Biomechanical Parameters that May Influence Lower Limb Injury during Landing in Taekwondo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Data Processing
2.4. Analysis Phase
2.5. Analysis Variables
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kukkiwon. Taekwondo Textbook: The Basics of Taekwondo; Osung: Seoul, Korea, 2006. [Google Scholar]
- Choe, D.; Kwak, A. A study on the changes and meaning of Korea Taekwondo demonstration programs. Korean J. Hist. Phys. Educ. Sports Danc. 2014, 19, 121–137. [Google Scholar]
- Jang, K.; Park, J.; Sung, S. A Study on the Establishment and Promotion of the Technical Terminology for the Breaking of Taekwondo; Kukkiwon: Seoul, Korea, 2017. [Google Scholar]
- Lee, Y.J.; Shin, M.Y. A study on the sports injuries of university Taekwondo demonstration team. Taekwondo J. Kukkiwon 2014, 5, 119–138. [Google Scholar]
- Koh, J.O. Incidence study of musculoskeletal acute injuries of object-breaking maneuver-related in Taekwondo competitor. J. Sport Leis. Stud. 2012, 48, 761–772. [Google Scholar] [CrossRef]
- Cha, Y.N. The Effect of the Type of Taekwondo Jump Kick on Injury Risk Factors in Lower Extremity. Ph.D. Thesis, Korea National Sport University, Seoul, Korea, 2017. [Google Scholar]
- Bae, J.H. The Effect of Training Type on the Range of Motion, Isokinetic Muscular Function and Stability of Ankle in Taekwondo Demonstration Team. Ph.D. Thesis, Gachon University, Incheon, Korea, 2013. [Google Scholar]
- Jang, K.; Yoon, S.; Kim, D.; Ryu, S. Biomechanical Explanation and Evaluation Criteria of New Poomsae; Asian Taekwondo Union: Seoul, Korea, 2018. [Google Scholar]
- Koh, J.O.; Kim, S.J.; Ji, C.H. Incidence rate of Taekwondo demonstration related injuries and potential risk factors. J. Sport Leis. Stud. 2012, 47, 887–908. [Google Scholar]
- Moon, Y.L.; Kim, D.H.; Lee, J.Y.; Yoon, O.N.; Kim, C.Y. Injury mechanism and progress of anterior cruciate ligament injury in Taekwondo players. Korean J. Sports Med. 2007, 25, 83–86. [Google Scholar]
- Zazulak, B.T.; Hewett, T.E.; Reeves, N.P.; Goldberg, B.; Cholewicki, J. Deficits in neuromuscular control of the trunk predict knee injury risk: A prospective biomechanical-epidemiologic study. Am. J. Sports Med. 2007, 35, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Jamison, S.T.; Pan, X.; Chaudhari, A.M. Knee moments during run-to-cut maneuvers are associated with lateral trunk positioning. J. Biomech. 2012, 45, 1881–1885. [Google Scholar] [CrossRef]
- Ryu, S. Analysis of injury factors according to foot angle of jumping front kick in Taekwondo. J. World Soc. Taekwondo Cult. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Nejishima, M.; Urabe, Y.; Yokoyama, S. Relationship between the knee valgus angle and EMG activity of the lower extremity in single-and double-leg landing. J. Biomech. 2007, 40, S743. [Google Scholar] [CrossRef]
- Tillman, D.; Criss, R.; Brunt, D.; Hass, C. Landing constraints influence ground reaction forces and lower extremity EMG in female volleyball players. J. Appl. Biomech. 2004, 20, 38–50. [Google Scholar] [CrossRef]
- Yeow, C.H.; Lee, P.V.; Goh, J.C. An investigation of lower extremity energy dissipation strategies during single leg and double-leg landing based on sagittal and frontal plane biomechanics. Hum. Mov. Sci. 2011, 30, 624–635. [Google Scholar] [CrossRef]
- Butler, R.J.; Crowell, H.P.; Davis, I.M. Lower extremity stiffness: Implications for performance and injury. Clin. Biomech. 2003, 18, 511–517. [Google Scholar] [CrossRef]
- Milner, C.E.; Ferber, R.; Pollard, C.D.; Hamill, J.; Davis, I.S. Biomechanical factors associated with tibial stress fracture in female runners. Med. Sci. Sports Exerc. 2006, 38, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.P. The effect of balance exercise on postural control and shooting record in archers. Korean J. Sport Biomech. 2008, 18, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.N. Therapeutics of Disk & Low Back Pain; JunWon Publishing: Seoul, Korea, 1997. [Google Scholar]
- Edward, T.; Howley, B.; Don, F. Health Fitness Instructor’s Handbook, 4th ed.; Human Kinetics Publishers: Champaign, IL, USA, 2003. [Google Scholar]
- Agre, J.C.; Baxter, T.L. Musculoskeletal profile of male collegiate soccer players. Arch. Phys. Med. Rehabil. 1987, 68, 147–150. [Google Scholar]
- McKeag, D.B. Preseason physical examination for the prevention of sports injuries. Sport Med. 1985, 2, 413–431. [Google Scholar] [CrossRef]
- Knapik, J.J.; Bauman, C.L.; Jones, B.H.; Harris, J.M.; Vaughan, L. Preseason strength and flexibility imbalances associated with athletic injuries in female collegiate athletes. Am. J. Sports Med. 1991, 19, 76–81. [Google Scholar] [CrossRef]
- Fousekis, K.; Tsepis, E.; Vagenas, G. Lower limb strength in professional soccer players: Profile, asymmetry, and training age. J. Sports Sci. Med. 2010, 9, 364. [Google Scholar]
- Impellizzeri, F.M.; Rampinini, E.; Maffiuletti, N.; Marcora, S.M. A vertical jump force test for assessing bilateral strength asymmetry in athletes. Med. Sci. Sports Exerc. 2007, 39, 2044–2050. [Google Scholar] [CrossRef] [Green Version]
- Lawson, B.R.; Stephens, T.M., II; DeVoe, D.E.; Reiser, R.F., II. Lower-extremity bilateral differences during step-close and no-step countermovement jumps with concern for gender. J. Strength Cond. Res. 2006, 20, 608. [Google Scholar]
- Newton, R.U.; Gerber, A.; Nimphius, S.; Shim, J.K.; Doan, B.K.; Robertson, M.; Kraemer, W.J. Determination of functional strength imbalance of the lower extremities. J. Strength Cond. Res. 2006, 20, 971–977. [Google Scholar]
- Sannicandro, I.; Piccinno, A.; Rosa, R.A.; De Pascalis, S. Functional asymmetry in the lower limb professional soccer players. Br. J. Sports Med. 2011, 45, 370. [Google Scholar] [CrossRef]
- Sannicandro, I.; Piccinno, A.; Rosa, R.A.; De Pascalis, S. Correlation between functional asymmetry of professional soccer players and sprint. Br. J. Sports Med. 2011, 45, 370–371. [Google Scholar] [CrossRef]
- Stephens, T.M.; Lawson, B.R.; Reiser, R.F., II. Bilateral asymmetries in max effort single-leg vertical jumps. Biomed. Sci. Instrum. 2005, 41, 317. [Google Scholar]
- Myer, G.D.; Ford, K.R.; Foss, K.D.B.; Liu, C.; Nick, T.G.; Hewett, T.E. The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin. J. Sport Med. 2009, 19, 3–8. [Google Scholar] [CrossRef]
- Nagano, Y.; Ida, H.; Akai, M.; Fukubayashi, T. Gender differences in knee kinematics and muscle activity during single limb drop landing. Knee 2007, 14, 218–223. [Google Scholar] [CrossRef]
- Nagano, Y.; Ida, H.; Akai, M.; Fukubayashi, T. Effects of jump and balance training on knee kinematics and electromyography of female basketball athletes during a single limb drop landing: Pre-post intervention study. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2011, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Engebretsen, L.; Steffen, K.; Alonso, J.M.; Aubry, M.; Dvorak, J.; Junge, A.; Wilkinson, M. Sports injuries and illnesses during the Winter Olympic Games 2010. Br. J. Sports Med. 2010, 44, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engebretsen, L.; Soligard, T.; Steffen, K.; Alonso, J.M.; Aubry, M.; Budgett, R.; Renström, P.A. Sports injuries and illnesses during the London Summer Olympic Games 2012. Br. J. Sports Med. 2013, 47, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soligard, T.; Steffen, K.; Palmer-Green, D.; Aubry, M.; Grant, M.E.; Meeuwisse, W.; Engebretsen, L. Sports injuries and illnesses in the Sochi 2014 Olympic Winter Games. Br. J. Sports Med. 2015, 49, 441–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soligard, T.; Steffen, K.; Palmer, D.; Alonso, J.M.; Bahr, R.; Lopes, A.D.; Engebretsen, L. Sports injury and illness incidence in the Rio de Janeiro 2016 Olympic Summer Games: A prospective study of 11,274 athletes from 207 countries. Br. J. Sports Med. 2017, 51, 1265–1271. [Google Scholar] [CrossRef]
- Bohannon, R.W. Reference values for extremity muscle strength obtained by hand-held dynamometry from adults aged 20 to 79 years. Arch. Phys. Med. Rehabil. 1997, 78, 26–32. [Google Scholar] [CrossRef]
- Ishii, Y.; Noguchi, H.; Sato, J.; Sakurai, T.; Toyabe, S.I. Quadriceps strength impairment in the mid-to long-term follow-up period after total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 3372–3377. [Google Scholar] [CrossRef]
- McCann, R.S.; Crossett, I.D.; Terada, M.; Kosik, K.B.; Bolding, B.A.; Gribble, P.A. Hip strength and star excursion balance test deficits of patients with chronic ankle instability. J. Sci. Med. Sport 2017, 20, 992–996. [Google Scholar] [CrossRef]
- Nigg, B.M. Biomechanics of Sport Shoes; University of Calgary: Calgary, AB, Canada, 2010. [Google Scholar]
- Kim, C.M.; Eng, J.J. Symmetry in vertical ground reaction force is accompanied by symmetry in temporal but not distance variables of gait in persons with stroke. Gait Posture 2003, 18, 23–28. [Google Scholar] [CrossRef]
- Ha, C.S.; Jun, Y.S.; Lee, Y.R. Biomechanical analysis of Twio Apchagi in Taekwondo. Korean J. Sports Sci. 2007, 16, 725–735. [Google Scholar]
- Shin, H.C. Comparison of Kinetic Characteristics of Taekwondo Jumping Front Kick (Run Up, Take Off and Kicking) According to Skill Levels. Ph.D. Thesis, Korea University, Seoul, Korea, 2017. [Google Scholar]
- Ardern, C.L.; Webster, K.E.; Taylor, N.F.; Feller, J.A. Return to sport following anterior cruciate ligament reconstruction surgery: A systematic review and meta-analysis of the state of play. Br. J. Sports Med. 2011, 45, 596–606. [Google Scholar] [CrossRef]
- Vancolen, S.Y.; Nadeem, I.; Horner, N.S.; Johal, H.; Alolabi, B.; Khan, M. Return to sport after ankle syndesmotic injury: A systematic review. Sports Health 2019, 11, 116–122. [Google Scholar] [CrossRef]
- Niu, W.; Feng, T.; Jiang, C.; Zhang, M. Peak vertical ground reaction force during two-leg landing: A systematic review and mathematical modeling. BioMed Res. Int. 2014. [Google Scholar] [CrossRef]
- Ithurburn, M.P.; Paterno, M.V.; Ford, K.R.; Hewett, T.E.; Schmitt, L.C. Young athletes with quadriceps femoris strength asymmetry at return to sport after anterior cruciate ligament reconstruction demonstrate asymmetric single-leg drop-landing mechanics. Am. J. Sports Med. 2015, 43, 2727–2737. [Google Scholar] [CrossRef]
- Devita, P.; Skelly, W.A. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med. Sci. Sports Exerc. 1992, 24, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.N.; Bates, B.T.; Dufek, J. Contributions of lower extremity joints to energy dissipation during landings. Med. Sci. Sports Exerc. 2000, 32, 812–819. [Google Scholar] [CrossRef]
- Hernández, L.E.M.; Pérez, A.P.; Alvarado, A.O.; del Villar Morales, A.; Flores, V.H.; Villaseñor, C.P. Isokinetic evaluation of the muscular strength and balance of knee extensor and flexor apparatus of Taekwondo athletes. Gac. Med. Mex. 2014, 150, 272–278. [Google Scholar]
Variables | NG | IG | 95% Confidence Interval | t | p | Cohen’s d | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
IF (BW) | 2.4 ± 0.5 | 2.6 ± 0.5 | −0.6 | 0.4 | −0.547 | 0.593 | 0.272 |
PVGRF (BW) | 5.8 ± 0.7 | 6.0 ± 0.7 | −0.9 | 0.6 | −0.564 | 0.581 | 0.280 |
VLR (BW/s) | 119.7 ± 24.4 | 137.0 ± 28.5 | −45.6 | 11.0 | −1.302 | 0.213 | 0.606 |
VS (BW/cm) | 0.4 ± 0.1 | 0.4 ± 0.1 | −0.1 | 0.0 | −1.306 | 0.211 | 0.603 |
LFA (degree) | 148.6 ± 24.8 | 126.0 ± 24.1 | −3.1 | 48.2 | 1.878 | 0.080 | 0.935 |
(Unit: Nm/BW) | |||||||
---|---|---|---|---|---|---|---|
Variables | NG | IG | 95% Confidence Interval | t | p | Cohen’s d | |
Lower | Upper | ||||||
Hip flexor | 55.5 ± 13.4 | 65.3 ± 9.0 | −21.3 | 1.8 | −1.794 | 0.093 | 1.078 |
Hip extensor | 64.0 ± 13.2 | 68.3 ± 15.9 | −19.9 | 11.3 | −0.585 | 0.567 | 0.270 |
Hip abductor | 60.7 ± 12.4 | 72.1 ± 11.5 | −23.8 | 1.1 | −1.941 | 0.071 | 0.985 |
Hip adductor | 60.4 ± 9.3 | 54.0 ± 10.0 | −3.8 | 16.7 | 1.346 | 0.198 | 0.646 |
Hip external rotator | 30.9 ± 7.1 | 31.0 ± 5.3 | −6.5 | 6.2 | −0.051 | 0.960 | 0.029 |
Hip internal rotator | 29.5 ± 1.7 | 32.2 ± 6.5 | −8.1 | 2.7 | −1.053 | 0.309 | 0.411 |
Knee flexor | 46.8 ± 6.3 | 47.3 ± 5.1 | −6.4 | 5.4 | −0.179 | 0.861 | 0.097 |
Knee extensor | 67.4 ± 23.9 | 85.5 ± 17.1 | −39.1 | 3.0 | −1.823 | 0.088 | 1.057 |
Ankle dorsi-flexor | 42.9 ± 6.3 | 49.6 ± 9.6 | −15.5 | 2.2 | −1.598 | 0.131 | 0.694 |
Ankle plantar flexor | 99.1 ± 21.2 | 97.3 ± 18.8 | −19.0 | 22.6 | 0.184 | 0.857 | 0.095 |
Variables | NG | IG | 95% Confidence Interval | t | p | Cohen’s d | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Bilateral symmetry index (%) | |||||||
Hip flexor | 10.8 ± 6.7 | 10.1 ± 7.4 | −6.7 | 8.2 | 0.216 | 0.832 | 0.102 |
Hip extensor | 14.2 ± 17.8 | 9.2 ± 5.1 | −7.5 | 17.6 | 0.859 | 0.404 | 0.998 |
Hip abductor | 14.5 ± 14.3 | 8.5 ± 6.0 | −4.7 | 16.7 | 1.200 | 0.249 | 1.003 |
Hip adductor | 21.2 ± 20.7 | 13.6 ± 10.7 | −8.7 | 23.9 | 0.998 | 0.334 | 0.712 |
Hip external rotator | 14.8 ± 12.8 | 18.4 ± 18.6 | −21.0 | 13.8 | −0.443 | 0.664 | 0.194 |
Hip internal rotator | 18.4 ± 18.3 | 14.1 ± 12.3 | −11.5 | 20.0 | 0.577 | 0.572 | 0.348 |
Knee flexor | 23.3 ± 20.6 | 10.1 ± 7.8 | −1.9 | 28.3 | 1.867 | 0.082 | 1.694 |
Knee extensor | 15.5 ± 13.2 | 12.7 ± 12.4 | −10.5 | 16.2 | 0.454 | 0.656 | 0.230 |
Ankle dorsi-flexor | 9.5 ± 4.8 | 10.7 ± 10.8 | −10.6 | 8.1 | −0.292 | 0.774 | 0.119 |
Ankle plantar flexor | 3.3 ± 1.6 | 11.5 ± 8.0 | −14.8 | −1.6 | −2.649 | 0.018 * | 1.025 |
Ipsilateral symmetry index (%) | |||||||
Hip flexor/extensor | 11.3 ± 7.3 | 10.0 ± 7.0 | −15.9 | 11.2 | −0.367 | 0.719 | 0.222 |
Hip abductor/adductor | 6.3 ± 5.9 | 13.3 ± 13.2 | −35.6 | −5.3 | −2.881 | 0.011 * | 1.182 |
Hip external rotator/internal rotator | 7.8 ± 6.4 | 11.2 ± 12.1 | −9.2 | 15.0 | 0.509 | 0.618 | 0.300 |
Knee flexor/extensor | 9.8 ± 6.8 | 25.2 ± 29.2 | −27.3 | 13.9 | −0.690 | 0.501 | 0.387 |
Ankle dorsi-flexor/plantar flexor | 12.9 ± 15.2 | 18.6 ± 16.8 | −9.7 | 37.0 | 1.247 | 0.231 | 0.548 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, S.; Lee, T.-k. Biomechanical Parameters that May Influence Lower Limb Injury during Landing in Taekwondo. Medicina 2021, 57, 373. https://doi.org/10.3390/medicina57040373
Ryu S, Lee T-k. Biomechanical Parameters that May Influence Lower Limb Injury during Landing in Taekwondo. Medicina. 2021; 57(4):373. https://doi.org/10.3390/medicina57040373
Chicago/Turabian StyleRyu, Sihyun, and Taek-kyun Lee. 2021. "Biomechanical Parameters that May Influence Lower Limb Injury during Landing in Taekwondo" Medicina 57, no. 4: 373. https://doi.org/10.3390/medicina57040373
APA StyleRyu, S., & Lee, T. -k. (2021). Biomechanical Parameters that May Influence Lower Limb Injury during Landing in Taekwondo. Medicina, 57(4), 373. https://doi.org/10.3390/medicina57040373