Hypolipemiant Actions and Possible Cardioprotective Effects of Valine and Leucine: An Experimental Study
Abstract
:1. Introduction
2. Materials and Methods
- Control group I (n = 8): Fed with a regular diet composed of agricultural byproducts.
- Group II—C (n = 8): Received regular diet supplemented with 0.4 g/kg/day cholesterol.
- Group III—C + V (n = 8): Received regular diet supplemented with 0.4 g/kg/day cholesterol and 62.5 mg/kg/day valine powder for animal nutrition.
- Group IV—C + L (n = 8): Received regular diet supplemented with 0.4 g/kg/day cholesterol and 69.985 mg/kg/day leucine powder for animal nutrition.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laslett, L.J.; Alagona, P., Jr.; Clark, B.A.; Drozda, J.P., Jr.; Saldivar, F.; Wilson, S.R.; Poe, C.; Hart, M. The Worldwide Environment of Cardiovascular Disease: Prevalence, Diagnosis, Therapy, and Policy Issues. J. Am. Coll. Cardiol. 2012, 60, S1–S49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Backer, G.G. Prevention of cardiovascular disease: Much more is needed. Eur. J. Prev. Cardiol. 2018, 25, 1083–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotseva, K.; De Bacquer, D.; De Backer, G.; Rydén, L.; Jennings, C.; Gyberg, V.; Abreu, A.; Aguiar, C.; Conde, A.C.; Davletov, K.; et al. Lifestyle and risk factor management in people at high risk of cardiovascular disease. A report from the European Society of Cardiology European Action on Secondary and Primary Prevention by Intervention to Reduce Events (EUROASPIRE) IV cross-sectional survey in 14 European regions. Eur. J. Prev. Cardiol. 2016, 23, 2007–2018. [Google Scholar] [CrossRef]
- Yuan, C.; Lai, C.W.K.; Chan, L.W.C.; Chow, M.; Law, H.K.W.; Ying, M. Cumulative Effects of Hypertension, Dyslipidemia, and Chronic Kidney Disease on Carotid Atherosclerosis in Chinese Patients with Type 2 Diabetes Mellitus. J. Diabetes Res. 2014, 2014, 179686. [Google Scholar] [CrossRef] [PubMed]
- Tuñón, J.; Bäck, M.; Badimón, L.; Bochaton-Piallat, M.-L.; Cariou, B.; Daemen, M.J.; Egido, J.; Evans, P.C.; Francis, S.E.; Ketelhuth, D.F.; et al. Interplay between hypercholesterolaemia and inflammation in atherosclerosis: Translating experimental targets into clinical practice. Eur. J. Prev. Cardiol. 2018, 25, 948–955. [Google Scholar] [CrossRef]
- Filip, C.; Albu, E.; Zamosteanu, N.; Irina, M.; Silion, M.; Jerca, L.; Gheorghita, N.; Costel, M. Hyperhomocysteinemia’s effect on antioxidant capacity in rats. Open Med. 2010, 5, 620–626. [Google Scholar] [CrossRef]
- Goldberg, I.J. 2017 George Lyman Duff Memorial Lecture: Fat in the Blood, Fat in the Artery, Fat in the Heart: Triglyceride in Physiology and Disease. Arter. Thromb. Vasc. Biol. 2018, 38, 700–706. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Luo, F.; Ruan, G.; Peng, R.; Li, X. Hypertriglyceridemia and atherosclerosis. Lipids Health Dis. 2017, 16, 233. [Google Scholar] [CrossRef] [Green Version]
- Ference, B.A.; Kastelein, J.J.P.; Ray, K.K.; Ginsberg, H.N.; Chapman, M.J.; Packard, C.J.; Laufs, U.; Oliver-Williams, C.; Wood, A.M.; Butterworth, A.S.; et al. Association of Triglyceride-Lowering LPL Variants and LDL-C–Lowering LDLR Variants with Risk of Coronary Heart Disease. JAMA 2019, 321, 364–373. [Google Scholar] [CrossRef] [Green Version]
- Tenenbaum, A.; Klempfner, R.; Fisman, E.Z. Hypertriglyceridemia: A too long unfairly neglected major cardiovascular risk factor. Cardiovasc. Diabetol. 2014, 13, 159. [Google Scholar] [CrossRef]
- Simha, V. Management of hypertriglyceridemia. BMJ 2020, 371, m3109. [Google Scholar] [CrossRef] [PubMed]
- Packard, C.J.; Boren, J.; Taskinen, M.-R. Causes and Consequences of Hypertriglyceridemia. Front. Endocrinol. 2020, 11, 252. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, E.; Zamfir, C.L.; Lupuşoru, C.E.; Cotuţiu, C. The effects of some nonpolar aminoacids--valine, leu-cine--administration on the arterial wall already exposed to a hypercholesterolemic diet. Rev. Med. Chir. Soc. Med. Nat. Iasi 2010, 114, 504–509. [Google Scholar]
- Cojocaru, E.; Zamfir, C.; Zamosteanu, N.; Trandafirescu, M.; Cotuţiu, C. The effects of branched chain aminoacids on HDL-cholesterol in experimental animals subjected to dietary hypercholesterolemia. Rev. Med. Chir. Soc. Med. Nat. Iasi 2012, 116, 200–206. [Google Scholar] [PubMed]
- Cojocaru, E.; Leon, M.; Zamfir, C.; Amihăesei, C.; Trandafirescu, M.; Mitu, F. The influence of branched amino acids on LDL-cholesterol levels in a model of experimental atherosclerosis. Rom. J. Funct. Clin. Macro Micro Scopical Anat. Anthropol. 2012, 11, 35–40. [Google Scholar]
- Cojocaru, E.; Filip, N.; Ungureanu, C.; Danciu, M. Effects of Valine and Leucine on Some Antioxidant Enzymes in Hypercholesterolemic Rats. Health 2014, 6, 2313–2321. [Google Scholar] [CrossRef] [Green Version]
- National Advisory Committee for Laboratory Animal Research. Guidlines on the Care and Use of Animals for Scientific Pur-Poses. 2004. Available online: https://research.ntu.edu.sg/rieo/IACUC/Documents/NACLAR-guidelines.pdf (accessed on 1 February 2021).
- American Veterinary Medical Association. AVMA Guidelines for the Euthanasia of Animals: 2013 Edition. 2013. Available online: https://www.avma.org/KB/Policies/Documents/euthanasia.pdf (accessed on 22 November 2020).
- Fossati, P.; Prencipe, L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin. Chem. 1982, 28, 2077–2080. [Google Scholar] [CrossRef] [PubMed]
- Navar, A.M. The Evolving Story of Triglycerides and Coronary Heart Disease Risk. JAMA 2019, 321, 347–349. [Google Scholar] [CrossRef] [PubMed]
- Leong, X.-F.; Ng, C.-Y.; Jaarin, K. Animal Models in Cardiovascular Research: Hypertension and Atherosclerosis. BioMed Res. Int. 2015, 2015, 528757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anitschkow, N.; Chalatow, S. Ueber experimentelle Cholester-insteatose und ihre Bedeutung fuer die Entstehung einiger pathologischer Prozesse. Abl. Allg. Pathol. Anat 1913, 24, 1–9. [Google Scholar]
- Harris, R.A.; Joshi, M.; Jeoung, N.H. Mechanisms responsible for regulation of branched-chain amino acid catabolism. Biochem. Biophys. Res. Commun. 2004, 313, 391–396. [Google Scholar] [CrossRef]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
- Chotechuang, N.; Azzout-Marniche, D.; Bos, C.; Chaumontet, C.; Gausserès, N.; Steiler, T.; Gaudichon, C.; Tomé, D. mTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat. Am. J. Physiol. Metab. 2009, 297, E1313–E1323. [Google Scholar] [CrossRef] [Green Version]
- Ifrim, S.; Amălinei, C.; Cojocaru, E.; Matei, M.C. Administration of valine, leucine, and isoleucine improved plasma cholesterol and mitigated the preatherosclerotic lesions in rats fed with hypercholesterolemic diet. Rev. Romana Med. Lab. 2018, 26, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Rom, O.; Aviram, M. It is not just lipids: Proatherogenic vs. antiatherogenic roles for amino acids in macrophage foam cell formation. Curr. Opin. Lipidol. 2017, 28, 85–87. [Google Scholar]
- Grajeda-Iglesias, C.; Aviram, M. Specific Amino Acids Affect Cardiovascular Diseases and Atherogenesis via Protection against Macrophage Foam Cell Formation: Review Article. Rambam Maimonides Med. J. 2018, 9, e0022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, S.; Granger, C.B.; Craig, D.; Haynes, C.; Bain, J.; Stevens, R.D.; Hauser, E.R.; Newgard, C.B.; Kraus, W.E.; Newby, L.K.; et al. Validation of the association between a branched chain amino acid metabolite profile and extremes of coronary artery disease in patients referred for cardiac catheterization. Atherosclerosis 2014, 232, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Canela, M.; Toledo, E.; Clish, C.B.; Hruby, A.; Liang, L.; Salas-Salvadó, J.; Razquin, C.; Corella, D.; Estruch, R.; Ros, E.; et al. Plasma Branched-Chain Amino Acids and Incident Cardiovascular Disease in the PREDIMED Trial. Clin. Chem. 2016, 62, 582–592. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Olson, K.C.; Gao, C.; Prosdocimo, D.A.; Zhou, M.; Wang, Z.; Jeyaraj, D.; Youn, J.-Y.; Ren, S.; Liu, Y.; et al. Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure. Circulation 2016, 133, 2038–2049. [Google Scholar] [CrossRef] [PubMed]
- Tobias, D.K.; Lawler, P.R.; Harada, P.H.; Demler, O.V.; Ridker, P.M.; Manson, J.E.; Cheng, S.; Mora, S. Circulating Branched-Chain Amino Acids and Incident Cardiovascular Disease in a Prospective Cohort of US Women. Circ. Genom. Precis. Med. 2018, 11, e002157. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, Y.; Zhang, Q.-W.; Sugimoto, T.; Furuhata, Y.; Sakai, R.; Mori, M.; Takahashi, M.; Kimura, T. Network analysis of plasma and tissue amino acids and the generation of an amino index for potential diagnostic use. Am. J. Clin. Nutr. 2006, 83, 513S–519S. [Google Scholar] [CrossRef]
- Terakura, D.; Shimizu, M.; Iwasa, J.; Baba, A.; Kochi, T.; Ohno, T.; Kubota, M.; Shirakami, Y.; Shiraki, M.; Takai, K.; et al. Preventive effects of branched-chain amino acid supplementation on the spontaneous development of hepatic preneoplastic lesions in C57BL/KsJ-db/db obese mice. Carcinogenesis 2012, 33, 2499–2506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Simar, D.; Ting, J.H.Y.; Erkelens, J.R.S.; Morris, M.J. Leucine Improves Glucose and Lipid Status in Offspring from Obese Dams, Dependent on Diet Type, but not Caloric Intake. J. Neuroendocr. 2012, 24, 1356–1364. [Google Scholar] [CrossRef]
- Pedroso, J.A.B.; Nishimura, L.S.; De Matos-Neto, E.M.; Donato, J.; Tirapegui, J.; Matos-Neto, E.M. Leucine improves protein nutritional status and regulates hepatic lipid metabolism in calorie-restricted rats. Cell Biochem. Funct. 2013, 32, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Sadri, H.; Larki, N.N.; Kolahian, S. Hypoglycemic and Hypolipidemic Effects of Leucine, Zinc, and Chromium, Alone and in Combination, in Rats with Type 2 Diabetes. Biol. Trace Elem. Res. 2017, 180, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.J.; Gern, B.; Lloyd, C.; Hutson, S.M.; Eicher, R.; Vary, T.C. Leucine in food mediates some of the postprandial rise in plasma leptin concentrations. Am. J. Physiol. Metab. 2006, 291, E621–E630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Group | R0 | R1 | R2 |
---|---|---|---|
Group I: control | |||
Average mg/dL | 23.70 | 23.88 | 23.90 |
SD | 0.89 | 0.90 | 0.78 |
CV% | 3.76 | 3.77 | 3.27 |
Group II: C | |||
Average mg/dL | 24.19 | 45.73 | 60.61 |
SD | 3.44 | 6.78 | 4.87 |
CV% | 14.22 | 14.82 | 8.04 |
Group III: C + V | |||
Average mg/dL | 23.91 | 34.15 | 39.73 |
SD | 1.31 | 0.84 | 1.30 |
CV% | 5.48 | 2.45 | 3.27 |
Group IV: C + L | |||
Average mg/dL | 24.04 | 39.15 | 47.56 |
SD | 2.43 | 2.01 | 2.07 |
CV% | 10.13 | 5.14 | 4.36 |
Multivariate Tests d | |||||||||
---|---|---|---|---|---|---|---|---|---|
Effect | Value | F | Hypothesis df | Error df | Sig. | Partial Eta Squared | Noncent. Parameter | Observed Power b | |
Time | Pillai’s Trace | 0.985 | 879.337 a | 2.000 | 27.000 | 0.000 | 0.985 | 1758.674 | 1.000 |
Wilks’ Lambda | 0.015 | 879.337 a | 2.000 | 27.000 | 0.000 | 0.985 | 1758.674 | 1.000 | |
Hotelling’s Trace | 65.136 | 879.337 a | 2.000 | 27.000 | 0.000 | 0.985 | 1758.674 | 1.000 | |
Roy’s Largest Root | 65.136 | 879.337 a | 2.000 | 27.000 | 0.000 | 0.985 | 1758.674 | 1.000 | |
Time * Type | Pillai’s Trace | 1.058 | 10.487 | 6.000 | 56.000 | 0.000 | 0.529 | 62.920 | 1.000 |
Wilks’ Lambda | 0.028 | 44.831 a | 6.000 | 54.000 | 0.000 | 0.833 | 268.989 | 1.000 | |
Hotelling’s Trace | 31.694 | 137.340 | 6.000 | 52.000 | 0.000 | 0.941 | 824.037 | 1.000 | |
Roy’s Largest Root | 31.596 | 294.898 c | 3.000 | 28.000 | 0.000 | 0.969 | 884.694 | 1.000 |
Pairwise Comparisons | ||||||||
---|---|---|---|---|---|---|---|---|
(I) Time | (J) Time | Mean Difference (I-J) | Std. Error | Sig.a | 95% Confidence Interval for Difference a | |||
Lower Bound | Upper Bound | |||||||
dimension1 | R0 | dimension2 | R1 | −11.766 * | 0.459 | 0.000 | −12.934 | −10.597 |
R2 | −18.986 * | 0.454 | 0.000 | −20.143 | −17.829 | |||
R1 | dimension2 | R0 | 11.766 * | 0.459 | 0.000 | 10.597 | 12.934 | |
R2 | −7.220 * | 0.321 | 0.000 | −8.038 | −6.401 | |||
R2 | dimension2 | R0 | 18.986 * | 0.454 | 0.000 | 17.829 | 20.143 | |
R1 | 7.220 * | 0.321 | 0.000 | 6.401 | 8.038 |
Time | Group | Control Group (n = 8) | C (n = 8) | C + V (n = 8) |
---|---|---|---|---|
R0 | C (n = 8) | p = 0.737 | - | |
C + V (n = 8) | p = 0.884 | p = 0.849 | - | |
C + L (n = 8) | p = 0.814 | p = 0.919 | p = 0.928 | |
R1 | C (n = 8) | p < 0.001 * | - | |
C + V (n = 8) | p < 0.001 * | p < 0.001 * | - | |
C + L (n = 8) | p < 0.002 * | p = 0.001 * | p = 0.0422 * | |
R2 | C (n = 8) | p < 0.001 * | - | |
C + V (n = 8) | p < 0.001 * | p < 0.001 * | - | |
C + L (n = 8) | p < 0.001 * | p < 0.001 * | p < 0.001 * |
Group | R0 | R1 | R2 | p-Value | |
---|---|---|---|---|---|
Cholesterol I mean ± SD | Control group | 37.14 ± 2.56 | 37.50 ± 2.09 | 37.61 ± 1.45 | 0.0783 |
C (n = 8) | 36.41 ± 4.15 | 49.89 ± 3.99 | 76.61 ± 3.46 | <0.001 * | |
C + V (n = 8) | 36.67 ± 1.28 | 41.12 ± 1.27 | 44.87 ± 1.22 | 0.001 * | |
C + L (n = 8) | 36.50 ± 2.70 | 46.04 ± 2.71 | 49.53 ± 2.12 | <0.001 * | |
p-value | 0.577 | 0.006 * | <0.001 * | ||
HDL mean ± SD | Control group | 23 ± 1.48 | 22.88 ± 1.22 | 22.89 ± 1.68 | 0.911 |
C (n = 8) | 22.43 ± 3.29 | 19.44 ± 1.45 | 15.93 ± 1.20 | 0.004 | |
C + V (n = 8) | 22.98 ± 1.48 | 24.64 ± 2.79 | 26.85 ± 2.95 | 0.114 | |
C + L (n = 8) | 22.51 ± 2.15 | 22.97 ± 1.90 | 23.17 ± 1.81 | 0.523 | |
p-value | 0.637 | 0.001 * | <0.001 * | ||
LDL mean ± SD | Control group | 9.39 ± 3.39 | 9.83 ± 2.52 | 9.93 ± 2.71 | 0.749 |
C (n = 8) | 7.73 ± 4.54 | 21.3 ± 3.64 | 47.94 ± 5.47 | <0.001 * | |
C + V (n = 8) | 8.9 ± 2.01 | 9.64 ± 2.79 | 10.07 ± 2.75 | 0.486 | |
C + L (n = 8) | 9.17 ± 3.43 | 15.23 ± 2.73 | 16.84 ± 2.28 | 0.0004 * | |
p-value | 0.319 | 0.001 * | <0.001 * | ||
Glucose mean ± SD | Control group | 122.75 ± 5.87 | 122.61 ± 5.84 | 122.77 ± 6.08 | 0.962 |
C (n = 8) | 122.78 ± 8.77 | 149.26 ± 7.73 | 162.82 ± 5.83 | <0.001 * | |
C + V (n = 8) | 121.98 ± 4.71 | 140.93 ± 4.84 | 142.37 ± 4.70 | <0.001 * | |
C + L (n = 8) | 121.93 ± 5.13 | 143.79 ± 6.32 | 148.08 ± 4.78 | <0.001 * | |
p-value | 0.994 | <0.001 * | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cojocaru, E.; Magdalena Leon-Constantin, M.; Ungureanu, C.; Trandafirescu, M.F.; Maștaleru, A.; Mihaela Trandafir, L.; Dumitru Petrariu, F.; Viola Bădulescu, O.; Filip, N. Hypolipemiant Actions and Possible Cardioprotective Effects of Valine and Leucine: An Experimental Study. Medicina 2021, 57, 239. https://doi.org/10.3390/medicina57030239
Cojocaru E, Magdalena Leon-Constantin M, Ungureanu C, Trandafirescu MF, Maștaleru A, Mihaela Trandafir L, Dumitru Petrariu F, Viola Bădulescu O, Filip N. Hypolipemiant Actions and Possible Cardioprotective Effects of Valine and Leucine: An Experimental Study. Medicina. 2021; 57(3):239. https://doi.org/10.3390/medicina57030239
Chicago/Turabian StyleCojocaru, Elena, Maria Magdalena Leon-Constantin, Carmen Ungureanu, Mioara Florentina Trandafirescu, Alexandra Maștaleru, Laura Mihaela Trandafir, Florin Dumitru Petrariu, Oana Viola Bădulescu, and Nina Filip. 2021. "Hypolipemiant Actions and Possible Cardioprotective Effects of Valine and Leucine: An Experimental Study" Medicina 57, no. 3: 239. https://doi.org/10.3390/medicina57030239
APA StyleCojocaru, E., Magdalena Leon-Constantin, M., Ungureanu, C., Trandafirescu, M. F., Maștaleru, A., Mihaela Trandafir, L., Dumitru Petrariu, F., Viola Bădulescu, O., & Filip, N. (2021). Hypolipemiant Actions and Possible Cardioprotective Effects of Valine and Leucine: An Experimental Study. Medicina, 57(3), 239. https://doi.org/10.3390/medicina57030239