1, 941–969. [Google Scholar] [PubMed] [Green Version]
- Ferlazzo, N.; Currò, M.; Giunta, M.L.; Longo, D.; Rizzo, V.; Caccamo, D.; Ientile, R. Up-regulation of HIF-1α is associated with neuroprotective effects of agmatine against rotenone-induced toxicity in differentiated SH-SY5Y cells. Amino Acids 2020, 52, 171–179. [Google Scholar] [CrossRef]
- Malhotra, V.; Vats, M.; Nath, R.; Mehta, S.; Kumar, R.; Bhalla, M.; Sinha, J.; Shanker, K.; Pathak, S.R. Synthesis and biological evaluation of imidazoline derivatives as potential CNS and CVS agents. Bioorg. Med. Chem. Lett. 2020, 30, 127595. [Google Scholar] [CrossRef]
- Griñán-Ferré, C.; Vasilopoulou, F.; Abás, S.; Rodríguez-Arévalo, S.; Bagán, A.; Sureda, F.X.; Pérez, B.; Callado, L.F.; García-Sevilla, J.A.; García-Fuster, M.J.; et al. Behavioral and Cognitive Improvement Induced by Novel Imidazoline I 2 Receptor Ligands in Female SAMP8 Mice. Neurotherapeutics 2019, 16, 416–431. [Google Scholar] [CrossRef] [Green Version]
- Patejdl, R.; Zettl, U.K. Spasticity in multiple sclerosis: Contribution of inflammation, autoimmune mediated neuronal damage and therapeutic interventions. Autoimmun. Rev. 2017, 16, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Yarmohmmadi, F.; Rahimi, N.; Faghir-Ghanesefat, H.; Javadian, N.; Abdollahi, A.; Pasalar, P.; Jazayeri, F.; Ejtemaeemehr, S.; Dehpour, A.R. Protective effects of agmatine on doxorubicin-induced chronic cardiotoxicity in rat. Eur. J. Pharmacol. 2017, 796, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Ferry, B.; Parrot, S.; Marien, M.; Lazarus, C.; Cassel, J.C.; McGaugh, J.L. Noradrenergic influences in the basolateral amygdala on inhibitory avoidance memory are mediated by an action on α2-adrenoceptors. Psychoneuroendocrinology 2014, 51, 68–79. [Google Scholar] [CrossRef]
- Dixit, M.P.; Thakre, P.P.; Pannase, A.S.; Aglawe, M.M.; Taksande, B.G.; Kotagale, N.R. Imidazoline binding sites mediates anticompulsive-like effect of agmatine in marble-burying behavior in mice. Eur. J. Pharmacol. 2014, 732, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Kotagale, N.R.; Tripathi, S.J.; Aglawe, M.M.; Chopde, C.T.; Umekar, M.J.; Taksande, B.G. Evidences for the agmatine involvement in antidepressant like effect of bupropion in mouse forced swim test. Pharmacol. Biochem. Behav. 2013, 107, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Giacobbo, B.L.; Doorduin, J.; Klein, H.C.; Dierckx, R.A.; Bromberg, E.; de Vries, E.F. Brain-derived neurotrophic factor in brain disorders: Focus on neuroinflammation. Mol. Neurobiol. 2019, 56, 3295–3312. [Google Scholar] [CrossRef] [Green Version]
- Nikooie, R.; Jafari-Sardoie, S.; Sheibani, V.; Nejadvaziri Chatroudi, A. Resistance training-induced muscle hypertrophy is mediated by TGF-β1-Smad signaling pathway in male Wistar rats. J. Cell Physiol. 2020, 235, 5649–5665. [Google Scholar] [CrossRef] [PubMed]
- Pinho, R.A.; Silva, L.D.; Pinho, C.A.; Daufenbach, J.F.; Rezin, G.T.; Da Silva, L.A.; Streck, E.L.; Souza, C.T. Alterations in muscular oxidative metabolism parameters in incremental treadmill exercise test in untrained rats. Eur. J. Appl. Physiol. 2012, 112, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Radiloff, D.; Zhao, Y.; Boico, A.; Blueschke, G.; Palmer, G.; Fontanella, A.; Dewhirst, M.; Piantadosi, C.A.; Noveck, R.; Irwin, D.; et al. Anti-hypotensive treatment and endothelin blockade synergistically antagonize exercise fatigue in rats under simulated high altitude. PLoS ONE 2014, 9, e99309. [Google Scholar] [CrossRef]
- Dixit, M.; Upadhya, M.; Taksande, B.; Raut, P.; Umekar, M.; Kotagale, N. Neuroprotective effect of agmatine in mouse spinal cord injury model: Modulation by imidazoline receptors. J. Nat. Sci. Biol. Med. 2018, 9, 115–120. [Google Scholar]
- Rusu-Zota, G.; Timofte, D.V.; Albu, E.; Nechita, P.; Sorodoc, V. The Effects of Idazoxan and Efaroxan Improves Memory and Cognitive Functions in Rats. Rev. Chim. (Bucharest) 2019, 70, 1411–1415. [Google Scholar] [CrossRef]
- Uys, M.M.; Shahid, M.; Sallinen, J.; Harvey, B.H. The α2C-adrenoceptor antagonist, ORM-10921, exerts antidepressant-like effects in the Flinders Sensitive Line rat. Behav. Pharmacol. 2017, 28, 9–18. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusu-Zota, G.; Burlui, A.; Rezus, E.; Paduraru, L.; Sorodoc, V. Idazoxan and Efaroxan Potentiate the Endurance Performances and the Antioxidant Activity of Ephedrine in Rats. Medicina 2021, 57, 194. https://doi.org/10.3390/medicina57030194
Rusu-Zota G, Burlui A, Rezus E, Paduraru L, Sorodoc V. Idazoxan and Efaroxan Potentiate the Endurance Performances and the Antioxidant Activity of Ephedrine in Rats. Medicina. 2021; 57(3):194. https://doi.org/10.3390/medicina57030194
Chicago/Turabian StyleRusu-Zota, Gabriela, Alexandra Burlui, Elena Rezus, Luminita Paduraru, and Victorita Sorodoc. 2021. "Idazoxan and Efaroxan Potentiate the Endurance Performances and the Antioxidant Activity of Ephedrine in Rats" Medicina 57, no. 3: 194. https://doi.org/10.3390/medicina57030194
APA StyleRusu-Zota, G., Burlui, A., Rezus, E., Paduraru, L., & Sorodoc, V. (2021). Idazoxan and Efaroxan Potentiate the Endurance Performances and the Antioxidant Activity of Ephedrine in Rats. Medicina, 57(3), 194. https://doi.org/10.3390/medicina57030194