Tumor Chemosensitivity Assays Are Helpful for Personalized Cytotoxic Treatments in Cancer Patients
Abstract
:1. Introduction
2. Tumor Chemosensitivity Assays (TCAs)
2.1. The Human Tumor Clonogenic Assay
2.2. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) Based Chemosensitivity Assays
2.3. ATP-Based Chemosensitivity Assay (ATP-TCA)
3. Role of Cancer Stem Cells in Tumor Chemosensitivity Assays
4. The Role of Multigene-Based and Pharmacogenetics Studies in Drug Response
5. The Role of Organoid Models and 3D Culture Systems in Chemosensitivity Assays
6. The Importance Circulating Tumor Cells in Chemosensitivity Assays
7. TCA and Its Relation with Response to Treatment and Clinical Outcomes
8. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cree, I.A. Designing personalised cancer treatments. J. Control Release 2013, 172, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, H. Heterogeneity of tumor chemosensitivity in ovarian epithelial cancer revealed using the adenosine triphosphate-tumor chemosensitivity assay. Oncol. Lett. 2015, 9, 2374–2380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.A.; Yom, C.K.; Moon, B.I.; Choe, K.J.; Sung, S.H.; Han, W.S.; Choi, H.Y.; Kim, H.K.; Park, H.K.; Choi, S.H.; et al. The use of an in vitro adenosine triphosphate-based chemotherapy response assay to predict chemotherapeutic response in breast cancer. Breast 2008, 17, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Pandya, H.J.; Dhingra, K.; Prabhakar, D.; Chandrasekar, V.; Natarajan, S.K.; Vasan, A.S.; Kulkarni, A.; Shafiee, H. A microfluidic platform for drug screening in a 3D cancer microenvironment. Biosens. Bioelectron. 2017, 94, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Silva, M.C.; Sudalagunta, P.R.; Distler, A.; Jacobson, T.; Collins, A.; Nguyen, T.; Song, J.; Chen, D.-T.; Chen, L.; et al. An Ex Vivo Platform for the Prediction of Clinical Response in Multiple Myeloma. Cancer Res. 2017, 77, 3336–3351. [Google Scholar] [CrossRef] [Green Version]
- Whitehouse, P.A.; Knight, L.A.; Di Nicolantonio, F.; Mercer, S.J.; Sharma, S.; Cree, I.A. Heterogeneity of chemosensitivity of colorectal adenocarcinoma determined by a modified ex vivo ATP-tumor chemosensitivity assay (ATP-TCA). Anti Cancer Drugs 2003, 14, 369–375. [Google Scholar] [CrossRef]
- Cree, I.A.; Kurbacher, C.M.; Lamont, A.; Hindley, A.C.; Love, S.; TCA Ovarian Cancer Trial Group. A prospective randomized controlled trial of tumour chemosensitivity assay directed chemotherapy versus physician’s choice in patients with recurrent platinum-resistant ovarian cancer. Anti Cancer Drugs 2007, 18, 1093–1101. [Google Scholar] [CrossRef]
- Cree, I.A. Chemosensitivity and chemoresistance testing in ovarian cancer. Curr. Opin. Obstet. Gynecol. 2009, 21, 39–43. [Google Scholar] [CrossRef]
- Huh, W.K.; Cibull, M.; Gallion, H.H.; Gan, C.M.; Richard, S.; Cohn, D.E. Consistency of in vitro chemoresponse assay results and population clinical response rates among women with endometrial carcinoma. Int. J. Gynecol. Cancer 2011, 21, 494–499. [Google Scholar] [CrossRef]
- Matsuo, K.; Bond, V.K.; Eno, M.L.; Im, D.D.; Rosenshein, N.B. Low drug resistance to both platinum and taxane chemotherapy on an in vitro drug resistance assay predicts improved survival in patients with advanced epithelial ovarian, fallopian and peritoneal cancer. Int. J. Cancer 2009, 125, 2721–2727. [Google Scholar] [CrossRef]
- Neubauer, H.; Stefanova, M.; Solomayer, E.; Meisner, C.; Zwirner, M.; Wallwiener, D.; Fehm, T. Predicting resistance to platinum-containing chemotherapy with the ATP tumor chemosensitivity assay in primary ovarian cancer. Anticancer Res. 2008, 28, 949–955. [Google Scholar]
- Park, J.S.; Kim, J.K.; Yoon, D.S. Correlation of early recurrence with in vitro adenosine triphosphate based chemotherapy response assay in pancreas cancer with postoperative gemcitabine chemotherapy. J. Clin. Lab. Anal. 2016, 30, 804–810. [Google Scholar] [CrossRef] [Green Version]
- Hur, H.; Kim, N.K.; Kim, H.G.; Min, B.S.; Lee, K.Y.; Shin, S.J.; Cheon, J.C.; Choi, S.H. Adenosine triphosphate-based chemotherapy response assay-guided chemotherapy in unresectable colorectal liver metastasis. Br. J. Cancer 2012, 106, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cree, I.A.; Kurbacher, C.M.; Untch, M.; Sutherland, L.A.; Hunter, E.M.; Subedi, A.M.; James, E.A.; Dewar, J.A.; Preece, P.E.; Andreotti, P.E.; et al. Correlation of the clinical response to chemotherapy in breast cancer with ex vivo chemosensitivity. Anti Cancer Drugs 1996, 7, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Konecny, G.; Crohns, C.; Pegram, M.; Felber, M.; Lude, S.; Kurbacher, C.; Cree, I.A.; Hepp, H.; Untch, M. Correlation of drug response with the ATP tumorchemosensitivity assay in primary FIGO stage III ovarian cancer. Gynecol. Oncol. 2000, 77, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Sargent, J.M.; Taylor, C.G. Appraisal of the MTT assay as a rapid test of chemosensitivity in acute myeloid leukaemia. Br. J. Cancer 1989, 60, 206–210. [Google Scholar] [CrossRef]
- Glaysher, S.; Yiannakis, D.; Gabriel, F.G.; Johnson, P.; Polak, M.E.; Knight, L.A.; Goldthorpe, Z.; Peregrin, K.; Gyi, M.; Modi, P.; et al. Resistance gene expression determines the in vitro chemosensitivity of non-small cell lung cancer (NSCLC). BMC Cancer 2009, 9, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Puck, T.T.; Marcus, P.I.; Cieciura, S.J. Clonal growth of mammalian cells in vitro: Growth characteristics of colonies from single HeLa cells with and without a “feeder” layer. J. Exp. Med. 1956, 103, 273–284. [Google Scholar] [CrossRef]
- Hamburger, A.; Salmon, S.E. Primary bioassay of human myeloma stem cells. J. Clin. Invest. 1977, 60, 846–854. [Google Scholar] [CrossRef]
- Hamburger, A.W. The human tumor clonogenic assay as a model system in cell biology. Int. J. Cell Cloning 1987, 5, 89–107. [Google Scholar] [CrossRef]
- Sarosdy, M.F.; Lamm, D.L.; Radwin, H.M.; Von Hoff, D.D. Clonogenic assay and in vitro chemosensitivity testing of human urologic malignancies. Cancer 1982, 50, 1332–1338. [Google Scholar] [CrossRef]
- Inoue, K.; Mukaiyama, T.; Mitsui, I.; Ogawa, M. In vitro evaluation of anticancer drugs in relation to development of drug resistance in the human tumor clonogenic assay. Cancer Chemother. Pharmacol. 1985, 15, 208–213. [Google Scholar] [CrossRef]
- Gabrielson, J.; Hart, M.; Jarelöv, A.; Kühn, I.; McKenzie, D.; Möllby, R. Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates. J. Microbiol. Methods 2002, 50, 63–73. [Google Scholar] [CrossRef]
- Tunney, M.M.; Ramage, G.; Field, T.R.; Moriarty, T.F.; Storey, D.G. Rapid colorimetric assay for antimicrobial susceptibility testing of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2004, 48, 1879–1881. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Cheng, H.; Wang, F.; Wei, D.; Wang, X. An improved 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) reduction assay for evaluating the viability of Escherichia coli cells. J. Microbiol. Methods 2010, 82, 330–333. [Google Scholar] [CrossRef]
- Alley, M.C.; Scudiero, D.A.; Monks, P.A.; Hursey, M.L.; Czerwinski, M.J.; Fine, D.L.; Abbott, B.J.; Mayo, J.G.; Shoemaker, R.H.B.; Boyd, M.R. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1998, 48, 589–601. [Google Scholar]
- Morgan, D.M.L. Tetrazolium (MTT) Assay for Cellular Viability and Activity. In Polyamine Protocols; Humana Press: Totowa, NJ, USA, 1998; Volume 79, pp. 179–184. [Google Scholar]
- Pieters, R.; Huismans, D.R.; Leyva, A.; Veerman, A.J.P. Adaptation of the rapid automated tetrazolium dye based (MTT) assay for chemosensitivity testing in childhood leukemia. Cancer Lett. 1988, 41, 323–332. [Google Scholar] [CrossRef]
- Nikkhah, G.; Tonn, J.C.; Hoffmann, O.; Kraemer, H.P.; Darling, J.L.; Schachenmayr, W.; Schönmayr, R. The MTT assay for chemosensitivity testing of human tumors of the central nervous system. J. Neuro Oncol. 1992, 13, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Yamaue, H.; Tanimura, H.; Nakamori, M.; Noguchi, K.; Iwahashi, M.; Tani, M.; Hotta, T.; Murakami, K.; Ishimoto, K. Clinical evaluation of chemosensitivity testing for patients with colorectal cancer using MTT assay. Dis. Colon. Rectum 1996, 39, 416–422. [Google Scholar] [CrossRef]
- Campling, B.G.; Pym, J.; Baker, H.M.; Cole, S.P.C.; Lam, Y.M. Chemosensitivity testing of small cell lung cancer using the MTT assay. Br. J. Cancer 1991, 63, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.K.; Sargent, J.M.; Elgie, A.W.; Hill, J.G.; Taylor, C.G. A feasibility study of the MTT assay for chemosensitivity testing in ovarian malignancy. Br. J. Cancer 1990, 62, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Loveland, B.E.; Johns, T.G.; Mackay, I.R.; Vaillant, F.; Wang, Z.X.; Hertzog, P.J. Validation of the MTT dye assay for enumeration of cells in proliferative and antiproliferative assays. Biochem. Int. 1992, 27, 501–510. [Google Scholar]
- Page, M.; Bejaoui, N.; Cinq-Mars, B.; Lemieux, P. Optimization of the tetrazolium-based colorimetric assay for the measurement of cell number and cytotoxicity. Int. J. Immunopharmacol. 1988, 10, 785–793. [Google Scholar] [CrossRef]
- Sieuwerts, A.M.; Klijn, J.G.; Peters, H.A.; Foekens, J.A. The MTT tetrazolium salt assay scrutinized: How to use this assay reliably to measure metabolie activity of cell cultures in vitro for the assessment of growth characteristics, IC50-values and cell survival. Eur. J. Clin. Chem. Clin. Biochem. 1995, 33, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Karakaş, D.; Ari, F.; Ulukaya, E. The MTT viability assay yields strikingly false-positive viabilities although the cells are killed by some plant extracts. Turk. J. Biol. 2017, 41, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Ulukaya, E.; Colakogullari, M.; Wood, E.J. Interference by anti-cancer chemotherapeutic agents in the MTT-tumor chemosensitivity assay. Chemotherapy 2004, 50, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Jaszczyszyn, A.; Gąsiorowski, K. Limitations of the MTT assay in cell viability testing. Adv. Clin. Exp. Med. 2008, 17, 525–529. [Google Scholar]
- Lundin, A.; Hasenson, M.; Persson, J.; Pousette, Å. Estimation of biomass in growing cell lines by adenosine triphosphate assay. Methods Enzymol. 1986, 133, 27–42. [Google Scholar]
- Glaysher, S.; Cree, I.A. Cell Sensitivity Assays: The ATP-based Tumor Chemosensitivity Assay. In Advanced Structural Safety Studies; Humana Press: Totowa, NJ, USA, 2011; Volume 731, pp. 247–257. [Google Scholar]
- Sevin, B.U.; Peng, Z.L.; Perras, J.P.; Ganjei, P.; Penalver, M.; Averette, H.E. Application of an ATP-bioluminescence assay in human tumor chemosensitivity testing. Gynecol. Oncol. 1988, 31, 191–204. [Google Scholar] [CrossRef]
- Michalski, C.W.; Erkan, M.; Sauliunaite, D.; Giese, T.; Stratmann, R.; Sartori, C.; Giese, N.A.; Friess, H.; Kleeff, J. Ex vivo chemosensitivity testing and gene expression profiling predict response towards adjuvant gemcitabine treatment in pancreatic cancer. Br. J. Cancer 2008, 99, 760–767. [Google Scholar] [CrossRef] [Green Version]
- O’Meara, A.T.; Sevin, B.U. Predictive value of the ATP chemosensitivity assay in epithelial ovarian cancer. Gynecol. Oncol. 2001, 83, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.B.; Lee, W.Y.; Song, S.Y.; Choi, S.H.; Shin, H.J.; Ahn, K.D.; Lee, J.M.; Kim, H.C.; Yun, S.H.; Chun, H.K. In vitro chemosensitivity based on depth of invasion in advanced colorectal cancer using ATP-based chemotherapy response assay (ATP-CRA). Eur. J. Surg. Oncol. 2009, 35, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Hunter, E.M.; Sutherland, L.A.; Cree, I.A.; Dewar, J.A.; Preece, P.E.; Wood, R.A.; Linder, D.; Andreotti, P.E. Heterogeneity of chemosensitivity in human breast carcinoma: Use of an adenosine triphosphate (ATP) chemiluminescence assay. Eur. J. Surg. Oncol. 1993, 19, 242–249. [Google Scholar] [PubMed]
- Moon, Y.W.; Choi, S.H.; Kim, Y.T.; Sohn, J.H.; Chang, J.; Kim, S.K.; Park, M.S.; Chung, K.Y.; Lee, H.J.; Kim, J.H. Adenosine triphosphate-based chemotherapy response assay (ATP-CRA)-guided platinum-based 2-drug chemotherapy for unresectable nonsmall-cell lung cancer. Cancer 2007, 109, 1829–1835. [Google Scholar] [CrossRef]
- Andreotti, P.; Cree, I.; Kurbacher, C.M.; Hartmann, D.M.; Linder, D.; Harel, G.; Gleiberman, I.; Caruso, P.; Ricks, S.H.; Untch, M. Chemosensitivity testing of human tumors using a microplate adenosine triphosphate luminescence assay: Clinical correlation for cisplatin resistance of ovarian carcinoma. Cancer Res. 1995, 55, 5276–5282. [Google Scholar]
- Chen, Z.; Zhang, S.; Ma, S.; Li, C.; Xu, C.; Shen, Y.; Zhao, J.; Miao, L. Evaluation of the in vitro Chemosensitivity and Correlation with Clinical Outcomes in Lung Cancer using the ATP-TCA. Anti Cancer Agents Med. Chem. 2018, 18, 139–145. [Google Scholar] [CrossRef]
- Glaysher, S.; Gabriel, F.G.; Johnson, P.; Polak, M.E.; Knight, L.A.; Parker, K.; Poole, M.; Narayanan, A.; Cree, I.A.; for the NHS Collaborative Research Programme for Predictive Oncology. Molecular basis of chemosensitivity of platinum pre-treated ovarian cancer to chemotherapy. Br. J. Cancer 2010, 103, 656–662. [Google Scholar] [CrossRef] [Green Version]
- Ugurel, S.; Schadendorf, D.; Pföhler, C.; Neuber, K.; Thoelke, A.; Ulrich, J.; Hauschild, A.; Spieth, K.; Kaatz, M.; Rittgen, W.; et al. In vitro Drug Sensitivity Predicts Response and Survival after Individualized Sensitivity-Directed Chemotherapy in Metastatic Melanoma: A Multicenter Phase II Trial of the Dermatologic Cooperative Oncology Group. Clin. Cancer Res. 2006, 12, 5454–5463. [Google Scholar] [CrossRef] [Green Version]
- Ugurel, S.; Loquai, C.; Terheyden, P.; Schadendorf, D.; Richtig, E.; Utikal, J.; Gutzmer, R.; Rass, K.; Sunderkötter, C.; Stein, A.; et al. Chemosensitivity-directed therapy compared to dacarbazine in chemo-naive advanced metastatic melanoma: A multicenter randomized phase-3 DeCOG trial. Oncotarget 2017, 8, 76029–76043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, F.; Ma, S.; Bian, Y.; Yu, D.; Ma, W.; Miao, M.; Huang, C.; Miao, L. A retrospective study of the correlation of in vitro chemosensitivity using ATP-TCA with patient clinical outcomes in acute myeloid leukemia. Cancer Chemother. Pharmacol. 2019, 85, 509–515. [Google Scholar] [CrossRef]
- Eltabbakh, G.H. Extreme drug resistance assay and response to chemotherapy in patients with primary peritoneal carcinoma. J. Surg. Oncol. 2000, 73, 148–152. [Google Scholar] [CrossRef]
- Eltabbakh, G.H.; Piver, M.S.; Hempling, R.E.; Recio, F.O.; Lele, S.B.; Marchetti, D.L.; Baker, T.R.; Blumenson, L.E. Correlation between extreme drug resistance assay and response to primary paclitaxel and cisplatin in patients with epithelial ovarian cancer. Gynecol. Oncol. 1998, 70, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Holloway, R.W.; Mehta, R.S.; Finkler, N.J.; Li, K.T.; McLaren, C.E.; Parker, R.J.; Fruehauf, J.P. Association between in vitro platinum resistance in the EDR assay and clinical outcomes for ovarian cancer patients. Gynecol. Oncol. 2002, 87, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Brower, S.L.; Fensterer, J.E.; Bush, J.E. The ChemoFx assay: An ex vivo chemosensitivity and resistance assay for predicting patient response to cancer chemotherapy. Methods Mol. Biol. 2008, 414, 57–78. [Google Scholar] [PubMed]
- Suchy, S.L.; Landreneau, R.J.; Schuchert, M.J.; Wang, D.; Ervin, P.R., Jr.; Brower, S.L. Adaptation of a chemosensitivity assay to accurately assess pemetrexed in ex vivo cultures of lung cancer. Cancer Biol. Ther. 2013, 14, 39–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisenthal, L.M. Differential staining cytotoxicity assay: A review. Cancer Cell Cult. 2011, 731, 259–283. [Google Scholar]
- Bird, M.C.; Bosanquet, A.G.; Forskitt, S.; Gilby, E.D. Semi-micro adaptation of a 4-day differential staining cytotoxicity (DiSC) assay for determining the in-vitro chemosensitivity of haematological malignancies. Leuk. Res. 1986, 10, 445–449. [Google Scholar] [CrossRef]
- Meitner, P.A. The fluorescent cytoprint assay: A new approach to in vitro chemosensitivity testing. Oncology 1991, 5, 75–81. [Google Scholar]
- Leone, L.A.; Meitner, P.A.; Myers, T.J.; Grace, W.R.; Gajewski, W.H.; Fingert, H.J.; Rotman, B. Predictive value of the fluorescent cytoprint assay (FCA): A retrospective correlation study of in vitro chemosensitivity and individual responses to chemotherapy. Cancer Investig. 1991, 9, 491–503. [Google Scholar] [CrossRef]
- Goto, H.; Kitagawa, N.; Sekiguchi, H.; Miyagi, Y.; Keino, D.; Sugiyama, M.; Sarashina, T.; Miyagawa, N.; Yokosuka, T.; Hamanoue, S.; et al. The Collagen Gel Droplet–embedded Culture Drug Sensitivity Test in Relapsed Hepatoblastoma. J. Pediatr. Hematol. 2017, 39, 395–401. [Google Scholar] [CrossRef]
- Kobayashi, H.; Tanisaka, K.; Doi, O.; Kodama, K.; Higashiyama, M.; Nakagawa, H.; Miyake, M.; Taki, T.; Hara, S.; Yasutomi, M.; et al. An in vitro chemosensitivity test for solid human tumors using collagen gel droplet embedded cultures. Int. J. Oncol. 1997, 11, 449–455. [Google Scholar] [CrossRef]
- Takamura, Y.; Kobayashi, H.; Taguchi, T.; Motomura, K.; Inaji, H.; Noguchi, S. Prediction of chemotherapeutic response by collagen gel droplet embedded culture-drug sensitivity test in human breast cancers. Int. J. Cancer 2002, 98, 450–455. [Google Scholar] [CrossRef]
- Mathis, S.E.; Alberico, A.; Nande, R.; Neto, W.; Lawrence, L.; McCallister, D.R.; Denvir, J.; Kimmey, G.A.; Mogul, M.; Oakley, G.; et al. Chemo-Predictive Assay for Targeting Cancer Stem-Like Cells in Patients Affected by Brain Tumors. PLoS ONE 2014, 9, e105710. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, C.A.; Kreso, A.; Jamieson, C.H. Cancer Stem Cells and Self-renewal. Clin. Cancer Res. 2010, 16, 3113–3120. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Kong, D.; Ahmad, A.; Bao, B.; Sarkar, F.H. Pancreatic cancer stem cells: Emerging target for designing novel therapy. Cancer Lett. 2013, 338, 94–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Yao, Z.; Jiang, Y.; Keller, E.T. Prostate cancer stem cell biology. Minerva Urol. Nefrol. 2012, 64, 19–33. [Google Scholar] [PubMed]
- Yu, Y.; Ramena, G.; Elble, R.C. The role of cancer stem cells in relapse of solid tumors. Front. Biosci. 2012, 4, 1528–1541. [Google Scholar] [CrossRef]
- Aimola, P.; Desiderio, V.; Graziano, A.; Claudio, P.P. Stem cells in cancer therapy: From their role in pathogenesis to their use as therapeutic agents. Drug News Perspect. 2010, 23, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Malik, B.; Nie, D. Cancer stem cells and resistance to chemo and radio therapy. Front. Biosci. 2012, 4, 2142–2149. [Google Scholar] [CrossRef]
- Reya, T.; Morrison, S.J.; Clarke, M.F.; Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature 2011, 414, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Howard, C.M.; Valluri, J.; Claudio, P.P. Functional drug response assay for cancer stem cells in the era of precision medicine. Transl. Med. Rep. 2017. [Google Scholar] [CrossRef] [Green Version]
- Cortese, A.; Pantaleo, G.; Amato, M.; Lawrence, L.; Mayes, V.; Brown, L.; Sarno, M.R.; Valluri, J.; Claudio, P.P. A new complementary procedure for patients affected by head and neck cancer: Chemo-predictive assay. Int. J. Surg. Case Rep. 2016, 26, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Kelly, S.E.; Di Benedetto, A.; Greco, A.; Howard, C.M.; Sollars, V.E.; Primerano, D.A.; Valluri, J.V.; Claudio, P.P. Rapid Selection and Proliferation of CD133(+) Cells from Cancer Cell Lines: Chemotherapeutic Implications. PLoS ONE 2010, 5, e10035. [Google Scholar] [CrossRef] [Green Version]
- Claudio, P.P.; Mathis, S.E.; Nande, R.; Lawrence, L.; Alberico, A.; Julien, T.D.; Mazagri, R.S.; Marsh, R.; Muizelaar, P.; Denning, K.L.; et al. ChemoID assay for glioblastoma. J. Clin. Oncol. 2015, 33, e13028. [Google Scholar] [CrossRef]
- Claudio, P.P.; Mathis, S.; Nande, R.; Alberico, A.; Neto, W.; Lawrence, L.; Denvir, J.; Kimmey, G.A.; Chowdhary, A.A.; Tirona, M.R.B.T.; et al. Novel chemosensitivity assay for targeting cancer stem-like cells in brain tumors. J. Clin. Oncol. 2014, 32, e13012. [Google Scholar] [CrossRef]
- Raghavan, S.; Mehta, P.; Ward, M.R.; Bregenzer, M.E.; Fleck, E.M.A.; Tan, L.; McLean, K.; Buckanovich, R.J.; Mehta, G. Personalized Medicine–Based Approach to Model Patterns of Chemoresistance and Tumor Recurrence Using Ovarian Cancer Stem Cell Spheroids. Clin. Cancer Res. 2017, 23, 6934–6945. [Google Scholar] [CrossRef] [Green Version]
- Gentles, A.J.; Plevritis, S.K.; Majeti, R.; Alizadeh, A.A. Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. JAMA 2010, 304, 2706–2715. [Google Scholar] [CrossRef] [Green Version]
- Auman, J.T.; McLeod, H.L. Cancer pharmacogenomics: DNA genotyping and gene expression profiling to identify molecular determinants of chemosensitivity. Drug Metab. Rev. 2008, 40, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Tanimoto, K.; Otani, K.; Satoh, K.; Ohtaki, M.; Yoshida, K.; Toge, T.; Yahata, H.; Tanaka, S.; Chayama, K.; et al. Concise prediction models of anticancer efficacy of 8 drugs using expression data from 12 selected genes. Int. J. Cancer 2004, 111, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, R.; Togo, S.; Shimizu, D.; Momiyama, N.; Ishikawa, T.; Ichikawa, Y.; Endo, I.; Kunisaki, C.; Suzuki, H.; Hayasizaki, Y.; et al. Predicting 5-fluorouracil chemosensitivity of liver metastases from colorectal cancer using primary tumor specimens: Three-gene expression model predicts clinical response. Int. J. Cancer 2006, 119, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Shimokuni, T.; Tanimoto, K.; Hiyama, K.; Otani, K.; Ohtaki, M.; Hihara, J.; Yoshida, K.; Noguchi, T.; Kawahara, K.; Natsugoe, S.; et al. Chemosensitivity prediction in esophageal squamous cell carcinoma: Novel marker genes and efficacy-prediction formulae using their expression data. Int. J. Oncol. 2006, 28, 1153–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naoi, Y.; Kishi, K.; Tanei, T.; Tsunashima, R.; Tominaga, N.; Baba, Y.; Kim, S.J.; Taguchi, T.; Tamaki, Y.; Noguchi, S. Prediction of pathologic complete response to sequential paclitaxel and 5-fluorouracil/epirubicin/cyclophosphamide therapy using a 70-gene classifier for breast cancers. Cancer 2011, 117, 3682–3690. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Wang, W.; Zhang, H.; Gao, P.; Fan, B.; Huang, C.; Fu, J.; Chen, G.; Shi, L.; Zhu, H.; et al. Individualized chemotherapy for osteosarcoma and identification of gene mutations in osteosarcoma. Tumor Biol. 2015, 36, 2427–2435. [Google Scholar] [CrossRef] [PubMed]
- Kranzler, H.R.; Smith, R.V.; Schnoll, R.; Moustafa, A.; Greenstreet-Akman, E. Precision medicine and pharmacogenetics: What does oncology have that addiction medicine does not? Addiction 2017, 112, 2086–2094. [Google Scholar] [CrossRef] [PubMed]
- Nath, A.; Wang, J.; Huang, R.S. Pharmacogenetics and Pharmacogenomics of Targeted Therapeutics in Chronic Myeloid Leukemia. Mol. Diagn. Ther. 2017, 21, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Hammoudeh, Z.; Nikolova, D.; Balabanski, L.; Ivanov, S.; Vazharova, R.; Weidner, S.; Toncheva, D. Screening of pharmacogenetic variants associated with drug sensitivity in patients with papillary thyroid carcinoma using next generation sequencing. Biotechnol. Biotechnol. Equip. 2017, 31, 761–765. [Google Scholar] [CrossRef] [Green Version]
- Ludovini, V.; Antognelli, C.; Rulli, A.; Foglietta, J.; Pistola, L.; Eliana, R.; Gori, S. Influence of chemotherapeutic drug-related gene polymorphisms on toxicity and survival of early breast cancer patients receiving adjuvant chemotherapy. BMC Cancer 2017, 17, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.M.; Qiu, C.F.; Zhu, T.; Jin, Y.X.; Li, X.; Yin, J.Y.; Liu, Z.Q. Genetic polymorphisms and platinum-based chemotherapy treatment outcomes in patients with non-small cell lung cancer: A genetic epidemiology study based meta-analysis. Sci. Rep. 2017, 7, 1–19. [Google Scholar]
- Lal, S.; Sutiman, N.; Ooi, L.L.; Wong, Z.W.; Wong, N.S.; Ang, P.C.S.; Chowbay, B. Pharmacogenetics of ABCB5, ABCC5 and RLIP76 and doxorubicin pharmacokinetics in Asian breast cancer patients. Pharm. J. 2017, 17, 337–343. [Google Scholar] [CrossRef]
- Lu, M.; Zhan, X. The crucial role of multiomic approach in cancer research and clinically relevant outcomes. EPMA J. 2018, 9, 77–102. [Google Scholar] [CrossRef] [Green Version]
- Unger, F.T.; Witte, I.; David, K.A. Prediction of individual response to anticancer therapy: Historical and future perspectives. Cell. Mol. Life Sci. 2015, 72, 729–757. [Google Scholar] [CrossRef] [Green Version]
- Leighton, J. A sponge matrix method for tissue culture; formation of organized aggregates of cells in vitro. J. Natl. Cancer Inst. 1951, 12, 545–561. [Google Scholar] [PubMed]
- Sherwin, R.P.; Richters, A.; Yellin, A.E.; Donovan, A.J. Histoculture of human breast cancers. J. Surg. Oncol. 1980, 13, 9–20. [Google Scholar] [CrossRef]
- Weiswald, L.B.; Richon, S.; Massonnet, G.; Guinebretiere, J.M.; Vacher, S.; Laurendeau, I.; Dangles-Marie, V. A short-term colorectal cancer sphere culture as a relevant tool for human cancer biology investigation. Br. J. Cancer 2013, 108, 1720–1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantrell, M.A.; Kuo, C.J. Organoid modeling for cancer precision medicine. Genome Med. 2015, 7, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Pasch, C.A.; Favreau, P.F.; Yueh, A.E.; Babiarz, C.P.; Gillette, A.A.; Sharick, J.T.; Karim, M.R.; Nickel, K.P.; DeZeeuw, A.K.; Sprackling, C.M.; et al. Patient-Derived Cancer Organoid Cultures to Predict Sensitivity to Chemotherapy and Radiation. Clin. Cancer Res. 2019, 25, 5376–5387. [Google Scholar] [CrossRef]
- Verduin, M.; Hoeben, A.; De Ruysscher, D.; Vooijs, M. Patient-Derived Cancer Organoids as Predictors of Treatment Response. Front. Oncol. 2021, 11, 641980. [Google Scholar] [CrossRef]
- Weeber, F.; van de Wetering, M.; Hoogstraat, M.; Dijkstra, K.K.; Krijgsman, O.; Kuilman, T.; Gadellaa-van Hooijdonk, C.G.; van der Velden, D.L.; Peeper, D.S.; Cuppen, E.P.; et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. Proc. Natl. Acad. Sci. USA 2015, 112, 13308–13311. [Google Scholar] [CrossRef] [Green Version]
- Petersen, O.W.; Rønnov-Jessen, L.; Howlett, A.R.; Bissell, M.J. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc. Natl. Acad. Sci. USA 1992, 89, 9064. [Google Scholar] [CrossRef] [Green Version]
- Halfter, K.; Mayer, B. Bringing 3D tumor models to the clinic–predictive value for personalized medicine. Biotechnol. J. 2017, 12, 1600295. [Google Scholar] [CrossRef] [PubMed]
- Thoma, C.R.; Zimmermann, M.; Agarkova, I.; Kelm, J.M.; Krek, W. 3D cell culture systems modeling tumor growth determinants in cancer target discovery. Adv. Drug Deliv. Rev. 2014, 69–70, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Fong, E.L.S.; Toh, T.B.; Yu, H.; Chow, E.K.-H. 3D Culture as a Clinically Relevant Model for Personalized Medicine. SLAS Technol. Transl. Life Sci. Innov. 2017, 22, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Lovitt, C.J.; Shelper, T.B.; Avery, V.M. Evaluation of chemotherapeutics in a three-dimensional breast cancer model. J. Cancer Res. Clin. Oncol. 2015, 141, 951–959. [Google Scholar] [CrossRef]
- Xie, B.Y.; Wu, A.W. Organoid culture of isolated cells from patient-derived tissues with colorectal cancer. Chin. Med. J. 2016, 129, 2469. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.-L.; Ye, H.-M.; Zheng, L.-M.; Ruan, R.-S.; Tzeng, C.-M. Circulating tumor cells (CTCs) as a liquid biopsy material and drug target. Curr. Drug Targets 2014, 15, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Guadagni, S.; Clementi, M.; Mackay, A.R.; Ricevuto, E.; Fiorentini, G.; Sarti, D.; Palumbo, P.; Apostolou, P.; Papasotiriou, I.; Masedu, F.; et al. Real-life multidisciplinary treatment for unresectable colorectal cancer liver metastases including hepatic artery infusion with chemo-filtration and liquid biopsy precision oncotherapy: Observational cohort study. J. Cancer Res. Clin. Oncol. 2020, 146, 1273–1290. [Google Scholar] [CrossRef] [Green Version]
- Guadagni, S.; Fiorentini, G.; Papasotiriou, I.; Apostolou, P.; Masedu, F.; Sarti, D.; Farina, A.R.; Mackay, A.R.; Clementi, M. Circulating tumour cell liquid biopsy in selecting therapy for recurrent cutaneous melanoma with locoregional pelvic metastases: A pilot study. BMC Res. Notes 2020, 13, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guadagni, S.; Fiorentini, G.; De Simone, M.; Masedu, F.; Zoras, O.; Mackay, A.R.; Sarti, D.; Papasotiriou, I.; Apostolou, P.; Catarci, M.; et al. Precision oncotherapy based on liquid biopsies in multidisciplinary treatment of unresectable recurrent rectal cancer: A retrospective cohort study. J. Cancer Res. Clin. Oncol. 2019, 146, 205–219. [Google Scholar] [CrossRef] [Green Version]
- Guadagni, S.; Clementi, M.; Masedu, F.; Fiorentini, G.; Sarti, D.; Deraco, M.; Kusamura, S.; Papasotiriou, I.; Apostolou, P.; Aigner, K.R.; et al. A Pilot Study of the Predictive Potential of Chemosensitivity and Gene Expression Assays Using Circulating Tumour Cells from Patients with Recurrent Ovarian Cancer. Int. J. Mol. Sci. 2020, 21, 4813. [Google Scholar] [CrossRef]
- Nagrath, S.; Sequist, L.V.; Maheswaran, S.; Bell, D.W.; Irimia, D.; Ulkus, L.; Smith, M.R.; Kwak, E.L.; Digumarthy, S.R.; Muzikansky, A.; et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nat. Cell Biol. 2007, 450, 1235–1239. [Google Scholar] [CrossRef] [Green Version]
- Smith, H.S.; Zoli, W.; Volpi, A.; Hiller, A.; Lippman, M.; Swain, S.; Mayall, B.; Dollbaum, C.; Hackett, A.J.; Amadori, D. Preliminary correlations of clinical outcome with in vitro chemosensitivity of second passage human breast cancer cells. Cancer Res. 1990, 50, 2943–2948. [Google Scholar]
- Mehta, R.S.; Bornstein, R.; Yu, I.-R.; Parker, R.J.; McLaren, C.E.; Nguyen, K.P.; Li, K.-T.; Fruehauf, J.P. Breast Cancer Survival and in Vitro Tumor Response in the Extreme Drug Resistance Assay. Breast Cancer Res. Treat. 2001, 66, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Fruehauf, J.P. In vitro assay-assisted treatment selection for women with breast or ovarian cancer. Endocr. Relat. Cancer 2002, 9, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Fruehauf, J.P.; Alberts, D.S. Assay-assisted treatment selection for women with breast or ovarian cancer. Recent Results Cancer Res. 2003, 161, 126–145. [Google Scholar]
- Arienti, C.; Tesei, A.; Verdecchia, G.M.; Framarini, M.; Virzì, S.; Grassi, A.; Scarpi, E.; Turci, L.; Silvestrini, R.; Amadori, D.; et al. Role of Conventional Chemosensitivity Test and Tissue Biomarker Expression in Predicting Response to Treatment of Peritoneal Carcinomatosis From Colon Cancer. Clin. Color. Cancer 2013, 12, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Sensi, F.; D’Angelo, E.; Piccoli, M.; Pavan, P.; Mastrotto, F.; Caliceti, P.; Biccari, A.; Corallo, D.; Urbani, L.; Fassan, M.; et al. Recellularized Colorectal Cancer Patient-Derived Scaffolds as In Vitro Pre-Clinical 3D Model for Drug Screening. Cancers 2020, 12, 681. [Google Scholar] [CrossRef] [Green Version]
TCA Methods | References |
---|---|
Human Tumor Clonogenic Assay (HTCA) | [18,19,20,21] |
3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) Assay | [16,28,29,30,31,32] |
Adenosine Triphosphate (ATP) Assay | [41,42,43,44,45,46,47] |
Extreme Drug Resistance Assay | [53,54,55] |
Tissue Explant Assay (Histodrug Response Assay, HDRA) | [56,57] |
Differential Staining Cytotoxicity Assay (DISC) | [26,58,59] |
Fluorescent Cytoprint Assay (FCA) | [60,61] |
Collagen Gel Droplet-Embedded Culture Drug Sensitivity Test (CD-DST) | [62,63,64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulukaya, E.; Karakas, D.; Dimas, K. Tumor Chemosensitivity Assays Are Helpful for Personalized Cytotoxic Treatments in Cancer Patients. Medicina 2021, 57, 636. https://doi.org/10.3390/medicina57060636
Ulukaya E, Karakas D, Dimas K. Tumor Chemosensitivity Assays Are Helpful for Personalized Cytotoxic Treatments in Cancer Patients. Medicina. 2021; 57(6):636. https://doi.org/10.3390/medicina57060636
Chicago/Turabian StyleUlukaya, Engin, Didem Karakas, and Konstantinos Dimas. 2021. "Tumor Chemosensitivity Assays Are Helpful for Personalized Cytotoxic Treatments in Cancer Patients" Medicina 57, no. 6: 636. https://doi.org/10.3390/medicina57060636
APA StyleUlukaya, E., Karakas, D., & Dimas, K. (2021). Tumor Chemosensitivity Assays Are Helpful for Personalized Cytotoxic Treatments in Cancer Patients. Medicina, 57(6), 636. https://doi.org/10.3390/medicina57060636