Fluoroscopy-Assisted C1–C2 Posterior Fixation for Atlantoaxial Instability: A Single-Center Case Series of 78 Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection and Study Setting
2.2. Transarticular Screw Technique
2.3. Screw and Rod Construct Technique
2.4. Statistics
3. Results
3.1. Baseline Data
3.2. Treatment Data
3.3. Short-Term Outcome and Adverse Events
3.4. Functional Outcome
4. Discussion
4.1. Future Perspectives and Strategies to Avoid VAI
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pryputniewicz, D.M.; Hadley, M.N. Axis Fractures. Neurosurgery 2010, 66, A68–A82. [Google Scholar] [CrossRef]
- Da Côrte, F.C.; Neves, N. Cervical spine instability in rheumatoid arthritis. Eur. J. Orthop. Surg. Traumatol. 2013, 24, 24. [Google Scholar] [CrossRef]
- Huang, D.G.; Hao, D.J.; He, B.R.; Wu, Q.N.; Liu, T.J.; Wang, X.D.; Guo, H.; Fang, X.Y. Posterior Atlantoaxial Fixation: A Review of All Techniques. Spine J. 2015, 15, 2271–2281. [Google Scholar] [CrossRef] [PubMed]
- Bourdillon, P.; Perrin, G.; Lucas, F.; Debarge, R.; Barrey, C. C1-C2 Stabilization by Harms Arthrodesis: Indications, Technique, Complications and Outcomes in a Prospective 26-Case Series. Orthop. Traumatol. Surg. Res. OTSR 2014, 100, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Grob, D.; Crisco, J.J.; Panjabi, M.M.; Wang, P.; Dvorak, J. Biomechanical Evaluation of Four Different Posterior Atlantoaxial Fixation Techniques. Spine 1992, 17, 480–490. [Google Scholar] [CrossRef]
- Jeon, S.W.; Jeong, J.H.; Choi, G.H.; Moon, S.M.; Hwang, H.S.; Choi, S.K. Clinical Outcome of Posterior Fixation of the C1 Lateral Mass and C2 Pedicle by Polyaxial Screw and Rod. Clin. Neurol. Neurosurg. 2012, 114, 539–544. [Google Scholar] [CrossRef]
- Magerl, F.; Seemann, P.-S. Stable Posterior Fusion of the Atlas and Axis by Transarticular Screw Fixation. In Cervical Spine I; Springer: Vienna, Austria, 1987; pp. 322–327. [Google Scholar]
- Harms, J.; Melcher, R.P. Posterior C1-C2 Fusion with Polyaxial Screw and Rod Fixation. Spine 2001, 26, 2467–2471. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Desai, K.I.; Muzumdar, D.P.; Cooper, P.R.; Benzel, E.C.; Sonntag, V.K.H.; McCormick, P.C.; Kaiser, M.G. Atlantoaxial Fixation Using Plate and Screw Method: A Report of 160 Treated Patients. Neurosurgery 2002, 51, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Melcher, R.P.; Puttlitz, C.M.; Kleinstueck, F.S.; Lotz, J.C.; Harms, J.; Bradford, D.S. Biomechanical Testing of Posterior Atlantoaxial Fixation Techniques. Spine 2002, 27, 2435–2440. [Google Scholar] [CrossRef]
- Elliott, R.E.; Tanweer, O.; Boah, A.; Morsi, A.; Ma, T.; Frempong-Boadu, A.; Smith, M.L. Outcome Comparison of Atlantoaxial Fusion with Transarticular Screws and Screw-Rod Constructs: Meta-Analysis and Review of Literature. J. Spinal Disord. Tech. 2014, 27, 11–28. [Google Scholar] [CrossRef]
- Yoshida, M.; Neo, M.; Fujibayashi, S.; Nakamura, T. Comparison of the Anatomical Risk for Vertebral Artery Injury Associated with the C2-Pedicle Screw and Atlantoaxial Transarticular Screw. Spine 2006, 31, E513–E517. [Google Scholar] [CrossRef] [Green Version]
- Hussain, I.; Cosar, M.; Kirnaz, S.; Schmidt, F.A.; Wipplinger, C.; Wong, T.; Härtl, R. Evolving Navigation, Robotics, and Augmented Reality in Minimally Invasive Spine Surgery. Glob. Spine J. 2020, 10, 22S–33S. [Google Scholar] [CrossRef]
- Burström, G.; Nachabe, R.; Homan, R.; Hoppenbrouwers, J.; Holthuizen, R.; Persson, O.; Edström, E.; Elmi-Terander, A. Frameless Patient Tracking With Adhesive Optical Skin Markers for Augmented Reality Surgical Navigation in Spine Surgery. Spine 2020, 45, 1598–1604. [Google Scholar] [CrossRef]
- Agha, R.; Fowler, A.J.; Lee, S.Y.; Gundogan, B.; Whitehurst, K.; Sagoo, H.; Jeong, K.J.L.; Altman, D.G.; Orgill, D.P. A Systematic Review Protocol for Reporting Deficiencies within Surgical Case Series. BMJ Open 2015, 5, e008007. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 13 May 2020).
- Buchmann, N.; Schweizer, C.; Kirschke, J.S.; Rienmüller, A.; Gempt, J.; Ringel, F.; Meyer, B.; Ryang, Y.-M. C1-C2 Posterior Screw Fixation in Atlantoaxial Fractures Revisited: Technical Update Based on 127 Cases. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2019, 29, 1036–1042. [Google Scholar] [CrossRef]
- Dickman, C.A.; Sonntag, V.K.H.; Papadopoulos, S.M.; Hadley, M.N. The Interspinous Method of Posterior Atlantoaxial Arthrodesis. J. Neurosurg. 1991, 74, 190–198. [Google Scholar] [CrossRef]
- Elliott, R.E.; Tanweer, O.; Smith, M.L.; Frempong-Boadu, A. Outcomes of Fusion for Lateral Atlantoaxial Osteoarthritis: Meta-Analysis and Review of Literature. World Neurosurg. 2013, 80, e337–e346. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Laheri, V. Plate and Screw Fixation for Atlanto-Axial Subluxation. Acta Neurochir. 1994, 129, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.G.; Lehman, R.A.; Wagner, S.C.; Peters, C.; Riew, K.D. Outcomes Following Arthrodesis for Atlanto-Axial Osteoarthritis. Spine 2017, 42, E294–E303. [Google Scholar] [CrossRef]
- Wright, N.M.; Lauryssen, C. Vertebral Artery Injury in C1-2 Transarticular Screw Fixation: Results of a Survey of the AANS/CNS Section on Disorders of the Spine and Peripheral Nerves. J. Neurosurg. 1998, 88, 634–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanni, D.S.; Perin, N.I. Fixation of the Axis. Neurosurgery 2010, 66, A147–A152. [Google Scholar] [CrossRef]
- Bransford, R.J.; Freeborn, M.A.; Russo, A.J.; Nguyen, Q.T.; Lee, M.J.; Chapman, J.R.; Bellabarba, C. Accuracy and Complications Associated with Posterior C1 Screw Fixation Techniques: A Radiographic and Clinical Assessment. Spine J. 2012, 12, 231–238. [Google Scholar] [CrossRef]
- Ghaith, A.K.; Yolcu, Y.U.; Alvi, M.A.; Bhandarkar, A.R.; Sebastian, A.S.; Freedman, B.A.; Bydon, M. Rate and Characteristics of Vertebral Artery Injury Following C1-C2 Posterior Cervical Fusion: A Systematic Review and Meta-Analysis. World Neurosurg. 2021, 148, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Klepinowski, T.; Limanówka, B.; Sagan, L. Management of Post-Traumatic Craniovertebral Junction Dislocation: A PRISMA-Compliant Systematic Review and Meta-Analysis of Casereports. Neurosurg. Rev. 2021, 44, 1391–1400. [Google Scholar] [CrossRef] [PubMed]
- Lvov, I.; Grin, A.; Talypov, A.; Kordonskiy, A.; Smirnov, V.; Grigoriev, I.; Khushnazarov, U.; Krylov, V. Potential Intraoperative Factors of Screw-Related Complications Following Posterior Transarticular C1-C2 Fixation: A Systematic Review and Meta-Analysis. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2019, 28, 400–420. [Google Scholar] [CrossRef] [PubMed]
- Du, J.Y.; Aichmair, A.; Kueper, J.; Wright, T.; Lebl, D.R. Biomechanical Analysis of Screw Constructs for Atlantoaxial Fixation in Cadavers: A Systematic Review and Meta-Analysis. J. Neurosurg. Spine 2015, 22, 151–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, A.A.; Lindsey, R.; Bessey, J.T.; Chapman, J.; Rampersaud, R. Surgical Treatment of Unstable Type II Odontoid Fractures in Skeletally Mature Individuals. Spine 2010, 35, S209–S218. [Google Scholar] [CrossRef]
- Shen, Y.; Miao, J.; Li, C.; Fang, L.; Cao, S.; Zhang, M.; Yan, J.; Kuang, Y. A Meta-Analysis of the Fusion Rate from Surgical Treatment for Odontoid Factures: Anterior Odontoid Screw versus Posterior C1-C2 Arthrodesis. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2015, 24, 1649–1657. [Google Scholar] [CrossRef]
- Elliott, R.E.; Tanweer, O.; Boah, A.; Morsi, A.; Ma, T.; Frempong-Boadu, A.; Smith, M.L. Atlantoaxial Fusion with Transarticular Screws: Meta-Analysis and Review of the Literature. World Neurosurg. 2013, 80, 627–641. [Google Scholar] [CrossRef] [PubMed]
- Lall, R.; Patel, N.J.; Resnick, D.K. A Review of Complications Associated with Craniocervical Fusion Surgery. Neurosurgery 2010, 67, 1396–1402. [Google Scholar] [CrossRef]
- Hitti, F.L.; Hudgins, E.D.; Chen, H.I.; Malhotra, N.R.; Zager, E.L.; Schuster, J.M. Intraoperative Navigation Is Associated with Reduced Blood Loss During C1–C2 Posterior Cervical Fixation. World Neurosurg. 2017, 107, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, F.; Han, S.; Wang, Y.; Dong, J.; Li, L.; Zhou, D. Isocentric C-Arm Three-Dimensional Navigation versus Conventional C-Arm Assisted C1–C2 Transarticular Screw Fixation for Atlantoaxial Instability. Arch. Orthop. Trauma Surg. 2015, 135, 1083–1092. [Google Scholar] [CrossRef]
- Elliott, R.E.; Tanweer, O.; Frempong-Boadu, A.; Smith, M.L. Impact of Starting Point and C2 Nerve Status on the Safety and Accuracy of C1 Lateral Mass Screws. J. Spinal Disord. Tech. 2015, 28, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Hur, J.W.; Kim, J.S.; Ryu, K.S.; Shin, M.H. Accuracy and Safety in Screw Placement in the High Cervical Spine: Retrospective Analysis of O-Arm-Based Navigation-Assisted C1 Lateral Mass and C2 Pedicle Screws. Clin. Spine Surg. 2019, 32, E193–E199. [Google Scholar] [CrossRef] [PubMed]
- Lofrese, G.; Cultrera, F.; Visani, J.; Nicassio, N.; Essayed, W.I.; Donati, R.; Cavallo, M.A.; de Bonis, P. Intraoperative Doppler Ultrasound as a Means of Preventing Vertebral Artery Injury during Goel and Harms C1-C2 Posterior Arthrodesis: Technical Note. J. Neurosurg. Spine 2019, 31, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Koller, H.; Hitzl, W.; Acosta, F.; Tauber, M.; Zenner, J.; Resch, H.; Yukawa, Y.; Meier, O.; Schmidt, R.; Mayer, M. In Vitro Study of Accuracy of Cervical Pedicle Screw Insertion Using an Electronic Conductivity Device (ATPS Part III). Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 2009, 18, 1300–1313. [Google Scholar] [CrossRef] [Green Version]
- Guillen, P.T.; Knopper, R.G.; Kroger, J.; Wycliffe, N.D.; Danisa, O.A.; Cheng, W.K. Independent Assessment of a New Pedicle Probe and Its Ability to Detect Pedicle Breach: A Cadaveric Study. J. Neurosurg. Spine 2014, 21, 821–825. [Google Scholar] [CrossRef] [Green Version]
- Burström, G.; Swamy, A.; Spliethoff, J.W.; Reich, C.; Babic, D.; Hendriks, B.H.W.; Skulason, H.; Persson, O.; Elmi Terander, A.; Edström, E. Diffuse Reflectance Spectroscopy Accurately Identifies the Pre-Cortical Zone to Avoid Impending Pedicle Screw Breach in Spinal Fixation Surgery. Biomed. Opt. Express 2019, 10, 5905. [Google Scholar] [CrossRef]
- Swamy, A.; Swamy, A.; Spliethoff, J.W.; Burström, G.; Burström, G.; Babic, D.; Reich, C.; Groen, J.; Edström, E.; Edström, E.; et al. Diffuse Reflectance Spectroscopy for Breach Detection during Pedicle Screw Placement: A First in Vivo Investigation in a Porcine Model. Biomed. Eng. Online 2020, 19, 47. [Google Scholar] [CrossRef]
Variable | Value (n = 78) |
---|---|
Age (years) | 63 (16–83) |
Male sex | 36 (46%) |
ASA-class | 3 (1–4) |
Prior C1–C2 surgery | 4 (5.1%) |
Dens screw fixation | 3 |
C1–C2 softwire | 1 |
Clinical presentation | |
Motor deficit | 11 (14%), (2 missing, 2.6%) |
Sensory deficit | 8 (10%), (3 missing, 3.8%) |
Balance disorder | 9 (12%), (5 missing, 9.5%) |
Bladder dysfunction | 3 (3.8%), (4 missing, 5.1%) |
Pain | 69 (88%), (3 missing, 3.8%) |
Frankel grade | n = 76 |
A | 0 (0%) |
B | 1 (1.3%) |
C | 5 (6.6%) |
D | 5 (6.6%) |
E | 65 (85.5%) |
Pre-operative computed tomography angiography | 43 (55%) |
Pre-operative MRI performed | 46 (59%) |
Intramedullary high T2 signal intensity | 9 (12%) |
Surgical Indication | |
Acute trauma | 27 (35%) |
Trauma > 1 week | 23 (29%) |
Type of traumatic injury | |
Isolated C1-fracture | 6 |
Isolated dens type 2-fracture | 26 |
Isolated dens type 3-fracture | 9 |
Ruptured transvers ligament, no fracture | 1 |
C1-fracture + dens type 2-fracture | 3 |
C1-fracture + dens type 3-fracture | 2 |
Dens type 2-fracture + Hangman’s fracture | 1 |
Dens type 3-fracture + Hangman’s fracture | 2 |
Rheumatic instability | 9 (12%) |
Os odontoideum | 3 (4%) |
Pseudarthrosis (previous surgery) | 2 (3%) |
Other degenerative atlantoaxial disorders | 14 (18%) |
Variable | Value (n = 78) |
---|---|
Time from diagnosis to surgery (days) | 84 (0–3327) days |
Acute Trauma | 2 (0–7) days |
Non-union | 104 (14–851) days |
Other elective surgery | 300 (7–3327) days |
Surgical method | |
SRC C1–C2 | 41 (53%) |
(Including laminectomy) | 5 |
SRC C1–C3 | 11 (14%) |
TAS | 26 (33%) |
(Including laminectomy) | 2 |
Total number of polyaxial screws in C1 and C2 | 201 |
Total number of atlantoaxial transarticular screws | 52 |
Operative time | 150 (64–306) min |
SRC C1–C2 | 148 (80–305) min |
SRC C1–C3 | 174 (113–224) min |
TAS | 139 (64–306) min |
Intraoperative blood loss | 350 (25–2100) mL |
SRC C1–C2 | 400 (50–2100) mL |
SRC C1–C3 | 600 (100–1400) mL |
TAS | 150 (25–450) mL |
Variable | Value (n = 78) |
---|---|
Intraoperative complications | 2 (2.6%) |
Vertebral artery injury (no intervention) | 1 |
Vertebral artery injury (with postoperative coiling) | 1 |
Surgical revision (<3 months) | 3 (3.8%) |
Screw revision (SRC) | 2 |
Extended posterior fixation (SRC) | 1 |
Other adverse events | 10 (13%) |
Pneumonia | 5 |
Angioedema | 1 |
Superficial surgical site infection | 1 |
Bacteremia | 1 |
Non-ST Elevation Myocardial Infarction | 1 |
Cerebral fat-embolism | 1 |
Long-term follow up | |
Extended posterior fixation | 1 |
TAS converted to SRC | 1 |
Tethered spinal cord | 1 |
Radiological follow-up | |
Screw malposition on postoperative CT | 7 |
Screw fracture | 2 |
Construct instability | 1 |
Variable | Value (n = 78) |
---|---|
Duration of follow-up (years) | 6.8 (1.0–15) years * |
Death during follow-up | 16 (21%) |
Time from surgery to death | 895 (5–4078) days |
Death due to cervical instability | 0 (0%) |
Motor deficit | 7 (9%), (7 missing, 9.0%) |
Sensory deficit | 3 (3.8%), (8 missing, 10%) |
Balance disorder | 4 (5.1%), (10 missing, 13%) |
Bladder dysfunction | 2 (2.6%), (9 missing, 12%) |
Pain | 20 (26%), (8 missing, 10%) |
Change in pain | |
Data available | 69 |
Positive result | 58 (90%) |
Complete pain relief | 45 (65%) |
Partial pain relief | 13 (19%) |
No preoperative pain and remained unchanged | 4 (6%) |
Negative result | 7 (10%) |
No pain relief | 7 (10%) |
New postoperative pain | 0 |
Frankel grade | |
Data available | 70 |
A | 0 |
B | 0 |
C | 1 (1.5%) |
D | 5 (7.1%) |
E | 64 (91.4%) |
Change in Frankel grade | |
Data available | 69 |
Improved | 3 (4%) |
Unchanged | 66 (96%) |
Worsened | 0 1 |
Variable | Pre-Operative (n = 78) | Post-Operative (n = 78) | p-Value |
---|---|---|---|
Motor deficit | 11 (14%), (2 missing) | 7 (9.0%), (7 missing) | 1.000 |
Sensory deficit | 8 (10%), (3 missing) | 3 (3.8%), (8 missing) | 0.248 |
Balance disorder | 9 (12%), (5 missing) | 4 (5.1%), (10 missing) | 0.480 |
Bladder dysfunction | 3 (3.8%), (4 missing) | 2 (2.6%), (9 missing) | 1.000 |
Pain | 69 (88%), (3 missing) | 20 (26%), (8 missing) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tatter, C.; Fletcher-Sandersjöö, A.; Persson, O.; Burström, G.; Edström, E.; Elmi-Terander, A. Fluoroscopy-Assisted C1–C2 Posterior Fixation for Atlantoaxial Instability: A Single-Center Case Series of 78 Patients. Medicina 2022, 58, 114. https://doi.org/10.3390/medicina58010114
Tatter C, Fletcher-Sandersjöö A, Persson O, Burström G, Edström E, Elmi-Terander A. Fluoroscopy-Assisted C1–C2 Posterior Fixation for Atlantoaxial Instability: A Single-Center Case Series of 78 Patients. Medicina. 2022; 58(1):114. https://doi.org/10.3390/medicina58010114
Chicago/Turabian StyleTatter, Charles, Alexander Fletcher-Sandersjöö, Oscar Persson, Gustav Burström, Erik Edström, and Adrian Elmi-Terander. 2022. "Fluoroscopy-Assisted C1–C2 Posterior Fixation for Atlantoaxial Instability: A Single-Center Case Series of 78 Patients" Medicina 58, no. 1: 114. https://doi.org/10.3390/medicina58010114
APA StyleTatter, C., Fletcher-Sandersjöö, A., Persson, O., Burström, G., Edström, E., & Elmi-Terander, A. (2022). Fluoroscopy-Assisted C1–C2 Posterior Fixation for Atlantoaxial Instability: A Single-Center Case Series of 78 Patients. Medicina, 58(1), 114. https://doi.org/10.3390/medicina58010114