Aging of the Nigrostriatal Tract in the Human Brain: A Diffusion Tensor Imaging Study
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Diffusion Tensor Imaging
2.3. Diffusion Tensor Tractography
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019, 15, 565–581. [Google Scholar] [CrossRef] [PubMed]
- Carmona, J.J.; Michan, S. Biology of healthy aging and longevity. Rev. Investig. Clin. 2016, 68, 7–16. [Google Scholar]
- Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature 2016, 539, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Burke, R.E.; O’Malley, K. Axon degeneration in Parkinson’s disease. Exp. Neurol. 2013, 246, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.C.; Ulane, C.M.; Burke, R.E. Cinical progression in Parkinson disease and the neurobiology of axons. Ann. Neurol. 2010, 67, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Andica, C.; Kamagata, K.; Hatano, T.; Okuzumi, A.; Saito, A.; Nakazawa, M.; Ueda, R.; Motoi, Y.; Kamiya, K.; Suzuki, M.; et al. Neurite orientation dispersion and density imaging of the nigrostriatal pathway in Parkinson’s disease: Retrograde degeneration observed by tract-profile analysis. Parkinsonism Relat. Disord. 2018, 51, 55–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikemoto, S. Brain reward circuitry beyond the mesolimbic dopamine system: A neurobiological theory. Neurosci. Biobehav. Rev. 2010, 35, 129–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieuwenhuys, R.; Voogd, J.; van Huijzen, C. The Human Central Nervous System; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Gunbey, H.P.; Ercan, K.; Fındıkoglu, A.S.; Bulut, H.T.; Karaoglanoglu, M.; Arslan, H. The limbic degradation of aging brain: A quantitative analysis with diffusion tensor imaging. Sci. World J. 2014, 2014, 196513. [Google Scholar] [CrossRef]
- Sullivan, E.V.; Pfefferbaum, A. Diffusion tensor imaging and aging. Neurosci. Biobehav. Rev. 2006, 30, 749–761. [Google Scholar] [CrossRef]
- Jang, S.H.; Cho, S.-H.; Chang, M.C. Age-Related Degeneration of the Fornix in the Human Brain: A Diffusion Tensor Imaging Study. Int. J. Neurosci. 2011, 121, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Lebel, C.; Gee, M.; Camicioli, R.; Wieler, M.; Martin, W.; Beaulieu, C. Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage 2012, 60, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Stadlbauer, A.; Salomonowitz, E.; Strunk, G.; Hammen, T.; Ganslandt, O. Quantitative diffusion tensor fiber tracking of age-related changes in the limbic system. Eur. Radiol. 2008, 18, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, E.V.; Rohlfing, T.; Pfefferbaum, A. Quantitative fiber tracking of lateral and interhemispheric white matter systems in normal aging: Relations to timed performance. Neurobiol. Aging 2010, 31, 464–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, W.-Q.; Yeoh, C.-S.; Rumpel, H.; Nadkarni, N.; Lye, W.-K.; Tan, E.-K.; Chan, L.-L. Deterministic tractography of the nigrostriatal-nigropallidal pathway in Parkinson’s disease. Sci. Rep. 2015, 5, 17283. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, I.-W.; Buckley, S.; Coffey, C.S.; Foster, E.; Mendick, S.; Seibyl, J.; Schuff, N. Diffusion tensor imaging of the nigrostriatal fibers in Parkinson’s disease. Mov. Disord. 2015, 30, 1229–1236. [Google Scholar] [CrossRef]
- Song, Y.J.C.; Korgaonkar, M.S.; Armstrong, L.V.; Eagles, S.; Williams, L.M.; Grieve, S.M. Oractography of the Brainstem in Major Depressive Disorder Using Diffusion Tensor Imaging. PLoS ONE 2014, 9, e84825. [Google Scholar] [CrossRef]
- Smith, S.M.; Jenkinson, M.; Woolrich, M.W.; Beckmann, C.F.; Behrens, T.E.; Johansen-Berg, H.; Bannister, P.R.; De Luca, M.; Drobnjak, I.; Flitney, D.E.; et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 2004, 23, S208–S219. [Google Scholar] [CrossRef] [Green Version]
- Behrens, T.E.J.; Johansen-Berg, H.; Woolrich, M.W.; Smith, S.; Wheeler-Kingshott, C.A.G.; Boulby, P.A.; Barker, G.; Sillery, E.L.; Sheehan, K.; Ciccarelli, O.; et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci. 2003, 6, 750–757. [Google Scholar] [CrossRef]
- Kunimatsu, A.; Aoki, S.; Masutani, Y.; Abe, O.; Hayashi, N.; Mori, H.; Masumoto, T.; Ohtomo, K. The Optimal Trackability Threshold of Fractional Anisotropy for Diffusion Tensor Tractography of the Corticospinal Tract. Magn. Reson. Med. Sci. 2004, 3, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Behrens, T.E.J.; Berg, H.J.; Jbabdi, S.; Rushworth, M.F.S.; Woolrich, M.W. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 2007, 34, 144–155. [Google Scholar] [CrossRef]
- Cohen, C. Statistical power analysis. Curr. Dir. Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
- Jang, S.H.; Kim, S.H.; Kim, O.R.; Byun, W.M.; Kim, M.-S.; Seo, J.P.; Chang, M.C. Cingulum injury in patients with diffuse axonal injury: A diffusion tensor imaging study. Neurosci. Lett. 2013, 543, 47–51. [Google Scholar] [CrossRef]
- Assaf, Y.; Pasternak, O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: A review. J. Mol. Neurosci. 2008, 34, 51–61. [Google Scholar] [CrossRef]
- Pagani, E.; Agosta, F.; Rocca, M.A.; Caputo, D.; Filippi, M. Voxel-based analysis derived from fractional anisotropy images of white matter volume changes with aging. Neuroimage 2008, 41, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Inglese, M.; Ge, Y. Quantitative MRI: Hidden age-related changes in brain tissue. Top Magn. Reson. Imaging 2004, 15, 355–363. [Google Scholar] [CrossRef]
- Raghunathan, R.; Polinski, N.K.; Klein, J.; Hogan, J.D.; Shao, C.; Khatri, K.; Leon, D.R.; McComb, M.E.; Manfredsson, F.P.; Sortwell, C.E.; et al. Glycomic and Proteomic Changes in Aging Brain Nigrostriatal Pathway. Mol. Cell. Proteom. 2018, 17, 1778–1787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kübler, D.; Schroll, H.; Hamker, F.H.; Joutsa, J.; Buchert, R.; Kühn, A.A. The effect of dopamine on response inhibition in Parkinson’s disease relates to age-dependent patterns of nigrostriatal degeneration. Parkinsonism Relat. Disord. 2019, 63, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Drouin-Ouellet, J.; Gibrat, C.; Bousquet, M.; Calon, F.; Kriz, J.; Cicchetti, F. The role of the MYD88-dependent pathway in MPTP-induced brain dopaminergic degeneration. J. Neuroinflamm. 2011, 8, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, I.J.; Madden, D.J.; Vaidya, C.J.; Howard, D.V.; Howard, J.H., Jr. Age-related differences in multiple measures of white matter integrity: A diffusion tensor imaging study of healthy aging. Hum. Brain Mapp. 2010, 31, 378–390. [Google Scholar] [CrossRef] [Green Version]
- Gillies, G.E.; Pienaar, I.S.; Vohra, S.; Qamhawi, Z. Sex differences in Parkinson’s disease. Front. Neuroendocrinol. 2014, 35, 370–384. [Google Scholar] [CrossRef] [Green Version]
- Michielse, S.; Coupland, N.; Camicioli, R.; Carter, R.; Seres, P.; Sabino, J.; Malykhin, N. Selective effects of aging on brain white matter microstructure: A diffusion tensor imaging tractography study. NeuroImage 2010, 52, 1190–1201. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, A.; Periot, O.; Dilharreguy, B.; Hiba, B.; Bordessoules, M.; Chanraud, S.; Pérès, K.; Amieva, H.; Dartigues, J.-F.; Allard, M.; et al. Age-related modifications of diffusion tensor imaging parameters and white matter hyperintensities as inter-dependent processes. Front. Aging Neurosci. 2016, 7, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, G.J.M.; Alexander, D.C. Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2005, 360, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K. Diffusion tensor tractography should be used with caution. Proc. Natl. Acad. Sci. USA 2009, 106, E14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Young | Middle | Old | p-Value | ||
---|---|---|---|---|---|
Nigrostriatal tract | FA | 0.429 (±0.03) | 0.422 (±0.03) | 0.412 (±0.03) | 0.241 |
TV | 494.354 (±168.24) | 419.647 (±139.31) | 303.611 (±131.43) | 0.001 * | |
Young vs. Middle | Middle vs. Old | Young vs. Old | |||
Post-hoc p-value | FA | 0.447 | 0.395 | 0.093 | |
TV | 0.121 | <0.001 * | 0.026 * |
Young | Middle | Old | ANOVA p-Value | |||
---|---|---|---|---|---|---|
Nigrostriatal tract | Males | FA | 0.428 (±0.03) | 0.428 (±0.03) | 0.409 (±0.03) | 0.256 |
TV | 445.885 (±151.56) | 423.900 (±143.12) | 285.583 (±140.28) | 0.022 * | ||
Females | FA | 0.432 (±0.04) | 0.413 (±0.03) | 0.419 (±0.04) | 0.518 | |
TV | 551.636 (±175.71) | 413.571 (±144.77) | 339.667 (±114.46) | 0.032 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, J.-P.; Koo, D.-K. Aging of the Nigrostriatal Tract in the Human Brain: A Diffusion Tensor Imaging Study. Medicina 2021, 57, 994. https://doi.org/10.3390/medicina57090994
Seo J-P, Koo D-K. Aging of the Nigrostriatal Tract in the Human Brain: A Diffusion Tensor Imaging Study. Medicina. 2021; 57(9):994. https://doi.org/10.3390/medicina57090994
Chicago/Turabian StyleSeo, Jeong-Pyo, and Dong-Kyun Koo. 2021. "Aging of the Nigrostriatal Tract in the Human Brain: A Diffusion Tensor Imaging Study" Medicina 57, no. 9: 994. https://doi.org/10.3390/medicina57090994
APA StyleSeo, J. -P., & Koo, D. -K. (2021). Aging of the Nigrostriatal Tract in the Human Brain: A Diffusion Tensor Imaging Study. Medicina, 57(9), 994. https://doi.org/10.3390/medicina57090994