The Bonar Score in the Histopathological Assessment of Tendinopathy and Its Clinical Relevance—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Assessment
2.3. Data Extraction
2.4. Risk of Bias Assessment
3. Results
3.1. Characteristics of Included Studies and Demographic Data
3.2. Bonar Score and Its Modifications
3.3. Clinical and Radiological Implications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andarawis-Puri, N.; Flatow, E.L.; Soslowsky, L.J. Tendon basic science: Development, repair, regeneration, and healing. J. Orthop. Res. 2015, 33, 780–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaux, J.-F.; Forthomme, B.; Le Goff, C.; Crielaard, J.-M.; Croisier, J.-L. Current Opinions on Tendinopathy. J. Sports Sci. Med. 2011, 10, 238–253. [Google Scholar] [PubMed]
- Zabrzyński, J.; Huri, G.; Yataganbaba, A.; Paczesny, Ł.; Szwedowski, D.; Zabrzyńska, A.; Łapaj, Ł.; Gagat, M.; Wiśniewski, M.; Pękała, P. Current concepts on the morphology of popliteus tendon and its clinical implications. Folia Morphol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, P.W.; Renström, P. Tendinopathy in Sport. Sports Health Multidiscip. Approach 2012, 4, 193–201. [Google Scholar] [CrossRef]
- Cook, J.L.; Purdam, C.R. The challenge of managing tendinopathy in competing athletes. Br. J. Sports Med. 2013, 48, 506–509. [Google Scholar] [CrossRef]
- Aicale, R.; Tarantino, D.; Maffulli, N. Overuse injuries in sport: A comprehensive overview. J. Orthop. Surg. Res. 2018, 13, 1–11. [Google Scholar] [CrossRef]
- Weiss, L.J.; Wang, D.; Hendel, M.; Buzzerio, P.; Rodeo, S.A. Management of Rotator Cuff Injuries in the Elite Athlete. Curr. Rev. Musculoskelet. Med. 2018, 11, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Zabrzyński, J.; Łapaj, L.; Paczesny, L.; Zabrzyńska, A.; Grzanka, D. Tendon-function-related structure, simple healing process and mysterious ageing. Folia Morphol. 2018, 77, 416–427. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.-C.; Rolf, C.; Cheuk, Y.-C.; Lui, P.P.; Chan, K.-M. Deciphering the pathogenesis of tendinopathy: A three-stages process. BMC Sports Sci. Med. Rehabil. 2010, 2, 30. [Google Scholar] [CrossRef] [Green Version]
- Scott, A.; Backman, L.J.; Speed, C. Tendinopathy: Update on Pathophysiology. J. Orthop. Sports Phys. Ther. 2015, 45, 833–841. [Google Scholar] [CrossRef] [Green Version]
- Jomaa, G.; Kwan, C.-K.; Fu, S.-C.; Ling, S.K.-K.; Chan, K.-M.; Yung, P.S.-H.; Rolf, C. A systematic review of inflammatory cells and markers in human tendinopathy. BMC Musculoskelet. Disord. 2020, 21, 78. [Google Scholar] [CrossRef] [Green Version]
- Aspenberg, P. Stimulation of tendon repair: Mechanical loading, GDFs and platelets. A mini-review. Int. Orthop. 2007, 31, 783–789. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Maffulli, N. Biology of tendon injury: Healing, modeling and remodeling. J. Musculoskelet. Neuronal Interact. 2006, 6, 181–190. [Google Scholar]
- Abate, M.; Gravare-Silbernagel, K.; Siljeholm, C.; Di Iorio, A.; De Amicis, D.; Salini, V.; Werner, S.; Paganelli, R. Pathogenesis of tendinopathies: Inflammation or degeneration? Arthritis Res. Ther. 2009, 11, 235. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Rothrauff, B.B.; Tuan, R.S. Tendon and ligament regeneration and repair: Clinical relevance and developmental paradigm. Birth Defects Res. Part C Embryo Today Rev. 2013, 99, 203–222. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Nerlich, M.; Docheva, D. Tendon injuries: Basic science and new repair proposals. EFORT Open Rev. 2017, 2, 332–342. [Google Scholar] [CrossRef]
- Snedeker, J.G.; Foolen, J. Tendon injury and repair-A perspective on the basic mechanisms of tendon disease and future clinical therapy. ACTA Biomater. 2017, 63, 18–36. [Google Scholar] [CrossRef]
- Citeroni, M.R.; Ciardulli, M.C.; Russo, V.; Della Porta, G.; Mauro, A.; El Khatib, M.; Di Mattia, M.; Galesso, D.; Barbera, C.; Forsyth, N.R.; et al. In Vitro Innovation of Tendon Tissue Engineering Strategies. Int. J. Mol. Sci. 2020, 21, 6726. [Google Scholar] [CrossRef]
- Zabrzyński, J.; Paczesny, L.; Łapaj, L.; Grzanka, D.; Szukalski, J. Is the inflammation process absolutely absent in tendinopathy of the long head of the biceps tendon? Histopathologic study of the long head of the biceps tendon after arthroscopic treatment. Pol. J. Pathol. 2017, 68, 318–325. [Google Scholar] [CrossRef]
- Maffulli, N.; Longo, U.G.; Franceschi, F.; Rabitti, C.; Denaro, V. Movin and Bonar Scores Assess the Same Characteristics of Tendon Histology. Clin. Orthop. Relat. Res. 2008, 466, 1605–1611. [Google Scholar] [CrossRef] [Green Version]
- Fearon, A.; Dahlstrom, J.E.; Twin, J.; Cook, J.; Scott, A. The Bonar score revisited: Region of evaluation significantly influences the standardized assessment of tendon degeneration. J. Sci. Med. Sport 2014, 17, 346–350. [Google Scholar] [CrossRef] [Green Version]
- Henry, B.M.; Tomaszewski, K.A.; Ramakrishnan, P.K.; Roy, J.; Vikse, J.; Loukas, M.; Tubbs, R.S.; Walocha, J.A. Development of the Anatomical Quality Assessment (AQUA) Tool for the quality assessment of anatomical studies included in meta-analyses and systematic reviews. Clin. Anat. 2017, 30, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Albano, D.; Martinelli, N.; Bianchi, A.; Romeo, G.; Bulfamante, G.; Galia, M.; Sconfienza, L.M. Posterior tibial tendon dysfunction: Clinical and magnetic resonance imaging findings having histology as reference standard. Eur. J. Radiol. 2018, 99, 55–61. [Google Scholar] [CrossRef]
- Sethi, P.M.; Sheth, C.D.; Pauzenberger, L.; McCarthy, M.B.R.; Cote, M.P.; Soneson, E.; Miller, S.; Mazzocca, A.D. Macroscopic Rotator Cuff Tendinopathy and Histopathology Do Not Predict Repair Outcomes of Rotator Cuff Tears. Am. J. Sports Med. 2018, 46, 779–785. [Google Scholar] [CrossRef]
- Zabrzyński, J.; Paczesny, L.; Zabrzyńska, A.; Grzanka, D.; Łapaj, L. Sonography in the instability of the long head of the biceps tendon confronted with histopathologic and arthroscopic findings. Folia Morphol. 2018, 77, 583–590. [Google Scholar] [CrossRef] [Green Version]
- Nuelle, C.W.; Stokes, D.C.; Kuroki, K.; Crim, J.R.; Sherman, S.L. Radiologic and Histologic Evaluation of Proximal Bicep Pathology in Patients with Chronic Biceps Tendinopathy Undergoing Open Subpectoral Biceps Tenodesis. Arthrosc. J. Arthrosc. Relat. Surg. 2018, 34, 1790–1796. [Google Scholar] [CrossRef]
- Lundgreen, K.; Lian, O.; Scott, A.; Engebretsen, L. Increased levels of apoptosis and p53 in partial-thickness supraspinatus tendon tears. Knee Surg. Sports Traumatol. Arthrosc. 2012, 21, 1636–1641. [Google Scholar] [CrossRef]
- Zabrzyński, J.; Paczesny, L.; Łapaj, L.; Grzanka, D.; Szukalski, J. Process of neovascularisation compared with pain intensity in tendinopathy of the long head of the biceps brachii tendon associated with concomitant shoulder disorders, after arthroscopic treatment. Microscopic evaluation supported by immunohistochemical. Folia Morphol. 2018, 77, 378–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundgreen, K.; Øystein, L.B.; Engebretsen, L.; Scott, A. Tenocyte apoptosis in the torn rotator cuff: A primary or secondary pathological event? Br. J. Sports Med. 2011, 45, 1035–1039. [Google Scholar] [CrossRef] [Green Version]
- Lundgreen, K.; Øystein, L.B.; Scott, A.; Nassab, P.; Fearon, A.; Engebretsen, L. Rotator Cuff Tear Degeneration and Cell Apoptosis in Smokers Versus Nonsmokers. Arthrosc. J. Arthrosc. Relat. Surg. 2014, 30, 936–941. [Google Scholar] [CrossRef] [Green Version]
- Kurdziel, M.D.; Moravek, J.E.; Wiater, B.P.; Davidson, A.; Seta, J.; Maerz, T.; Baker, K.C.; Wiater, J.M. The impact of rotator cuff deficiency on structure, mechanical properties, and gene expression profiles of the long head of the biceps tendon (LHBT): Implications for management of the LHBT during primary shoulder arthroplasty. J. Orthop. Res. 2015, 33, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.L.; Feller, J.A.; Bonar, S.F.; Khan, K.M. Abnormal tenocyte morphology is more prevalent than collagen disruption in asymptomatic athletes’ patellar tendons. J. Orthop. Res. 2004, 22, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, Y.; Furumatsu, T.; Maehara, A.; Miyazawa, S.; Kamatsuki, Y.; Hino, T.; Ozaki, T. Histological alterations to the hamstring tendon caused by cleaning during autograft preparation. Muscle Ligaments Tendons J. 2019, 9, 217. [Google Scholar] [CrossRef] [Green Version]
- Docking, S.I.; Cook, J.; Chen, S.; Scarvell, J.; Cormick, W.; Smith, P.; Fearon, A. Identification and differentiation of gluteus medius tendon pathology using ultrasound and magnetic resonance imaging. Musculoskelet. Sci. Pract. 2019, 41, 1–5. [Google Scholar] [CrossRef]
- Fearon, A.M.; Twin, J.; Dahlstrom, J.E.; Cook, J.L.; Cormick, W.; Smith, P.N.; Scott, A. Increased substance P expression in the trochanteric bursa of patients with greater trochanteric pain syndrome. Rheumatol. Int. 2014, 34, 1441–1448. [Google Scholar] [CrossRef]
- Osti, L.; Buda, M.; Del Buono, A.; Osti, R.; Massari, L.; Maffulli, N. Apoptosis and rotator cuff tears: Scientific evidence from basic science to clinical findings. Br. Med. Bull. 2017, 122, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Zabrzyński, J.; Gagat, M.; Paczesny, L.; Łapaj, L.; Grzanka, D. Electron microscope study of the advanced tendinopathy process of the long head of the biceps brachii tendon treated arthroscopically. Folia Morphol. 2018, 77, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Järvinen, T.A. Neovascularisation in tendinopathy: From eradication to stabilisation? Br. J. Sports Med. 2019, 54, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Hackett, L.; Millar, N.L.; Lam, P.; Murrell, G.A. Are the Symptoms of Calcific Tendinitis Due to Neoinnervation and/or Neovascularization? J. Bone Jt. Surg. Am. 2016, 98, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J.S.; Raza, A.S.; Pilcher, J.; Heron, C.; Poloniecki, J.D. The prevalence of neovascularity in patients clinically diagnosed with rotator cuff tendinopathy. BMC Musculoskelet. Disord. 2009, 10, 163. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, P.W. Neuronal regulation of tendon homoeostasis. Int. J. Exp. Pathol. 2013, 94, 271–286. [Google Scholar] [CrossRef]
- Singaraju, V.M.; Kang, R.W.; Yanke, A.B.; McNickle, A.G.; Lewis, P.B.; Wang, V.M.; Williams, J.M.; Chubinskaya, S.; Romeo, A.A.; Cole, B.J. Biceps tendinitis in chronic rotator cuff tears: A histologic perspective. J. Shoulder Elb. Surg. 2008, 17, 898–904. [Google Scholar] [CrossRef]
- Edgar, L.T.; Underwood, C.J.; Guilkey, J.E.; Hoying, J.B.; Weiss, J.A. Extracellular Matrix Density Regulates the Rate of Neovessel Growth and Branching in Sprouting Angiogenesis. PLoS ONE 2014, 9, e85178. [Google Scholar] [CrossRef] [Green Version]
- Koehler, L.; Ruiz-Gómez, G.; Balamurugan, K.; Rother, S.; Freyse, J.; Möller, S.; Schnabelrauch, M.; Köhling, S.; Djordjevic, S.; Scharnweber, D.; et al. Dual Action of Sulfated Hyaluronan on Angiogenic Processes in Relation to Vascular Endothelial Growth Factor-A. Sci. Rep. 2019, 9, 1–18. [Google Scholar] [CrossRef]
- Abate, M.; Vanni, D.; Pantalone, A.; Salini, V. Cigarette smoking and musculoskeletal disorders. Muscle Ligaments Tendons J. 2013, 3, 63–69. [Google Scholar] [CrossRef]
- Mongiat, M.; Andreuzzi, E.; Tarticchio, G.; Paulitti, A. Extracellular Matrix, a Hard Player in Angiogenesis. Int. J. Mol. Sci. 2016, 17, 1822. [Google Scholar] [CrossRef] [Green Version]
- Zabrzynski, J.; Gagat, M.; Paczesny, L.; Grzanka, D.; Huri, G. Correlation between smoking and neovascularization in biceps tendinopathy: A functional preoperative and immunohistochemical study. Ther. Adv. Chronic Dis. 2020, 11. [Google Scholar] [CrossRef]
- Zabrzyński, J.; Szukalski, J.; Paczesny, L.; Szwedowski, D.; Grzanka, D. Cigarette smoking intensifies tendinopathy of the LHBT. A microscopic study after arthroscopic treatment. Pol. J. Pathol. 2019, 70, 134–138. [Google Scholar] [CrossRef]
- Lundgreen, K.; Øystein, L.B.; Scott, A.; Fearon, A.; Engebretsen, L. 58 Smokers Have Worse Rotator Cuff Teartendon Degeneration and Apoptosis. Br. J. Sports Med. 2014, 48, A37.2–A38. [Google Scholar] [CrossRef]
Author | Objective(S) and Subject Characteristics | Study Design | Methodology Characterization | Descriptive Anatomy | Reporting of Results |
---|---|---|---|---|---|
Maffulli et al. [20] | Risk: Low | Risk: Low | Risk: Low | Risk: Low | Risk: Low |
Albano et al. [23] | Risk: Low | Risk: Unclear | Risk: Unclear | Risk: Low | Risk: Low |
Fearon et al. [21] | Risk: High | Risk: Unclear | Risk: Low | Risk: Low | Risk: Low |
Sethi et al. [24] | Risk: Low | Risk: Unclear | Risk: Low | Risk: Low | Risk: Low |
Zabrzynski et al. [25] | Risk: Low | Risk: Unclear | Risk: Unclear | Risk: Low | Risk: High |
Nuelle et al. [26] | Risk: Low | Risk: Unclear | Risk: Unclear | Risk: Low | Risk: Low |
Lundgreen et al. [27] | Risk: Low | Risk: Low | Risk: Unclear | Risk: Low | Risk: Low |
Zabrzynski et al. [28] | Risk: Low | Risk: Unclear | Risk: Low | Risk: Low | Risk: High |
Lundgreen et al. [29] | Risk: Low | Risk: Low | Risk: Unclear | Risk: Low | Risk: High |
Lundgreen et al. [30] | Risk: Low | Risk: Unclear | Risk: Unclear | Risk: Low | Risk: Low |
Kurdziel et al. [31] | Risk: High | Risk: Low | Risk: Low | Risk: Low | Risk: Low |
Cook et al. [32] | Risk: Low | Risk: Unclear | Risk: Unclear | Risk: Low | Risk: High |
Okazaki et al. [33] | Risk: Low | Risk: Low | Risk: Unclear | Risk: Low | Risk: Low |
Docking et al. [34] | Risk: High | Risk: Unclear | Risk: Unclear | Risk: Low | Risk: Low |
Zabrzynski et al. [19] | Risk: High | Risk: Low | Risk: Unclear | Risk: Low | Risk: Low |
Fearon et al. [35] | Risk: High | Risk: Low | Risk: Low | Risk: Low | Risk: Low |
Author | Study Type | Level of Evidence (I–IV) | Country | Year of Publication | Region of Pathology | No. of Samples | Age/SD | Control Group | Mean Bonar (0–12)/SD | Mean Bonar Control (0–12)/SD |
---|---|---|---|---|---|---|---|---|---|---|
Maffulli et al. [20] | in vivo | II | Italy/UK | 2008 | SST 1 | 88 | 58.2/n/a | SST | 9.53/SD = 1.55 | 1.9/SD = 1.29 |
Albano et al. [23] | In vivo | IV | Italy | 2018 | PTT 2 | 19 | 46/n/a | n/a | 8/n/a | n/a/n/a |
Fearon et al. [21] | In vivo | III | Australia/Canada | 2014 | Gluteal tendons | 35 | n/a/n/a | n/a | 14.4/20; 13/20; 11.6/20 /SD = 14.4 (1.50) | n/a/n/a |
Sethi et al. [24] | In vivo | III | USA | 2018 | SST | 85 | 61.6/SD = 9.7 | n/a | 7.5/SD = 2.7 | n/a/n/a |
Zabrzynski et al. [25] | In vivo | IV | Poland | 2018 | LHBT 3 | 19 | 54/n/a | n/a | 8.2/n/a | n/a/n/a |
Nuelle et al. [26] | In vivo | IV | USA | 2018 | LHBT | 16 | 44.25/n/a | n/a | 7.9/SD = 1.8 | n/a/n/a |
Lundgreen et al. [27] | In vivo | III | Norway | 2018 | SST | 19 | 54/n/a | SSC 4 | 5.5/n/a | 1/n/a |
Zabrzynski et al. [28] | In vivo | III | Poland | 2018 | LHBT | 32 | 52/SD = 10.5 | STG 5 | n/a/n/a | n/a/n/a |
Lundgreen et al. [29] | In vivo | III | Norway | 2011 | SST | 25 | 57.7/n/a | SSC | n/a/n/a | n/a/n/a |
Lundgreen et al. [30] | In vivo | III | Norway | 2014 | SST | 25 | 52/SD = 6.4 | n/a | 13.5/20/SD = 1.375 | 9/20/SD = 3 |
Kurdziel et al. [31] | In vivo | III | USA | 2015 | LHBT | 34 | 67.2/SD = 10.7 | LHBT | 7.3/SD = 1.6 | 7.8/SD = 1.2 |
Cook et al. [32] | In vivo | IV | Australia | 2004 | Patellar tendon | 50 | 29.0/SD = 9.1 | n/a | n/a/n/a | n/a/n/a |
Okazaki et al. [33] | In vivo | III | Japan | 2019 | STG | 6 | 22/n/a | STG | 3.2; 5.7; 7.2 SD = 1.5;1.5;0.4 | 0.8/SD = 0.4 |
Docking et al. [34] | In vivo | IV | Australia | 2018 | Gluteal tendons | 26 | n/a/n/a | n/a | 8.12/n/a | 0/n/a |
Zabrzynski et al. [19] | In vivo | III | Poland | 2017 | LHBT | 39 | 53/SD = 10.48 | STG | 8.2/SD = 2 | 0 |
Fearon et al. [35] | In vivo | II | Australia | 2014 | Gluteal tendons | 34 | n/a/n/a | Gluteal tendons | 12.65/20/SD = 2.0 | 10.43/20/SD = 4.84 |
Classical Bonar Score | ||||
Author | The Components of Bonar Score | Number of Investigators | Area of Specimen Investigation | Additional Staining Methods |
Maffulli et al. [20] | 1. Tenocytes 2. Ground substance 3. Collagen 4. Vascularity | 2 | The most pathological area | Alcian Blue |
Albano et al. [23] | 1. Tenocytes 2. Ground substance 3. Collagen 4. Vascularity | 1 | n/a | n/a |
Sethi [24] | 1. Tenocytes 2. Ground substance 3. Collagen 4. Vascularity | 3 | Total area of specimen | Alcian Blue |
Zabrzynski et al. [25] | 1. Tenocytes 2. Ground substance 3. Collagen 4. Vascularity | 1 | n/a | n/a |
Nuelle et al. [26] | 1. Tenocytes 2. Ground substance 3. Collagen 4. Vascularity | n/a | n/a | Masson’s Trichome, Picrosirius Red staining, Verhoeff’s, IHC 1: CD31 2, CD3, CD79a |
Lundgreen et al. [29] | 1. Tenocytes 2. Ground substance 3. Collagen 4. Vascularity | 1 | n/a | Alcian Blue |
Kurdziel et al. [31] | 1. Tenocytes 2. Ground substance 3. Collagen 4. Vascularity | 3 | Random slides | Alcian Blue |
Cook et al. [32] | 1. Tenocytes 2. Ground substance 3. Collagen 4. Vascularity | n/a | n/a | Alcian Blue |
Zabrzynski et al. [19] | 1. Tenocytes 2. Ground substance 3. Collagen 4. Vascularity | 3 | n/a | Alcian Blue, Mallory, Masson Trichrome Inflammatory cells assesment |
Modifications in the Bonar Score | ||||
Author | The Components of Bonar Score | Number of Investigators | Area of Specimen Investigation | Additional Staining |
Fearon et al. [21] | 1. Tenocytes 2. Ground substance 3. Collagen 4. Vascularity 5. Cellularity | 2 | The most pathological area | n/a |
Lundgreen et al. [27] | 1. Ground substance 2. Collagen 3. Vascularity 4.Cellularity | 1 | n/a | Alcian Blue IHC: caspase 3, p53, KI67 |
Zabrzynski et al. [28] | 1. Vascularity | n/a | The most pathological area | IHC: CD31, CD34 |
Lundgreen et al. [30] | 1. Calcification 2. Morphology of adipocytes 3. Tenocytes 4. Ground substance 5. Collagen 6. Vascularity | 2 | n/a | Alcian Blue |
Fearon et al. [35] | 1. Tenocytes 2. Ground substance 3. Collagen 4. Vascularity 5. Cellularity 6. Adipocytes 7. Calcifiations | 1 | n/a | Substance P assessment Inflammatory cells assessment |
Okazaki et al. [33] | 1. Tenocytes 2. Ground substance 3. Collagen 4. Cellularity 5. Vascularity | 2 | n/a | IHC: collagen I type |
Docking et al. [34] | 1. Tenocytes 2. Ground substance 3. Collagen 4. Vascularity 5. Cellularity | 3 | n/a | Alcian Blue |
Author | Radiological Evaluation | Clinical Implications |
---|---|---|
Albano et al. [23] | MRI 1 (no correlation with Bonar; p = 0.937) | Clinical tests: single heel rise and first metatarsal rise (no correlation with Bonar score; p = 0.07) |
Sethi et al. [24] | MRI, US 2 (no correlation with Bonar; respectively p = 0.08 and p = 0.368) | Clinical tests: ASES 3 Simple Shoulder Test, SF12 (no correlation with Bonar; p = 0.1301) Macroscopic assessment during arthroscopy (no correlation with Bonar p = 0.61, p = 0.42, p = 0.88) |
Zabrzynski et al. [25] | US Damaged tissue regions corresponded to the areas identified during the sonographic and arthroscopic examinations) | n/a |
Nuelle et al. [26] | MRI (MRI and intraoperative assessment did not show significant structural abnormalities within the tendon despite significant histopathologic changes) | n/a |
Zabrzynski et al. [28] | n/a | VAS scale assessment, Tenderness over bicipital groove test (there was also no correlation between vessels ingrowth and pain; p = 0.2323) |
Lundgreen et al. [27] | n/a | Bonar score of torn tendon demonstrated a significant degeneration compared with reference, intact samples (p < 0.005 and p < 0.001) |
Lundgreen et al. [30] | n/a | The SST 4 from the smokers presented significantly more advanced degenerative changes (p < 0.001) The expression of protein p53 was also significantly stronger in the smokers (p = 0.024) Tenocyte density was significantly reduced in smokers compared with non-smokers (p = 0.019). |
Kurdziel et al. [31] | n/a | No histologic differences in LHBT 5 specimens were observed in intact and torn RC 6 population. |
Cook et al. [32] | US (US was normal in all but one of the 18 tendons having abnormal histopathology) | There were no differences between subjects with and without pathology in respect of training, recovery after surgery and basic anthropometric measures |
Okazaki et al. [33] | n/a | Cleaning the hamstring tendons by scratching caused histological alterations and damage to type I collagen. |
Docking et al. [34] | US, MRI (both imaging modalities demonstrated difficulty in identifying/differentiating between the presence of tendinosis, partial thick-ness tears, and full-thickness tears) | n/a |
Fearon et al. [35] | n/a | Greater trochanteric pain syndrome group had a higher average Bonar score than control group (p = 0.04) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zabrzyńska, M.; Grzanka, D.; Zielińska, W.; Jaworski, Ł.; Pękala, P.; Gagat, M. The Bonar Score in the Histopathological Assessment of Tendinopathy and Its Clinical Relevance—A Systematic Review. Medicina 2021, 57, 367. https://doi.org/10.3390/medicina57040367
Zabrzyńska M, Grzanka D, Zielińska W, Jaworski Ł, Pękala P, Gagat M. The Bonar Score in the Histopathological Assessment of Tendinopathy and Its Clinical Relevance—A Systematic Review. Medicina. 2021; 57(4):367. https://doi.org/10.3390/medicina57040367
Chicago/Turabian StyleZabrzyńska, Maria, Dariusz Grzanka, Wioletta Zielińska, Łukasz Jaworski, Przemysław Pękala, and Maciej Gagat. 2021. "The Bonar Score in the Histopathological Assessment of Tendinopathy and Its Clinical Relevance—A Systematic Review" Medicina 57, no. 4: 367. https://doi.org/10.3390/medicina57040367
APA StyleZabrzyńska, M., Grzanka, D., Zielińska, W., Jaworski, Ł., Pękala, P., & Gagat, M. (2021). The Bonar Score in the Histopathological Assessment of Tendinopathy and Its Clinical Relevance—A Systematic Review. Medicina, 57(4), 367. https://doi.org/10.3390/medicina57040367