The Urosepsis—A Literature Review
Abstract
:1. Introduction
1.1. Etiology
1.2. Pathophysiology
1.3. Innate Immunity
1.4. Coagulation Disorders
1.5. Immunosuppression
1.6. Tissue and Organic Dysfunctions
1.7. Clinical and Paraclinical Picture
- Fever, temperature above 38 °C, or hypothermia, below 36 °C;
- Tachycardia—over 90/min;
- Tachypnea—over 20 breaths/min or partial pressure of carbon dioxide in the arterial blood (PaCO2) < 32 mm Hg;
- Leukocytosis > 12,000/mm3 or leukopenia < 4000/mm3, or the presence of immature cells in the periphery < 10%.
1.8. Biochemical Markers
1.9. The Cytokines—Biomarkers of Urosepsis
1.10. Treatment
2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rivers, E.; Nguyen, B.; Havstad, S.; Ressler, J.; Muzzin, A.; Knoblich, B.; Peterson, E.; Tomlanovich, M. Early Goal-Directed Therapy in the Treatment of Severe Sepsis and Septic Shock. N. Engl. J. Med. 2001, 345, 1368–1377. [Google Scholar] [CrossRef] [Green Version]
- Reinhart, K.; Brunkhorst, F.M.; Bone, H.-G.; Bardutzky, J.; Dempfle, C.-E.; Forst, H.; Gastmeier, P.; Gerlach, H.; Gründling, M.; John, S.; et al. Prevention, diagnosis, therapy and follow-up care of sepsis: 1st revision of S-2k guidelines of the German Sepsis Society (Deutsche Sepsis-Gesellschaft e.V. (DSG)) and the German Interdisciplinary Association of Intensive Care and Emergency Medicine (Deutsche Interdisziplinäre Vereinigung für Intensiv- und Notfallmedizin (DIVI)). Ger. Med. Sci. 2010, 8. [Google Scholar] [CrossRef]
- Levy, M.M.; Artigas, A.; Phillips, G.S.; Rhodes, A.; Beale, R.; Osborn, T.; Vincent, J.-L.; Townsend, S.; Lemeshow, S.; Dellinger, R.P. Outcomes of the Surviving Sepsis Campaign in intensive care units in the USA and Europe: A prospective cohort study. Lancet Infect. Dis. 2012, 12, 919–924. [Google Scholar] [CrossRef]
- Brun-Buisson, C. The epidemiology of the systemic inflammatory response. Intensiv. Care Med. 2000, 26, S064–S074. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Karl, I.E. The Pathophysiology and Treatment of Sepsis. N. Engl. J. Med. 2003, 348, 138–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagenlehner, F.M.E.; Pilatz, A.; Naber, K.G.; Weidner, W. Therapeutic challenges of urosepsis. Eur. J. Clin. Investig. 2008, 38, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Naber, K.G.; Schaeffer, A.J.; Hynes, C.F. EAU/International Consultation on Urological Infections; European Association of Urology: Arnhem, The Netherlands, 2010. [Google Scholar]
- Grabe, M.; Bjerklund-Johansen, T.E.; Botto, H. Guidelines on Urological Infections; European Association of Urology: Arnhem, The Netherlands, 2010. [Google Scholar]
- Martin, G.S.; Mannino, D.M.; Eaton, S.; Moss, M. The Epidemiology of Sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 2003, 348, 1546–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peach, B.C.; Li, Y.; Cimiotti, J.P. The Weekend Effect in Older Adult Urosepsis Admissions. Med. Care 2020, 58, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Wagenlehner, F.M.E.; Weidner, W.; Naber, K.G.; Wagenlehner, F.M.E. Pharmacokinetic Characteristics of Antimicrobials and Optimal Treatment of Urosepsis. Clin. Pharmacokinet. 2007, 46, 291–305. [Google Scholar] [CrossRef]
- Gastmeier, P.; Kampf, G.; Wischnewski, N.; Hauer, T.; Schulgen, G.; Schumacher, M.; Daschner, F.; Rüden, H. Prevalence of nosocomial infections in representative German hospitals. J. Hosp. Infect. 1998, 38, 37–49. [Google Scholar] [CrossRef]
- Kalra, O.P. Approach to a patient with urosepsis. J. Glob. Infect. Dis. 2009, 1, 57–63. [Google Scholar] [CrossRef]
- Bone, R.C.; Grodzin, C.J.; Balk, R.A. Sepsis: A New Hypothesis for Pathogenesis of the Disease Process. Chest 1997, 112, 235–243. [Google Scholar] [CrossRef]
- van der Poll, T.; Opal, S.M. Host-pathogen interactions in sepsis. Lancet Infect. Dis. 2008, 8, 32–43. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; de Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. Working group on sepsis-related problems of the European society of intensive care medicine: The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Remick, D.G. Pathophysiology of Sepsis. Am. J. Pathol. 2007, 170, 1435–1444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, F.B.; Chang, A.; Ruf, W.; Morrissey, J.; Hinshaw, L.; Catlett, R.; Blick, K.; Edgington, T.S. Lethal E. coli septic shock is prevented by blocking tissue factor with monoclonal antibody. Circ. Shock 1991, 33, 127–134. [Google Scholar]
- Hotchkiss, R.S.; Tinsley, K.W.; Swanson, P.E.; Schmieg, R.E.; Hui, J.J.; Chang, K.C.; Osborne, D.F.; Freeman, B.D.; Cobb, J.P.; Buchman, T.; et al. Sepsis-Induced Apoptosis Causes Progressive Profound Depletion of B and CD4+T Lymphocytes in Humans. J. Immunol. 2001, 166, 6952–6963. [Google Scholar] [CrossRef] [Green Version]
- Heagy, W.; Hansen, C.; Nieman, K.; Cohen, M.; Richardson, C.; Rodriguez, J.L.; West, M.A. Impaired ex vivo lipopolysaccharide-stimulated whole blood tumor necrosis factor production may identify “septic” intensive care unit patients. Shock 2000, 14, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.E.; Puskarich, M.A. Sepsis-induced tissue hypoperfusion. Crit. Care Nurs. Clin. N. Am. 2011, 23, 115–125. [Google Scholar] [CrossRef]
- Poelaert, J.; Declerck, C.; Vogelaers, D.; Colardyn, F.; Visser, C.A. Left ventricular systolic and diastolic function in septic shock. Intensiv. Care Med. 1997, 23, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Jardin, F.; Fourme, T.; Page, B.; Loubières, Y.; Vieillard-Baron, A.; Beauchet, A.; Bourdarias, J.P. Persistent preload defect in severe sepsis despite fluid loading: A longitudinal echocardiographic study in patients with septic shock. Chest 1999, 116, 1354–1359. [Google Scholar] [CrossRef]
- Gyawali, B.; Ramakrishna, K.; Dhamoon, A.S. Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Med. 2019, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Seymour, C.W.; Liu, V.X.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; Deutschman, C.S.; Escobar, G.J.; Angus, D.C.; Iwashyna, T.J.; Brunkhorst, F.M.; et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 762–774. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, F.L.; Bota, D.P.; Bross, A.; Melot, C.; Vincent, J.-L. Serial Evaluation of the SOFA Score to Predict Outcome in Critically Ill Patients. JAMA 2001, 286, 1754–1758. [Google Scholar] [CrossRef] [Green Version]
- Moreno, R.; Vincent, J.-L.; Matos, R.T.; Mendonça, A.; Cantraine, F.; Thijs, L.; Takala, J.; Sprung, C.; Antonelli, M.; Bruining, H.; et al. The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Intensiv. Care Med. 1999, 25, 686–696. [Google Scholar] [CrossRef]
- Jones, A.E.; Trzeciak, S.; Kline, J.A. The Sequential Organ Failure Assessment score for predicting outcome in patients with severe sepsis and evidence of hypoperfusion at the time of emergency department presentation. Crit. Care Med. 2009, 37, 1649–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charles, P.E.; Ladoire, S.; Aho, S.; Quenot, J.-P.; Doise, J.-M.; Prin, S.; Olsson, N.-O.; Blettery, B. Serum procalcitonin elevation in critically ill patients at the onset of bacteremia caused by either gram negative or gram positive bacteria. BMC Infect. Dis. 2008, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.L.; Snider, R.; Nylen, E.S. Procalcitonin in sepsis and systemic inflammation: A harmful biomarker and a therapeutic target. Br. J. Pharmacol. 2009, 159, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Linscheid, P.; Seboek, D.; Schaer, D.J.; Zulewski, H.; Keller, U.; Müller, B. Expression and secretion of procalcitonin and calcitonin gene-related peptide by adherent monocytes and by macrophage-activated adipocytes. Crit. Care Med. 2004, 32, 1715–1721. [Google Scholar] [CrossRef] [PubMed]
- Linscheid, P.; Seboek, D.; Nylen, E.S.; Langer, I.; Schlatter, M.; Becker, K.L.; Keller, U.; Müller, B. In Vitro and in Vivo Calcitonin I Gene Expression in Parenchymal Cells: A Novel Product of Human Adipose Tissue. Endocrinology 2003, 144, 5578–5584. [Google Scholar] [CrossRef] [PubMed]
- Balci, C.; Sungurtekin, H.; Gürses, E.; Sungurtekin, U.; Kaptanoğlu, B. Usefulness of procalcitonin for diagnosis of sepsis in the intensive care unit. Crit. Care 2002, 7, 85–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samsudin, I.; Vasikaran, S.D. Clinical Utility and Measurement of Procalcitonin. Clin. Biochem. Rev. 2017, 38, 59–68. [Google Scholar] [PubMed]
- Moretti, D.; Ramirez, M.M.; Settecase, C.J.; Bagilet, D.H.; Quaglino, M.B. Usefulness of procalcitonin upon admission to intensive care in the diagnosis and prognosis of sepsis. Med. Intensiva. 2013, 37, 156–162. [Google Scholar] [CrossRef]
- Riedel, S. Procalcitonin and the role of biomarkers in the diagnosis and management of sepsis. Diagn. Microbiol. Infect. Dis. 2012, 73, 221–227. [Google Scholar] [CrossRef]
- Luo, X.; Yang, X.; Li, J.; Zou, G.; Lin, Y.; Qing, G.; Yang, R.; Yao, W.; Ye, X. The procalcitonin/albumin ratio as an early diagnostic predictor in discriminating urosepsis from patients with febrile urinary tract infection. Medicine 2018, 97, e11078. [Google Scholar] [CrossRef]
- Vigué, B.; Leblanc, P.-E.; Moati, F.; Pussard, E.; Foufa, H.; Rodrigues, A.; Figueiredo, S.; Harrois, A.; Mazoit, J.-X.; Rafi, H.; et al. Mid-regional pro-adrenomedullin (MR-proADM), a marker of positive fluid balance in critically ill patients: Results of the ENVOL study. Crit. Care 2016, 20, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Ba, Z.F.; Chaudry, I.H.; Wang, P. Adrenomedullin binding protein-1 modulates vascular responsiveness to adrenomedullin in late sepsis. Am. J. Physiol. Integr. Comp. Physiol. 2002, 283, R553–R560. [Google Scholar] [CrossRef] [Green Version]
- Angeletti, S.; Battistoni, F.; Fioravanti, M.; Bernardini, S.; Dicuonzo, G. Procalcitonin and mid-regional pro-adrenomedullin test combination in sepsis diagnosis. Clin. Chem. Lab. Med. 2012, 51, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, M.E.; Miltiades, A.N.; Gaieski, D.F.; Goyal, M.; Fuchs, B.D.; Shah, C.V.; Bellamy, S.L.; Christie, J.D. Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Crit. Care Med. 2009, 37, 1670–1677. [Google Scholar] [CrossRef] [PubMed]
- Krzystek-Korpacka, M.; Mierzchala, M.; Neubauer, K.; Durek, G.; Gamian, A. Midkine, a multifunctional cytokine, in patients with severe sepsis and septic shock: A pilot study. Shock 2011, 35, 471–477. [Google Scholar] [CrossRef]
- Bozza, F.A.; Salluh, J.I.; Japiassu, A.M.; Soares, M.; Assis, E.F.; Gomes, R.N.; Bozza, M.T.; Castro-Faria-Neto, H.C.; Bozza, P.T. Cytokine profiles as markers of disease severity in sepsis: A multiplex analysis. Crit. Care 2007, 11, R49. [Google Scholar] [CrossRef] [Green Version]
- Tschoeke, S.K.; Oberholzer, A.; Moldawer, L.L. Interleukin-18: A novel prognostic cytokine in bacteria-induced sepsis. Crit. Care Med. 2006, 34, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Opal, S.M. Endotoxin and cytokine detection systems as biomarkers for sepsis-induced renal injury. Contrib. Nephrol. 2007, 156, 220–226. [Google Scholar] [PubMed]
- Yousef, A.A.; Amr, Y.M.; Suliman, G.A. The diagnostic value of serum leptin monitoring and its correlation with tumor necrosis factor-α in critically ill patients: A prospective observational study. Crit. Care 2010, 14, R33. [Google Scholar] [CrossRef] [Green Version]
- Mouncey, P.; Osborn, T.M.; Power, G.S.; Harrison, D.; Sadique, Z.; Grieve, R.; Jahan, R.; Harvey, S.; Bell, D.; Bion, J.; et al. Trial of Early, Goal-Directed Resuscitation for Septic Shock. N. Engl. J. Med. 2015, 372, 1301–1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ARISE Investigators; ANZICS Clinical Trials Group; Peake, S.L.; Delaney, A.; Bailey, M.; Bellomo, R.; Cameron, P.A.; Cooper, D.J.; Higgins, A.M.; Holdgate, A.; et al. Goal-directed resuscitation for patients with early septic shock. N. Engl. J. Med. 2014, 371, 1496, ProCESS Investigators. [Google Scholar] [PubMed] [Green Version]
- The PRISM Investigators. Early, Goal-Directed Therapy for Septic Shock—A Patient-Level Meta-Analysis. N. Engl. J. Med. 2017, 376, 2223. [Google Scholar] [CrossRef] [Green Version]
- de Sousa Morais, N.; Pereira, J.P.; Mota, P.; Carvalho-Dias, E.; Torres, J.N.; Lima, E. Percutaneous nephrostomy vs. ureteral stent for hydronephrosis secondary to ureteric calculi: Impact on spontaneous stone passage and health-related quality of life-a prospective study. Urolithiasis 2019, 47, 567–573. [Google Scholar] [CrossRef]
- Shoshany, O.; Erlich, T.; Golan, S.; Kleinmann, N.; Baniel, J.; Rosenzweig, B.; Eisner, A.; Mor, Y.; Ramon, J.; Winkler, H.; et al. Ureteric stent versus percutaneous nephrostomy for acute ureteral obstruction-clinical outcome and quality of life: A bi-center prospective study. BMC Urol. 2019, 19, 79. [Google Scholar] [CrossRef] [Green Version]
- Loghin, A.; Preda, O.; Bacârea, V.; Moldovan, C.; Porav-Hodade, D.; Dema, A.; Berger, N.; Borda, A. Predictive preoperatory variables of the prostate tumor volume. Romanian J. Morphol. Embryol. 2011, 52, 363–368. [Google Scholar]
- Chennamsetty, A.; Khourdaji, I.; Burks, F.; Killinger, K.A. Contemporary diagnosis and management of Fournier’s gangrene. Ther. Adv. Urol. 2015, 7, 203–215. [Google Scholar] [CrossRef] [Green Version]
- Dellinger, R.P.; The Surviving Sepsis Campaign Guidelines Committee Including the Pediatric Subgroup; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock, 2012. Intensiv. Care Med. 2013, 39, 165–228. [Google Scholar] [CrossRef]
- Howell, M.D.; Davis, A.M. Management of Sepsis and Septic Shock. JAMA 2017, 317, 847. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, H.; Oda, S.; Matsuda, K. Continuous hemodiafiltration with cytokine-adsorbing hemofilter in the treatment of severe sepsis and septic shock. Contrib. Nephrol. 2007, 156, 365–370. [Google Scholar]
- Nakamura, M.; Oda, S.; Sadahiro, T.; Hirayama, Y.; Watanabe, E.; Tateishi, Y.; Nakada, T.-A.; Hirasawa, H. Treatment of Severe Sepsis and Septic Shock by CHDF Using a PMMA Membrane Hemofilter as a Cytokine Modulator. Contrib. Nephrol. 2010, 166, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Zagli, G.; Bonizzoli, M.; Spina, R.; Cianchi, G.; Pasquini, A.; Anichini, V.; Matano, S.; Tarantini, F.; Di Filippo, A.; Maggi, E.; et al. Effects of hemoperfusion with an immobilized polymyxin-B fiber column on cytokine plasma levels in patients with abdominal sepsis. Minerva Anestesiol. 2010, 76, 405–412. [Google Scholar]
- Cao, Y.-Z.; Tu, Y.-Y.; Chen, X.; Wang, B.-L.; Zhong, Y.-X.; Liu, M.-H. Protective effect of Ulinastatin against murine models of sepsis: Inhibition of TNF-α and IL-6 and augmentation of IL-10 and IL-13. Exp. Toxicol. Pathol. 2012, 64, 543–547. [Google Scholar] [CrossRef]
- Suzuki, T.; Shimizu, T.; Szalay, L.; Choudhry, M.A.; Rue, L.W., 3rd; Bland, K.I.; Chaudry, I.H. Androstenediol ameliorates alterations in immune cells cytokine production capacity in a two-hit model of trauma-hemorrhage and sepsis. Cytokine 2006, 34, 76–84. [Google Scholar] [CrossRef]
- Dolinay, T.; Kim, Y.S.; Howrylak, J.; Hunninghake, G.M.; An, C.H.; Fredenburgh, L.; Massaro, A.F.; Rogers, A.; Gazourian, L.; Nakahira, K.; et al. Inflammasome-regulated Cytokines Are Critical Mediators of Acute Lung Injury. Am. J. Respir. Crit. Care Med. 2012, 185, 1225–1234. [Google Scholar] [CrossRef]
- Trapnell, B.C. A novel biomarker-guided immunomodulatory approach for the therapy of sepsis. Am. J. Respir. Crit. Care Med. 2009, 180, 585–586. [Google Scholar] [CrossRef] [PubMed]
- Meisel, C.; Schefold, J.C.; Pschowski, R.; Baumann, T.; Hetzger, K.; Gregor, J.; Weber-Carstens, S.; Hasper, D.; Keh, D.; Zuckermann, H.; et al. Granulocyte-macrophage colony-stimu-lating factor to reverse sepsis-associated immuno-suppression: A double-blind, randomized, placebo-controlled multicenter trial. Am. J. Respir. Crit. Care Med. 2009, 180, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Hiraki, S.; Ono, S.; Tsujimoto, H.; Kinoshita, M.; Takahata, R.; Miyazaki, H.; Saitoh, D.; Hase, K. Neutralization of interleukin-10 or transforming growth factor-beta decreases the percentages of CD4+ CD25+ Foxp3+ regulatory T-cells in septic mice, thereby leading to an improved survival. Surgery 2012, 151, 313–332. [Google Scholar] [CrossRef] [PubMed]
Innate immunity | activation of macrophages, monocytes, neutrophils and NK T cells when binding with PAMPs | secretion of proinflammatory cytokines | leukocyte activation and proliferation, complement activation, overexpression of endothelial adhesion molecules, tissue factor production |
inflammasomes determine cytokines and caspase production | apoptosis | ||
Coagulation disorders | destroyed endothelial cells, monocytes and polymorphonuclear cells release the tissue factor | thrombin production, platelet activation and platelet-fibrin clot formation | microthrombi cause local hypoperfusion that leads to tissue hypoxia and organ dysfunction |
increase levels of TNFα and IL-1β determine plasminogen tissue activators to be secreted in the endothelium | microthrombosis | ||
low levels of plasma C protein, S protein and thrombomodulin | Activation of the coagulation cascade | ||
Immunosuppression | Apoptosis and decrease of inflammatory cytokines IL-6 and TNF | low number of helper and natural killer T cells | the immune system is not able to organize an effective response to secondary infection |
neutrophils express fewer chemokine receptors | decreased chemotaxis |
SOFA Score | 0 | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
Respiratory system The ratio between the partial pressure of arterial O2 and inspired O2 (PaO2/FiO2 mmHg) | >400 | 300–400 | 200–300 | <200 and mechanical ventilation | <100 and mechanical ventilation |
Nervous system Glasgow score | 15 | 13–14 | 10–12 | 6–10 | <6 |
Cardiovascular system Mean blood pressure (MBP) or administration of vasoactive agents | MBP > 70 mmGg | MBP < 70 mmHg | Dopamine < 5 μg/kg/min or dobutamine (regardless of the dose) | Dopamine > 5 μg/kg/min or adrenaline ≤ 0.1 μg/kg/min or noradrenaline ≤ 0.1 μg/kg/min | Dopamine > 15 μg/kg/min or adrenaline > 0.1 μg/kg/min or noradrenaline > 0.1 μg/kg/min |
Hepatic function Bilirubin (mg/dL) | <1.2 | 1.2–1.9 | 2–5.9 | 6–11.9 | >12 |
Renal function Creatinine (mg/dL) | <1.2 | 1.2–1.9 | 2–3.4 | 3.5–4.9 | >5 |
Coagulation Thrombocytes × 103/µL | >150 | 100–149 | 50–99 | 20–49 | <20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guliciuc, M.; Maier, A.C.; Maier, I.M.; Kraft, A.; Cucuruzac, R.R.; Marinescu, M.; Şerban, C.; Rebegea, L.; Constantin, G.B.; Firescu, D. The Urosepsis—A Literature Review. Medicina 2021, 57, 872. https://doi.org/10.3390/medicina57090872
Guliciuc M, Maier AC, Maier IM, Kraft A, Cucuruzac RR, Marinescu M, Şerban C, Rebegea L, Constantin GB, Firescu D. The Urosepsis—A Literature Review. Medicina. 2021; 57(9):872. https://doi.org/10.3390/medicina57090872
Chicago/Turabian StyleGuliciuc, Mădălin, Adrian Cornel Maier, Ioana Maria Maier, Alin Kraft, Roxana Ramona Cucuruzac, Monica Marinescu, Cristina Şerban, Laura Rebegea, Georgiana Bianca Constantin, and Dorel Firescu. 2021. "The Urosepsis—A Literature Review" Medicina 57, no. 9: 872. https://doi.org/10.3390/medicina57090872
APA StyleGuliciuc, M., Maier, A. C., Maier, I. M., Kraft, A., Cucuruzac, R. R., Marinescu, M., Şerban, C., Rebegea, L., Constantin, G. B., & Firescu, D. (2021). The Urosepsis—A Literature Review. Medicina, 57(9), 872. https://doi.org/10.3390/medicina57090872