Machine Learning and Syncope Management in the ED: The Future Is Coming
Abstract
:1. Introduction
2. What the Clinician Needs to Know about Machine Learning
- Detection: retrospective identification of patients with the disease from historical data (e.g., time series of medical device data).
- Diagnosis: identification of the disease from available information (notably, signs, symptoms, and tests results).
- Prediction: prediction of the future occurrence of a disease based on current and historical data.
- Prognosis: prediction of the future evolution of the disease based on current and historical data.
- Therapy: identification of the most appropriate therapy for the specific disease and patient; this is tightly related with the related need for personalization, particularly in the context of multi-morbidity.
3. How Machine Learning Might Help the Emergency Physician
- Triage and outcomes prediction (prognosis support systems)
- Disease detection and prediction (diagnosis support systems)
- Medical images analysis
3.1. Triage and Outcomes Prediction
3.2. Disease Detection and Prediction
3.3. Medical Image Analysis
4. How Machine Learning Might Help the Physician in ED Syncope Management
4.1. Syncope Risk Stratification and ED Disposition
4.2. Syncope Detection and Prediction
4.3. Life Parameters and ECG Monitoring
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Y.; Chen, P.H.C.; Krause, J.; Peng, L. How to Read Articles That Use Machine Learning: Users’ Guides to the Medical Literature. JAMA 2019, 322, 1806–1816. [Google Scholar] [CrossRef]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell 2018, 172, 1122–1131.e9. [Google Scholar] [CrossRef] [PubMed]
- Erickson, B.J.; Korfiatis, P.; Kline, T.L.; Akkus, Z.; Philbrick, K.; Weston, A.D. Deep Learning in Radiology: Does One Size Fit All? J. Am. Coll. Radiol. 2018, 15, 521–526. [Google Scholar] [CrossRef] [Green Version]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016, 316, 2402–2410. [Google Scholar] [CrossRef]
- Svoboda, E. Artificial intelligence is improving the detection of lung cancer. Nat. Cell Biol. 2020, 587, S20–S22. [Google Scholar] [CrossRef]
- Bejnordi, B.E.; Veta, M.; Van Diest, P.J.; Van Ginneken, B.; Karssemeijer, N.; Litjens, G. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA 2017, 318, 2199–2210. [Google Scholar] [CrossRef]
- Obermeyer, Z.; Emanuel, E.J. Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. N. Engl. J. Med. 2016, 375, 1216–1219. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Hinton, G. Deep Learning—A Technology With the Potential to Transform Health Care. JAMA 2018, 320, 1101–1102. [Google Scholar] [CrossRef] [PubMed]
- Mincholé, A.; Rodriguez, B. Artificial intelligence for the electrocardiogram. Nat. Med. 2019, 25, 22–23. [Google Scholar] [CrossRef]
- Li, F.; Aoyama, M.; Shiraishi, J.; Abe, H.; Li, Q.; Suzuki, K.; Engelmann, R.; Sone, S.; MacMahon, H.; Doi, K. Radiologists’ Performance for Differentiating Benign from Malignant Lung Nodules on High-Resolution CT Using Computer-Estimated Likelihood of Malignancy. Am. J. Roentgenol. 2004, 183, 1209–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Li, L.; Li, T.; Luo, D.; Wang, X.; Luo, D. Does a Deep Learning-Based Computer-Assisted Diagnosis System Outperform Conventional Double Reading by Radiologists in Distinguishing Benign and Malignant Lung Nodules? Front. Oncol. 2020, 10, 545862. [Google Scholar] [CrossRef]
- Cheng, W.-Y.; Yang, T.-H.O.; Anastassiou, D. Biomolecular Events in Cancer Revealed by Attractor Metagenes. PLoS Comput. Biol. 2013, 9, e1002920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, S.J.; Katz, D.H.; Selvaraj, S.; Burke, M.A.; Yancy, C.W.; Gheorghiade, M.; Bonow, R.O.; Huang, C.-C.; Deo, R.C. Phenomapping for Novel Classification of Heart Failure With Preserved Ejection Fraction. Circulation 2015, 131, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Kleinbaum, D.G. Logistic Regression: A Self-Learning Text, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Tolles, J.; Meurer, W.J. Logistic Regression: Relating Patient Characteristics to Outcomes. JAMA 2016, 316, 533–534. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Koning, M.; Smith, C. Decision Trees and Random Forests: A Visual Introduction for Beginners; Amazon Digital Services LLC—Kdp Print Us: Blue Windmill Media: Vancouver, BC, Canada, 2017. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falavigna, G.; Costantino, G.; Furlan, R.; Quinn, J.V.; Ungar, A.; Ippoliti, R. Artificial neural networks and risk stratification in emergency departments. Intern. Emerg. Med. 2019, 14, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Raj, B.; Xing, E. On the Origin of Deep Learning. arXiv 2017, arXiv:abs/1702.07800. [Google Scholar]
- Hutter, F.; Kotthoff, L.; Vanschoren, J. Automatic Machine Learning: Methods, Systems, Challenges, 1st ed.; The Springer Series on Challenges in Machine Learning; Springer International Publishing: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning. Data Mining, Inference, and Prediction, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2009. [Google Scholar]
- Spasic, I.; Nenadic, G. Clinical Text Data in Machine Learning: Systematic Review. JMIR Med. Inform. 2020, 8, e17984. [Google Scholar] [CrossRef]
- Mehta, N.; Devarakonda, M.V. Machine learning, natural language programming, and electronic health records: The next step in the artificial intelligence journey? J. Allergy Clin. Immunol. 2018, 141, 2019–2021.e1. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Tsui, B.Y.; Ni, H.; Valentim, C.C.S.; Baxter, S.L.; Liu, G.; Cai, W.; Kermany, D.S.; Sun, X.; Chen, J.; et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat. Med. 2019, 25, 433–438. [Google Scholar] [CrossRef]
- Taggart, M.; Chapman, W.W.; Steinberg, B.A.; Ruckel, S.; Pregenzer-Wenzler, A.; Du, Y.; Ferraro, J.; Bucher, B.T.; Lloyd-Jones, N.M.; Rondina, M.T.; et al. Comparison of 2 Natural Language Processing Methods for Identification of Bleeding Among Critically Ill Patients. JAMA Netw. Open 2018, 1, e183451. [Google Scholar] [CrossRef] [Green Version]
- Bodenreider, O. The Unified Medical Language System (UMLS): Integrating biomedical terminology. Nucleic Acids Res. 2004, 32, 267D–270D. [Google Scholar] [CrossRef] [Green Version]
- Savova, G.K.; Masanz, J.J.; Ogren, P.V.; Zheng, J.; Sohn, S.; Kipper-Schuler, K.C.; Chute, C.G. Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): Architecture, component evaluation and applications. J. Am. Med. Inform. Assoc. 2010, 17, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Levin, S.; Toerper, M.; Hamrock, E.; Hinson, J.S.; Barnes, S.; Gardner, H.; Dugas, A.; Linton, B.; Kirsch, T.; Kelen, G. Machine-Learning-Based Electronic Triage More Accurately Differentiates Patients With Respect to Clinical Outcomes Compared With the Emergency Severity Index. Ann. Emerg. Med. 2018, 71, 565–574.e2. [Google Scholar] [CrossRef] [PubMed]
- Raita, Y.; Goto, T.; Faridi, M.K.; Brown, D.F.M., Jr.; Camargo, C.A.; Hasegawa, K. Emergency department triage prediction of clinical outcomes using machine learning models. Crit. Care 2019, 23, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, J.-M.; Lee, Y.; Lee, Y.; Lee, S.; Park, H.; Park, J. Validation of deep-learning-based triage and acuity score using a large national dataset. PLoS ONE 2018, 13, e0205836. [Google Scholar] [CrossRef] [PubMed]
- Miles, J.; Turner, J.; Jacques, R.; Williams, J.; Mason, S. Using machine-learning risk prediction models to triage the acuity of undifferentiated patients entering the emergency care system: A systematic review. Diagn. Progn. Res. 2020, 4, 1–12. [Google Scholar] [CrossRef]
- Hong, W.S.; Haimovich, A.D.; Taylor, R.A. Predicting hospital admission at emergency department triage using machine learning. PLoS ONE 2018, 13, e0201016. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.A.; Pare, J.R.; Venkatesh, A.K.; Mowafi, H.; Melnick, E.R.; Fleischman, W.; Hall, M.K. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach. Acad. Emerg. Med. 2016, 23, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Chang, H.; Kim, D.; Jang, D.-H.; Park, I.; Kim, K. Machine learning for prediction of septic shock at initial triage in emergency department. J. Crit. Care 2020, 55, 163–170. [Google Scholar] [CrossRef]
- Jang, D.-H.; Kim, J.; Jo, Y.H.; Lee, J.H.; Hwang, J.E.; Park, S.M.; Lee, D.K.; Park, I.; Kim, D.; Chang, H. Developing neural network models for early detection of cardiac arrest in emergency department. Am. J. Emerg. Med. 2020, 38, 43–49. [Google Scholar] [CrossRef]
- Kwon, J.; Lee, Y.; Lee, Y.; Lee, S.; Park, J. An Algorithm Based on Deep Learning for Predicting In-Hospital Cardiac Arrest. J. Am. Heart Assoc. 2018, 7, e008678. [Google Scholar] [CrossRef] [Green Version]
- Berlyand, Y.; Raja, A.S.; Dorner, S.C.; Prabhakar, A.M.; Sonis, J.D.; Gottumukkala, R.V.; Succi, M.D.; Yun, B.J. How artificial intelligence could transform emergency department operations. Am. J. Emerg. Med. 2018, 36, 1515–1517. [Google Scholar] [CrossRef]
- Mao, Q.; Jay, M.; Hoffman, J.L.; Calvert, J.; Barton, C.; Shimabukuro, D.; Shieh, L.; Chettipally, U.; Fletcher, G.; Kerem, Y.; et al. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. BMJ Open 2018, 8, e017833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burdick, H.; Pino, E.; Gabel-Comeau, D.; Gu, C.; Roberts, J.; Le, S.; Slote, J.; Saber, N.; Pellegrini, E.; Green-Saxena, A.; et al. Validation of a machine learning algorithm for early severe sepsis prediction: A retrospective study predicting severe sepsis up to 48 h in advance using a diverse dataset from 461 US hospitals. BMC Med. Inform. Decis. Mak. 2020, 20, 1–10. [Google Scholar] [CrossRef]
- Horng, S.; Sontag, D.A.; Halpern, Y.; Jernite, Y.; Shapiro, N.I.; Nathanson, L.A. Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning. PLoS ONE 2017, 12, e0174708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Y.; Tsui, F.; Wagner, M.; Espino, J.U.; Li, Q. Influenza detection from emergency department reports using natural language processing and Bayesian network classifiers. J. Am. Med. Inform. Assoc. 2014, 21, 815–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pineda, A.L.; Ye, Y.; Visweswaran, S.; Cooper, G.F.; Wagner, M.M.; Tsui, F.R. Comparison of machine learning classifiers for influenza detection from emergency department free-text reports. J. Biomed. Inform. 2015, 58, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.A.; Moore, C.L.; Cheung, K.-H.; Brandt, C. Predicting urinary tract infections in the emergency department with machine learning. PLoS ONE 2018, 13, e0194085. [Google Scholar] [CrossRef]
- Goto, T.; Camargo, C.A.; Faridi, M.K.; Yun, B.J.; Hasegawa, K. Machine learning approaches for predicting disposition of asthma and COPD exacerbations in the ED. Am. J. Emerg. Med. 2018, 36, 1650–1654. [Google Scholar] [CrossRef]
- Than, M.P.; Pickering, J.W.; Sandoval, Y.; Shah, A.S.; Tsanas, A.; Apple, F.S.; Blankenberg, S.; Cullen, L.; Mueller, C.; Neumann, J.T.; et al. Machine Learning to Predict the Likelihood of Acute Myocardial Infarction. Circulation 2019, 140, 899–909. [Google Scholar] [CrossRef] [Green Version]
- Grigull, L.; Lechner, W.M. Supporting diagnostic decisions using hybrid and complementary data mining applications: A pilot study in the pediatric emergency department. Pediatr. Res. 2012, 71, 725–731. [Google Scholar] [CrossRef]
- Deleger, L.; Brodzinski, H.; Zhai, H.; Li, Q.; Lingren, T.; Kirkendall, E.S.; Solti, I. Developing and evaluating an automated appendicitis risk stratification algorithm for pediatric patients in the emergency department. J. Am. Med. Inform. Assoc. 2013, 20, e212–e220. [Google Scholar] [CrossRef] [Green Version]
- Prevedello, L.M.; Erdal, B.S.; Ryu, J.L.; Little, K.J.; Demirer, M.; Qian, S.; White, R.D. Automated Critical Test Findings Identification and Online Notification System Using Artificial Intelligence in Imaging. Radiology 2017, 285, 923–931. [Google Scholar] [CrossRef]
- Yuh, E.L.; Gean, A.D.; Manley, G.T.; Callen, A.L.; Wintermark, M. Computer-aided assessment of head computed tomography (CT) studies in patients with suspected traumatic brain injury. J. Neurotrauma 2008, 25, 1163–1172. [Google Scholar] [CrossRef]
- Olczak, J.; Fahlberg, N.; Maki, A.; Razavian, A.S.; Jilert, A.; Stark, A.; Sköldenberg, O.; Gordon, M. Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop. 2017, 88, 581–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.-T.; Ho, T.-Y.; Lee, T.-Y.; Chang, C.-C.; Chou, C.-C.; Chen, C.-C.; Chung, I.-F.; Liao, C.-H. Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs. Eur. Radiol. 2019, 29, 5469–5477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorr, F.; Chaves, H.; Serra, M.M.; Ramirez, A.; Costa, M.E.; Seia, J.; Cejas, C.; Castro, M.; Eyheremendy, E.; Slezak, D.F.; et al. COVID-19 pneumonia accurately detected on chest radiographs with artificial intelligence. Intell. Med. 2020, 3–4, 100014. [Google Scholar] [CrossRef]
- Pandit, M.; Banday, S.; Naaz, R.; Chishti, M. Automatic detection of COVID-19 from chest radiographs using deep learning. Radiogram 2020. [Google Scholar] [CrossRef] [PubMed]
- Ning, W.; Lei, S.; Yang, J.; Cao, Y.; Jiang, P.; Yang, Q.; Zhang, J.; Wang, X.; Chen, F.; Geng, Z.; et al. Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat. Biomed. Eng. 2020, 4, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Ni, Q.; Sun, Z.Y.; Qi, L.; Chen, W.; Yang, Y.; Wang, L.; Zhang, X.; Yang, L.; Fang, Y.; Xing, Z.; et al. A deep learning approach to characterize 2019 coronavirus disease (COVID-19) pneumonia in chest CT images. Eur. Radiol. 2020, 30, 6517–6527. [Google Scholar] [CrossRef] [PubMed]
- Brignole, M.; Moya, A.; De Lange, F.J.; Deharo, J.-C.; Elliott, P.M.; Fanciulli, A.; Fedorowski, A.; Furlan, R.; Kenny, R.A.; Martín, A.; et al. 2018 ESC Guidelines for the diagnosis and management of syncope. Eur. Heart J. 2018, 39, 1883–1948. [Google Scholar] [CrossRef]
- Solbiati, M.; Casazza, G.; Dipaola, F.; Rusconi, A.M.; Cernuschi, G.; Barbic, F.; Montano, N.; Sheldon, R.S.; Furlan, R.; Costantino, G. Syncope recurrence and mortality: A systematic review. Europace 2014, 17, 300–308. [Google Scholar] [CrossRef]
- Numeroso, F.; Mossini, G.; Lippi, G.; Cervellin, G. Analysis of Temporal and Causal Relationship Between Syncope and 30-Day Events in a Cohort of Emergency Department Patients to Identify the True Rate of Short-term Outcomes. J. Emerg. Med. 2018, 55, 612–619. [Google Scholar] [CrossRef]
- Costantino, G.; Dipaola, F.; Solbiati, M.; Bulgheroni, M.; Barbic, F.; Furlan, R. Is hospital admission valuable in managing syncope? Results from the STePS study. Cardiol. J. 2014, 21, 606–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandhu, R.K.; Sheldon, R.S. Syncope in the Emergency Department. Front. Cardiovasc. Med. 2019, 6, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Probst, M.A.; Kanzaria, H.K.; Gbedemah, M.; Richardson, L.D.; Sun, B.C. National trends in resource utilization associated with ED visits for syncope. Am. J. Emerg. Med. 2015, 33, 998–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, W.K.; Sheldon, R.S.; Benditt, D.G.; Cohen, M.I.; Forman, D.E.; Goldberger, Z.D.; Yancy, C.W. 2017 ACC/AHA/HRS guideline for the evaluation and management of patients with syncope: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm. 2017, 14, e155–e217. [Google Scholar] [CrossRef] [Green Version]
- Canzoniero, J.; Afshar, E.; Hedian, H.; Koch, C.; Morgan, D.J. Unnecessary Hospitalization and Related Harm for Patients with Low-Risk Syncope. JAMA Intern. Med. 2015, 175, 1065–1067. [Google Scholar] [CrossRef] [Green Version]
- Kenny, R.A.; Brignole, M.; Dan, G.-A.; Deharo, J.C.; Van Dijk, J.G.; Doherty, C.; Hamdan, M.; Moya, A.; Parry, S.W.; Sutton, R.; et al. Syncope Unit: Rationale and requirement—The European Heart Rhythm Association position statement endorsed by the Heart Rhythm Society. Europace 2015, 17, 1325–1340. [Google Scholar] [CrossRef]
- Shen, W.K.; Decker, W.W.; Smars, P.A.; Goyal, D.G.; Walker, A.E.; Hodge, D.O.; Frye, R.L. Syncope Evaluation in the Emergency Department Study (SEEDS): A multidisciplinary approach to syncope management. Circulation 2004, 110, 3636–3645. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.C.; McCreath, H.; Liang, L.-J.; Bohan, S.; Baugh, C.W.; Ragsdale, L.; Henderson, S.O.; Clark, C.; Bastani, A.; Keeler, E.B.; et al. Randomized Clinical Trial of an Emergency Department Observation Syncope Protocol Versus Routine Inpatient Admission. Ann. Emerg. Med. 2014, 64, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Quinn, J.V.; Stiell, I.G.; McDermott, D.A.; Sellers, K.L.; Kohn, M.A.; Wells, G.A. Derivation of the San Francisco Syncope Rule to predict patients with short-term serious outcomes. Ann. Emerg. Med. 2004, 43, 224–232. [Google Scholar] [CrossRef]
- Colivicchi, F.; Ammirati, F.; Melina, D.; Guido, V.; Imperoli, G.; Santini, M. Development and prospective validation of a risk stratification system for patients with syncope in the emergency department: The OESIL risk score. Eur. Heart J. 2003, 24, 811–819. [Google Scholar] [CrossRef]
- Reed, M.J.; Newby, D.E.; Coull, A.J.; Prescott, R.J.; Jacques, K.G.; Gray, A.J. The ROSE (Risk Stratification of Syncope in the Emergency Department) Study. J. Am. Coll. Cardiol. 2010, 55, 713–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Rosso, A.; Ungar, A.; Maggi, R.; Giada, F.; Petix, N.R.; De Santo, T.; Menozzi, C.; Brignole, M. Clinical predictors of cardiac syncope at initial evaluation in patients referred urgently to a general hospital: The EGSYS score. Heart 2008, 94, 1620–1626. [Google Scholar] [CrossRef] [PubMed]
- Grossman, S.A.; Fischer, C.; Lipsitz, L.A.; Mottley, L.; Sands, K.; Thompson, S.; Zimetbaum, P.; Shapiro, N.I. Predicting Adverse Outcomes in Syncope. J. Emerg. Med. 2007, 33, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Dipaola, F.; Costantino, G.; Perego, F.; Borella, M.; Galli, A.; Cantoni, G.; Barbic, F.; Casella, F.; Duca, P.G.; Furlan, R. San Francisco Syncope Rule, Osservatorio Epidemiologico sulla Sincope nel Lazio risk score, and clinical judgment in the assessment of short-term outcome of syncope. Am. J. Emerg. Med. 2010, 28, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Costantino, G.; Casazza, G.; Reed, M.; Bossi, I.; Sun, B.; Del Rosso, A.; Ungar, A.; Grossman, S.; D’Ascenzo, F.; Quinn, J.; et al. Syncope Risk Stratification Tools vs Clinical Judgment: An Individual Patient Data Meta-analysis. Am. J. Med. 2014, 127, 1126.e13–1126.e25. [Google Scholar] [CrossRef] [PubMed]
- Thiruganasambandamoorthy, V.; Kwong, K.; Wells, G.A.; Sivilotti, M.L.; Mukarram, M.; Rowe, B.H.; Lang, E.; Perry, J.J.; Sheldon, R.; Stiell, I.G.; et al. Development of the Canadian Syncope Risk Score to predict serious adverse events after emergency department assessment of syncope. Can. Med. Assoc. J. 2016, 188, E289–E298. [Google Scholar] [CrossRef] [Green Version]
- Thiruganasambandamoorthy, V.; Sivilotti, M.L.A.; Le Sage, N.; Yan, J.W.; Huang, P.; Hegdekar, M.; Mercier, E.; Mukarram, M.; Nemnom, M.-J.; McRae, A.D.; et al. Multicenter Emergency Department Validation of the Canadian Syncope Risk Score. JAMA Intern. Med. 2020, 180, 737. [Google Scholar] [CrossRef]
- Sun, B.C.; Costantino, G.; Barbic, F.; Bossi, I.; Casazza, G.; Dipaola, F.; McDermott, D.; Quinn, J.; Reed, M.; Sheldon, R.S.; et al. Priorities for Emergency Department Syncope Research. Ann. Emerg. Med. 2014, 64, 649–655.e2. [Google Scholar] [CrossRef] [Green Version]
- Costantino, G.; Falavigna, G.; Solbiati, M.; Casagranda, I.; Sun, B.C.; Grossman, S.A.; Quinn, J.V.; Reed, M.J.; Ungar, A.; Montano, N.; et al. Neural networks as a tool to predict syncope risk in the Emergency Department. Europace 2016, 19, 1891–1895. [Google Scholar] [CrossRef]
- Bonzi, M.; Fiorelli, E.M.; Angaroni, L.; Furlan, L.; Solbiati, M.; Colombo, C.; Dipaola, F.; Montano, N.; Furlan, R.; Costantino, G. Predictive accuracy of triage nurses evaluation in risk stratification of syncope in the emergency department. Emerg. Med. J. 2013, 31, 877–881. [Google Scholar] [CrossRef]
- van Doorn, W.P.; Stassen, P.M.; Borggreve, H.F.; Schalkwijk, M.J.; Stoffers, J.; Bekers, O.; Meex, S.J. A comparison of machine learning models versus clinical evaluation for mortality prediction in patients with sepsis. PLoS ONE 2021, 16, e0245157. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Mao, H.; Lu, H.; Lin, P.; Garry, W.; Lu, H.; Yang, G.; Rainer, T.H.; Chen, X. Machine learning-based models to support decision-making in emergency department triage for patients with suspected cardiovascular disease. Int. J. Med. Inform. 2021, 145, 104326. [Google Scholar] [CrossRef]
- Swaminathan, S.; Qirko, K.; Smith, T.; Corcoran, E.; Wysham, N.G.; Bazaz, G.; Kappel, G.; Gerber, A.N. A machine learning approach to triaging patients with chronic obstructive pulmonary disease. PLoS ONE 2017, 12, e0188532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brignole, M.; Menozzi, C.; Bartoletti, A.; Giada, F.; Lagi, A.; Ungar, A.; Ponassi, I.; Mussi, C.; Maggi, R.; Re, G.; et al. A new management of syncope: Prospective systematic guideline-based evaluation of patients referred urgently to general hospitals. Eur. Heart J. 2005, 27, 76–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costantino, G.; Sun, B.C.; Barbic, F.; Bossi, I.; Casazza, G.; Dipaola, F.; McDermott, D.; Quinn, J.; Reed, M.J.; Sheldon, R.S.; et al. Syncope clinical management in the emergency department: A consensus from the first international workshop on syncope risk stratification in the emergency department. Eur. Hear. J. 2016, 37, 1493–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dipaola, F.; Gatti, M.; Pacetti, V.; Bottaccioli, A.G.; Shiffer, D.; Minonzio, M.; Furlan, R. Artificial Intelligence Algorithms and Natural Language Processing for the Recognition of Syncope Patients on Emergency Department Medical Records. J. Clin. Med. 2019, 8, 1677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wardrope, A.; Jamnadas-Khoda, J.; Broadhurst, M.; Grünewald, R.A.; Heaton, T.J.; Howell, S.J.; Koepp, M.; Parry, S.W.; Sisodiya, S.; Walker, M.C.; et al. Machine learning as a diagnostic decision aid for patients with transient loss of consciousness. Neurol. Clin. Pract. 2019, 10, 96–105. [Google Scholar] [CrossRef]
- Convertino, V.A. Blood Pressure Measurement for Accurate Assessment of Patient Status in Emergency Medical Settings. Aviat. Space, Environ. Med. 2012, 83, 614–619. [Google Scholar] [CrossRef]
- Vardas, P.; Cowie, M.; Dagres, N.; Asvestas, D.; Tzeis, S.; Vardas, E.P.; Hindricks, G.; Camm, J. The electrocardiogram endeavour: From the Holter single-lead recordings to multilead wearable devices supported by computational machine learning algorithms. Europace 2019, 22, 19–23. [Google Scholar] [CrossRef]
- Kashou, A.H.; May, A.M.; Noseworthy, P.A. Artificial Intelligence-Enabled ECG: A Modern Lens on an Old Technology. Curr. Cardiol. Rep. 2020, 22, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Attia, Z.I.; Noseworthy, P.A.; Lopez-Jimenez, F.; Asirvatham, S.J.; Deshmukh, A.J.; Gersh, B.J.; Carter, R.E.; Yao, X.; Rabinstein, A.A.; Erickson, B.J.; et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A retrospective analysis of outcome prediction. Lancet 2019, 394, 861–867. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dipaola, F.; Shiffer, D.; Gatti, M.; Menè, R.; Solbiati, M.; Furlan, R. Machine Learning and Syncope Management in the ED: The Future Is Coming. Medicina 2021, 57, 351. https://doi.org/10.3390/medicina57040351
Dipaola F, Shiffer D, Gatti M, Menè R, Solbiati M, Furlan R. Machine Learning and Syncope Management in the ED: The Future Is Coming. Medicina. 2021; 57(4):351. https://doi.org/10.3390/medicina57040351
Chicago/Turabian StyleDipaola, Franca, Dana Shiffer, Mauro Gatti, Roberto Menè, Monica Solbiati, and Raffaello Furlan. 2021. "Machine Learning and Syncope Management in the ED: The Future Is Coming" Medicina 57, no. 4: 351. https://doi.org/10.3390/medicina57040351
APA StyleDipaola, F., Shiffer, D., Gatti, M., Menè, R., Solbiati, M., & Furlan, R. (2021). Machine Learning and Syncope Management in the ED: The Future Is Coming. Medicina, 57(4), 351. https://doi.org/10.3390/medicina57040351