Quality of Life Following Urgent LVAD Implantation for ECMO Therapy in Cardiogenic Shock: A Long-Term Follow-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Quality of Life
2.3. Statistical Analysis
2.4. Ethical Approval
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jäämaa-Holmberg, S.; Salmela, B.; Suojaranta, R.; Jokinen, J.J.; Lemström, K.B.; Lommi, J. Extracorporeal membrane oxygenation for refractory cardiogenic shock: Patient survival and health-related quality of life. Eur. J. Cardio-Thoracic Surg. 2018, 55, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Schoenrath, F.; Hoch, D.; Maisano, F.; Starck, C.T.; Seifert, B.; Wenger, U.; Ruschitzka, F.; Wilhelm, M.J. Survival, quality of life and impact of right heart failure in patients with acute cardiogenic shock treated with ECMO. Hear. Lung 2016, 45, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Uil, C.A.D.; Akin, S.; Jewbali, L.S.; Miranda, D.D.R.; Brugts, J.J.; Constantinescu, A.A.; Kappetein, A.P.; Caliskan, K. Short-term mechanical circulatory support as a bridge to durable left ventricular assist device implantation in refractory cardiogenic shock: A systematic review and meta-analysis. Eur. J. Cardio-Thoracic Surg. 2017, 52, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Karagiannidis, C.; Brodie, D.; Strassmann, S.; Stoelben, E.; Philipp, A.; Bein, T.; Müller, T.; Windisch, W. Extracorporeal membrane oxygenation: Evolving epidemiology and mortality. Intensiv. Care Med. 2016, 42, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Khorsandi, M.; Dougherty, S.; Bouamra, O.; Pai, V.; Curry, P.; Tsui, S.; Clark, S.; Westaby, S.; Al-Attar, N.; Zamvar, V. Extra-corporeal membrane oxygenation for refractory cardiogenic shock after adult cardiac surgery: A systematic review and meta-analysis. J. Cardiothorac. Surg. 2017, 12, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, N.P.; Okada, I.; Imamura, T.; Kagami, Y.; Endo, M.; Nitta, D.; Fujino, T.; Muraoka, H.; Minatsuki, S.; Maki, H.; et al. Quality of Life and Influential Factors in Patients Implanted With a Left Ventricular Assist Device. Circ. J. 2015, 79, 2186–2192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, A.L.; Ware, J.E. Measuring Functioning and Well-Being: The Medical Outcomes Study Approach; Stewart, A.L., Ware, J.E., Eds.; with a foreword by Alvin R. Tarlov. Durham N.C.; Duke University Press: London, UK, 1992. [Google Scholar]
- Christiansen, A.S.J.; Møller, M.L.S.; Kronborg, C.; Haugan, K.J.; Køber, L.; Højberg, S.; Brandes, A.; Graff, C.; Diederichsen, S.Z.; Nielsen, J.B.; et al. Comparison of the three-level and the five-level versions of the EQ-5D. Eur. J. Heal. Econ. 2021, 22, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, N.; Tajika, A.; Hasegawa, A.; Kawanishi, N.; Fujita, H.; Tsujino, N.; Jinnin, R.; Uchida, M.; Okamoto, Y.; Akechi, T.; et al. Assessing recurrence of depression using a zero-inflated negative binomial model: A secondary analysis of lifelog data. Psychiatry Res. 2021, 300, 113919. [Google Scholar] [CrossRef] [PubMed]
- Bowen, R.E.S.; Graetz, T.J.; Emmert, D.A.; Avidan, M.S. Statistics of heart failure and mechanical circulatory support in 2020. Ann. Transl. Med. 2020, 8, 827. [Google Scholar] [CrossRef] [PubMed]
- Jakovljevic, D.G.; McDiarmid, A.; Hallsworth, K.; Seferovic, P.M.; Ninkovic, V.M.; Parry, G.; Schueler, S.; Trenell, M.; MacGowan, G.A. Effect of Left Ventricular Assist Device Implantation and Heart Transplantation on Habitual Physical Activity and Quality of Life. Am. J. Cardiol. 2014, 114, 88–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kugler, C.; Malehsa, D.; Tegtbur, U.; Guetzlaff, E.; Meyer, A.L.; Bara, C.; Haverich, A.; Strueber, M. Health-related quality of life and exercise tolerance in recipients of heart transplants and left ventricular assist devices: A prospective, comparative study. J. Heart Lung Transplant. 2011, 30, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Camboni, D.; Philipp, A.; Rottenkolber, V.; Zerdzitzki, M.; Holzamer, A.; Floerchinger, B.; Lunz, D.; Mueller, T.; Schmid, C.; Diez, C. Long-term survival and quality of life after extracorporeal life support: A 10-year report. Eur. J. Cardio-Thorac. Surg. 2017, 52, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Combes, A.; Leprince, P.; Luyt, C.-E.; Bonnet, N.; Trouillet, J.-L.; Léger, P.; Pavie, A.; Chastre, J. Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit. Care Med. 2008, 36, 1404–1411. [Google Scholar] [CrossRef] [PubMed]
- Han, J.J.; Chung, J.; Chen, C.W.; Gaffey, A.C.; Sotolongo, A.; Justice, C.; Ameer, A.E.; Rame, J.E.; Bermudez, C.; Acker, M.A.; et al. Different Clinical Course and Complications in Interagency Registry for Mechanically Assisted Circulatory Support 1 (INTERMACS) Patients Managed With or Without Extracorporeal Membrane Oxygenation. ASAIO J. 2018, 64, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Lamba, H.K.; Kim, M.; Santiago, A.; Hudson, S.; Civitello, A.B.; Nair, A.P.; Loor, G.; Shafii, A.E.; Liao, K.K.; Chatterjee, S. Extracorporeal membrane oxygenation as a bridge to durable left ventricular assist device implantation in INTERMACS-1 patients. J. Artif. Organs 2021. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Huckaby, L.V.; Hickey, G.; Sultan, I.; Kilic, A. Improvements in Functional Status Among Survivors of Orthotopic Heart Transplantation Following High-risk Bridging Modalities. Transplantation 2021. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- DeFilippis, E.M.; Clerkin, K.; Truby, L.K.; Francke, M.; Fried, J.; Masoumi, A.; Garan, A.R.; Farr, M.A.; Takayama, H.; Takeda, K.; et al. ECMO as a Bridge to Left Ventricular Assist Device or Heart Transplantation. JACC Heart Fail. 2021, 9, 281–289. [Google Scholar] [CrossRef]
- Kowalewski, M.; Zieliński, K.; Gozdek, M.; Raffa, G.M.; Pilato, M.; Alanazi, M.; Gilbers, M.; Heuts, S.; Natour, E.; Bidar, E.; et al. Veno-Arterial Extracorporeal Life Support in Heart Transplant and Ventricle Assist Device Centres. Meta-analysis. ESC Heart Fail. 2021, 8, 1064–1075. [Google Scholar] [CrossRef] [PubMed]
All (n = 80) | VA-ECMO (n = 31) | Elective (n = 49) | p Value | |
---|---|---|---|---|
Demographics: | ||||
Age (years, SD) | 55.5 (+/−13.3) | 51.7 (+/−14) | 57.9 (+/−12.4) | <0.05 |
Sex (male, %) | 69 (86) | 25 (80.6) | 44 (89.8) | 0.25 |
Aetiology: | ||||
Ischemic cardiomyopathy (n, %) | 44 (55) | 17 (54.8) | 27 (55.1) | 0.515 |
Dilated cardiomyopathy (n, %) | 31 (38.8) | 10 (32.3) | 21 (42.9) | 0.56 |
Myocarditis (n, %) | 4 (5) | 3 (9.7) | 1 (2) | 0.129 |
Post-partum cardiomyopathy (n, %) | 1 (1.3) | 1 (3.2) | - | |
Pre-operative status: | ||||
LVEF (%, SD) | 16.7 (+/−6.1) | 15.1 (+/−6.8) | 17.5 (+/−5.6) | 0.082 |
Acute infarction (n, %) | 13 (41.9) | N/A | ||
Arrhythmia (n, %) | 8 (25.8) | N/A | ||
Out of centre VA-ECMO (n, %) | 10 (32.3) | N/A | ||
CPR prior to implantation (n, %) | 11 (35.5) | N/A | ||
CPR duration (min., range) | 14.9 (1–60) | N/A | ||
Implantation under CPR (n, %) | 5 (16.1) | N/A | ||
Duration of VA-ECMO support (days, SD) | 12.1 (+/−8) | N/A | ||
Outcome: | ||||
ICU stay (days, SD) | 21 (1–97) | 36 (11–97) | 12 (1–55) | <0.05 |
Hospital stay (days, range) | 42 (11–208) | 59 (18–208) | 32 (11–100) | <0.05 |
Follow-up (months, SD) | 44.4 (+/−25.7) | 46.9 (+/−25.5) | 42.1 (+/−26.2) | 0.526 |
Mortality (n, %) | 36 (45) | 10 (32.3) | 26 (53.1) | 0.07 |
Survival-to-death (months, SD) | 26.7 (+/−17.2) | 20.4 (+/−12.1) | 29.2 (+/−18.5) | 0.244 |
VA-ECMO (n = 31) | Elective (n = 49) | p Value | |
---|---|---|---|
EQ-5D-5L | |||
3 months | 59% (+/−23) | 58% (+/−18) | 0.848 |
6 months | 72% (+/−16) | 62% (+/−21) | 0.233 |
12 months | 66% (+/−15) | 62% (+/−21) | 0.866 |
Last available * | 66% (+/−21) | 65% (+/−23) | 0.944 |
PHQ-9 | |||
3 months | 7.6 (+/−6.8) | 5.8 (+/−4) | 0.49 |
6 months | 5.3 (+/−3.5) | 6.4 (+/−5.1) | 0.733 |
12 months | 5.8 (+/−5.1) | 7.2 (+/−6.2) | 0.614 |
Last available * | 5.7 (+/−5) | 5.6 (0–22) | 0.776 |
* after 46.9 (+/−25.5) months | * after 42.1 (+/−26.2) months |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berger, R.; Hamdoun, H.; Sandoval Boburg, R.; Radwan, M.; Acharya, M.; Waeschle, R.M.; Schlensak, C.; Popov, A.-F.; Risteski, P. Quality of Life Following Urgent LVAD Implantation for ECMO Therapy in Cardiogenic Shock: A Long-Term Follow-Up. Medicina 2021, 57, 747. https://doi.org/10.3390/medicina57080747
Berger R, Hamdoun H, Sandoval Boburg R, Radwan M, Acharya M, Waeschle RM, Schlensak C, Popov A-F, Risteski P. Quality of Life Following Urgent LVAD Implantation for ECMO Therapy in Cardiogenic Shock: A Long-Term Follow-Up. Medicina. 2021; 57(8):747. https://doi.org/10.3390/medicina57080747
Chicago/Turabian StyleBerger, Rafal, Hasan Hamdoun, Rodrigo Sandoval Boburg, Medhat Radwan, Metesh Acharya, Reiner Markus Waeschle, Christian Schlensak, Aron-Frederik Popov, and Petar Risteski. 2021. "Quality of Life Following Urgent LVAD Implantation for ECMO Therapy in Cardiogenic Shock: A Long-Term Follow-Up" Medicina 57, no. 8: 747. https://doi.org/10.3390/medicina57080747
APA StyleBerger, R., Hamdoun, H., Sandoval Boburg, R., Radwan, M., Acharya, M., Waeschle, R. M., Schlensak, C., Popov, A. -F., & Risteski, P. (2021). Quality of Life Following Urgent LVAD Implantation for ECMO Therapy in Cardiogenic Shock: A Long-Term Follow-Up. Medicina, 57(8), 747. https://doi.org/10.3390/medicina57080747