The Relationship between Cognitive Dysfunction and Postural Stability in Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Scales
2.3. Stabilometric Assessment
2.4. Statistical Analysis
3. Results
3.1. Stabilometric Platform Results/Static Postural Control
3.2. Spearman Correlation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jambor, K.L. Cognitive functioning in multiple sclerosis. Br. J. Psychiatry 1969, 115, 765–775. [Google Scholar] [CrossRef] [PubMed]
- Rahn, K.; Slusher, B.; Kaplin, A. Cognitive impairment in multiple sclerosis: A forgotten disability remembered. Cerebrum 2012, 2012, 14. [Google Scholar]
- Fisk, J.D.; Pontefract, A.; Ritvo, P.G.; Archibald, C.J.; Murray, T.J. The impact of fatigue on patients with multiple sclerosis. Can J. Neurol. Sci. 1994, 21, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linnhoff, S.; Fiene, M.; Heinze, H.J.; Zaehle, T. Cognitive Fatigue in Multiple Sclerosis: An Objective Approach to Diagnosis and Treatment by Transcranial Electrical Stimulation. Brain Sci. 2019, 9, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocca, M.A.; Amato, M.P.; De Stefano, N.; Enzinger, C.; Geurts, J.J.; Penner, I.K.; Rovira, A.; Sumowski, J.F.; Valsasina, P.; Filippi, M. Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol. 2015, 14, 302–317. [Google Scholar] [CrossRef]
- Chiaravalloti, N.D.; DeLuca, J. Cognitive impairment in multiple sclerosis. Lancet Neurol. 2008, 7, 1139–1151. [Google Scholar] [CrossRef]
- Oreja-Guevara, C.; Ayuso Blanco, T.; Brieva Ruiz, L.; Hernández Pérez, M.; Meca-Lallana, V.; Ramió-Torrentà, L. Cognitive Dysfunctions and Assessments in Multiple Sclerosis. Front. Neurol. 2019, 10, 581. [Google Scholar] [CrossRef]
- Feinstein, A. Is there a cognitive signature for multiple sclerosis-related fatigue? Mult. Scler. 2015, 21, 353–354. [Google Scholar] [CrossRef] [Green Version]
- Oset, M.; Stasiolek, M.; Matysiak, M. Cognitive Dysfunction in the Early Stages of Multiple Sclerosis-How Much and How Important? Curr. Neurol. Neurosci. Rep. 2020, 20, 22. [Google Scholar] [CrossRef]
- Giovannoni, G. Multiple sclerosis related fatigue. J. Neurol. Neurosurg. Psychiatry 2006, 77, 2–3. [Google Scholar] [CrossRef] [Green Version]
- Braley, T.J.; Chervin, R.D. Fatigue in multiple sclerosis: Mechanisms, evaluation, and treatment. Sleep 2010, 33, 1061–1067. [Google Scholar] [CrossRef]
- Rammohan, K.W.; Lynn, D.J. Modafinil for fatigue in MS: A randomized placebo-controlled double-blind study. Neurology 2005, 65, 1995–1997. [Google Scholar] [PubMed]
- Miller, E.; Kostka, J.; Włodarczyk, T.; Dugué, B. Whole-body cryostimulation (cryotherapy) provides benefits for fatigue and functional status in multiple sclerosis patients. A case-control study. Acta Neurol. Scand. 2016, 134, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Halabchi, F.; Alizadeh, Z.; Sahraian, M.A.; Abolhasani, M. Exercise prescription for patients with multiple sclerosis; potential benefits and practical recommendations. BMC Neurol. 2017, 17, 185. [Google Scholar] [CrossRef] [PubMed]
- Pilutti, L.A.; Greenlee, T.A.; Motl, R.W.; Nickrent, M.S.; Petruzzello, S.J. Effects of exercise training on fatigue in multiple sclerosis: A meta-analysis. Psychosom. Med. 2013, 75, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Broch, L.; Simonsen, C.S.; Flemmen, H.; Berg-Hansen, P.; Skardhamar, Å.; Ormstad, H.; Celius, E.G. High prevalence of fatigue in contemporary patients with multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2021, 7, 2055217321999826. [Google Scholar] [CrossRef]
- Prosperini, L.; Fortuna, D.; Giannì, C.; Leonardi, L.; Pozzilli, C. The diagnostic accuracy of static posturography in predicting accidental falls in people with multiple sclerosis. Neurorehabil. Neural Repair 2013, 27, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Zackowski, K.M. Gait and Balance Assessment. Semin. Neurol. 2016, 36, 474–478. [Google Scholar] [CrossRef]
- Cao, H.; Peyrodie, L.; Boudet, S.; Cavillon, F.; Agnani, O.; Hautecoeur, P.; Donzé, C. Expanded Disability Status Scale (EDSS) estimation in multiple sclerosis from posturographic data. Gait Posture 2013, 37, 242–245. [Google Scholar] [CrossRef] [Green Version]
- Davis, K.K.; Allen, J.K. Identifying cognitive impairment in heart failure: A review of screening measures. Heart Lung 2013, 42, 92–97. [Google Scholar] [CrossRef]
- Hawkins, M.A.; Gathright, E.C.; Gunstad, J.; Dolansky, M.A.; Redle, J.D.; Josephson, R.; Moore, S.M.; Hughes, J.W. The MoCA and MMSE as screeners for cognitive impairment in a heart failure population: A study with comprehensive neuropsychological testing. Heart Lung 2014, 43, 462–468. [Google Scholar] [CrossRef] [Green Version]
- Flachenecker, P.; Kümpfel, T.; Kallmann, B.; Gottschalk, M.; Grauer, O.; Rieckmann, P.; Trenkwalder, C.; Toyka, K.V. Fatigue in multiple sclerosis: A comparison of different rating scales and correlation to clinical parameters. Mult. Scler. 2002, 8, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redlicka, J.; Zielińska-Nowak, E.; Lipert, A.; Miller, E. Impact of Moderate Individually Tailored Physical Activity in Multiple Sclerosis Patients with Fatigue on Functional, Cognitive, Emotional State, and Postural Stability. Brain Sci. 2021, 11, 1214. [Google Scholar] [CrossRef] [PubMed]
- Marioni, R.E.; Chatfield, M.; Brayne, C.; Matthews, F.E. The reliability of assigning individuals to cognitive states using the Mini Mental-State Examination: A population-based prospective cohort study. BMC Med. Res. Methodol. 2011, 11, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.; Seo, J. Application of multidimensional scaling to quantify shape in Alzheimer’s disease and its correlation with Mini Mental State Examination: A feasibility study. J. Neurosci. Methods 2011, 194, 380–385. [Google Scholar] [CrossRef]
- Wiegmann, S.; Felsenberg, D.; Gast, U.; Börst, H.; Armbrecht, G.; Dietzel, R. Balance Performance across the Lifespan Assessed by the Leonardo Mechanograph(®): A Cross-Sectional Study. J. Funct. Morphol. Kinesiol. 2019, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Kapteyn, T.S.; Bles, W.; Njiokiktjien, C.J.; Kodde, L.; Massen, C.H.; Mol, J.M. Standardization in platform stabilometry being a part of posturography. Agressologie 1983, 24, 321–326. [Google Scholar]
- Kahl, O.; Wierzbicka, E.; Dębińska, M.; Mraz, M.; Mraz, M. Compensatory image of the stability of people with multiple sclerosis and atrial vertigo based on posturography examination. Sci. Rep. 2021, 11, 7027. [Google Scholar] [CrossRef]
- Grzegorski, T.; Losy, J. Cognitive impairment in multiple sclerosis—A review of current knowledge and recent research. Rev. Neurosci. 2017, 28, 845–860. [Google Scholar] [CrossRef]
- Wajda, D.A.; Sosnoff, J.J. Cognitive-motor interference in multiple sclerosis: A systematic review of evidence, correlates, and consequences. BioMed Res. Int. 2015, 2015, 720856. [Google Scholar] [CrossRef] [Green Version]
- Prosperini, L.; Castelli, L.; De Luca, F.; Fabiano, F.; Ferrante, I.; De Giglio, L. Task-dependent deterioration of balance underpinning cognitive-postural interference in MS. Neurology 2016, 87, 1085–1092. [Google Scholar] [CrossRef]
- Ruggieri, S.; Fanelli, F.; Castelli, L.; Petsas, N.; De Giglio, L.; Prosperini, L. Lesion symptom map of cognitive-postural interference in multiple sclerosis. Mult. Scler. 2018, 24, 653–662. [Google Scholar] [CrossRef] [Green Version]
- Prosperini, L.; Castelli, L. Spotlight on postural control in patients with multiple sclerosis. Degener. Neurol. Neuromuscul. Dis. 2018, 8, 25–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahureksa, L.; Najafi, B.; Saleh, A.; Sabbagh, M.; Coon, D.; Mohler, M.J.; Schwenk, M. The Impact of Mild Cognitive Impairment on Gait and Balance: A Systematic Review and Meta-Analysis of Studies Using Instrumented Assessment. Gerontology 2017, 63, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Cameron, M.H.; Nilsagard, Y. Balance, gait, and falls in multiple sclerosis. Handb. Clin. Neurol. 2018, 159, 237–250. [Google Scholar] [CrossRef]
- Stepaniak, U.; Micek, A.; Waśkiewicz, A.; Bielecki, W.; Drygas, W.; Janion, M.; Kozakiewicz, K.; Niklas, A.; Puch-Walczak, A.; Pająk, A. Prevalence of general and abdominal obesity and overweight among adults in Poland. Results of the WOBASZ II study (2013–2014) and comparison with the WOBASZ study (2003–2005). Pol. Arch. Med. Wewn. 2016, 126, 662–671. [Google Scholar] [CrossRef] [Green Version]
- Stampanoni Bassi, M.; Iezzi, E.; Buttari, F.; Gilio, L.; Simonelli, I.; Carbone, F.; Micillo, T.; De Rosa, V.; Sica, F.; Furlan, R.; et al. Obesity worsens central inflammation and disability in multiple sclerosis. Mult. Scler. 2020, 26, 1237–1246. [Google Scholar] [CrossRef] [PubMed]
- Pagnotti, G.M.; Haider, A.; Yang, A.; Cottell, K.E.; Tuppo, C.M.; Tong, K.Y.; Pryor, A.D.; Rubin, C.T.; Chan, M.E. Postural Stability in Obese Preoperative Bariatric Patients Using Static and Dynamic Evaluation. Obes. Facts 2020, 13, 499–513. [Google Scholar] [CrossRef] [PubMed]
- Prosperini, L.; Pozzilli, C. The clinical relevance of force platform measures in multiple sclerosis: A review. Mult. Scler. Int. 2013, 2013, 756564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prosperini, L.; Petsas, N.; Raz, E.; Sbardella, E.; Tona, F.; Mancinelli, C.R.; Pozzilli, C.; Pantano, P. Balance deficit with opened or closed eyes reveals involvement of different structures of the central nervous system in multiple sclerosis. Mult. Scler. 2014, 20, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.; Rynders, C.A.; Sosnoff, J.J. Deficits in medio-lateral balance control and the implications for falls in individuals with multiple sclerosis. Gait Posture 2016, 49, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Goble, D.J.; Baweja, H.S. Postural sway normative data across the adult lifespan: Results from 6280 individuals on the Balance Tracking System balance test. Geriatr. Gerontol. Int. 2018, 18, 1225–1229. [Google Scholar] [CrossRef] [PubMed]
- Ekdahl, C.; Jarnlo, G.B.; Andersson, S.I. Standing balance in healthy subjects. Evaluation of a quantitative test battery on a force platform. Scand. J. Rehabil. Med. 1989, 21, 187–195. [Google Scholar] [PubMed]
- Maki, B.E.; Holliday, P.J.; Fernie, G.R. Aging and postural control. A comparison of spontaneous- and induced-sway balance tests. J. Am. Geriatr. Soc. 1990, 38, 1–9. [Google Scholar] [CrossRef] [PubMed]
MS-MD-F | MS-MD-F0 | MS-MD-F1 | MS-MD-F2 | |
---|---|---|---|---|
AGE (YEARS) | 55.54 ± 13.24 | 50.05 ± 17.62 | 57.04 ± 10.95 | 59.50 ± 8.33 |
BODY MASS (KG) | 76.59 ± 14.45 | 75.38 ± 15.63 | 77.03 ± 14.88 | 76.71 ± 10.32 |
HEIGHT (CM) | 169.84 ± 9.20 | 168.76 ± 8.51 | 170.35 ± 8.87 | 171.75 ± 12.16 |
BMI (KG/CM2) | 25.91 ± 4.71 | 26.38 ± 3.81 | 25.44 ± 5.06 | 26.37 ± 4.47 |
FSS | 41.26 ± 7.38 | 41.33 ± 5.77 | 40.53 ± 7.90 | 43.87 ± 7.70 |
MALE/FEMALE (N) | 36/40 | 9/13 | 24/22 | 4/4 |
MS-MD-F (n = 76) | MS-MD-F0 (n = 22) | MS-MD-F1 (n = 46) | MS-MD-F2 (n = 8) | |
---|---|---|---|---|
MAAP-EO | 5.28 ± 3.79 | 5.38 ± 3.76 | 5.30 ± 3.85 | 5.29 ± 4.05 |
MAML-EO | 4.29 ± 4.70 | 5.30 ± 6.05 | 4.13 ± 4.27 | 2.90 ± 2.94 *,M |
MDDB-EO L | 48.32 ± 9.22 | 45.76 ± 8.50 | 49.93 ± 10.02 | 46.50 ± 3.62 |
MDDB-EO R | 51.68 ± 9.22 | 54.24 ± 8.50 | 50.06 ± 10.02 #,M | 53.50 ± 3.62 |
MAAP-EC | 5.21 ± 4.09 | 5.39 ± 5.58 | 5.21 ± 3.27 | 5.09 ± 4.48 |
MAML-EC | 3.52 ± 4.31 | 3.79 ± 5.59 | 3.53 ± 3.95 | 3.06 ± 2.74 |
MDDB-EC L | 48.86 ± 9.23 | 48.10 ± 8.36 | 49.76 ± 10.19 | 46.75 ± 4.65 *,M |
MDDB-EC R | 51.14 ± 9.23 | 51.90 ± 8.36 | 50.24 ± 10.19 | 53.25 ± 4.65 |
SP-EO | 401.59 ± 271.08 | 430.14 ± 323.75 | 381.37 ± 244.89 #,S | 430.37 ± 307.93 |
SPAP-EO | 273.85 ± 177.50 | 289.33 ± 210.69 | 257.50 ± 153.36 | 309.25 ± 229.48 |
SPML-EO | 222.18 ± 194.76 | 245.14 ± 233.69 | 213.19 ± 183.85 | 216.75 ± 175.59 *,S |
LWAP-EO | 15.97 ± 8.68 | 16.24 ± 9.78 | 15.43 ± 8.34 | 18.12 ± 8.85 |
LWML-EO | 14.13 ± 8.15 | 13.57 ± 8.74 | 13.94 ± 6.94 | 16.62 ± 13.24 |
SP-EC | 413.57 ± 420.95 | 453.28 ± 529.72 | 374.92 ± 368.26 #,M | 392.25 ± 180.32 *,S |
SPAP-EC | 321.97 ± 319.77 | 329.24 ± 378.63 | 291.91 ± 281.91 #,M | 352.12 ± 168.03 *,S |
SPML-EC | 180.50 ± 221.53 | 225.81 ± 320.46 | 159.35 ± 175.86 #,M | 139.25 ± 69.72 *,M |
LWAP-EC | 19.45 ± 13.89 | 16.67 ± 12.12 | 20.09 ± 15.21 | 20.87 ± 9.39 |
LWML-EC | 17.64 ± 12.20 | 15.71 ± 13.14 | 17.28 ± 11.72 | 23.87 ± 12.43 |
MS-MD-F | MS-MD-F0 | MS-MD-F1 | MS-MD-F2 | |||||
---|---|---|---|---|---|---|---|---|
MALES (N = 36) | FEMALES (N = 40) | MALES (N = 9) | FEMALES (N = 13) | MALES (N = 24) | FEMALES (N = 22) | MALES (N = 4) | FEMALES (N = 4) | |
MAAP-EO | 5.68 ± 4.36 | 4.91 ± 3.21 | 4.79 ± 3.03 | 5.75 ± 4.21 | 5.89 ± 4.68 | 4.65 ± 2.64 | 6.22 ± 5.37 | 4.35 ± 2.66 |
MAML-EO | 5.47 ± 6.08 | 3.23 ± 2.62 | 7.62 ± 8.86 | 3.87 ± 3.07 | 4.93 ± 5.33 | 3.25 ± 2.51 | 4.40 ± 3.68 | 1.40 ± 0.78 |
MDDB-EO L | 49.61 ± 10.49 | 47.15 ± 7.87 | 48.87 ± 3.83 | 43.85 ± 10.06 | 50.21 ± 12.60 | 49.63 ± 6.43 | 47.50 ± 4.72 | 45.50 ± 2.38 |
MDDB-EO R | 50.39 ± 10.49 | 52.85 ± 7.87 | 51.12 ± 3.83 | 56.15 ± 10.06 | 49.79 ± 12.60 | 50.36 ± 6.43 | 52.50 ± 4.72 | 54.50 ± 2.38 |
MAAP-EC | 5.23 ± 3.29 | 5.20 ± 4.73 | 4.39 ± 2.59 | 6.01 ± 6.85 | 5.84 ± 3.60 | 4.52 ± 2.78 | 3.27 ± 0.84 | 6.90 ± 6.11 |
MAML-EC | 3.73 ± 4.12 | 3.32 ± 4.50 | 3.70 ± 3.51 | 3.84 ± 6.70 | 3.94 ± 4.63 | 3.09 ± 3.09 | 2.52 ± 1.70 | 3.60 ± 3.72 |
MDDB-EC L | 49.90 ± 10.92 | 47.92 ± 7.40 | 48.25 ± 3.73 | 48.04 ± 10.40 | 50.68 ± 13.22 | 48.76 ± 5.39 | 48.50 ± 2.08 | 45.00 ± 6.16 |
MDDB-EC R | 50.10 ± 10.92 | 52.08 ± 7.40 | 51.75 ± 3.73 | 51.99 ± 10.40 | 49.31 ± 13.22 | 51.24 ± 5.39 | 51.50 ± 2.08 | 55.00 ± 6.16 |
SP-EO | 440.31 ± 306.97 | 366.75 ± 232.63 | 509.62 ± 350.83 | 381.23 ± 309.98 | 409.04 ± 283.56 | 351.18 ± 196.49 | 489.25 ± 414.59 | 371.50 ± 200.31 |
SPAP-EO | 304.91 ± 210.36 | 245.90 ± 138.50 | 389.37 ± 268.04 | 227.77 ± 145.91 | 274.58 ± 178.30 | 238.86 ± 121.99 | 318.00 ± 279.79 | 300.50 ± 210.69 |
SPML-EO | 242.99 ± 200.21 | 203.45 ± 190.29 | 243.12 ± 202.95 | 246.38 ± 258.82 | 234.81 ± 203.03 | 189.59 ± 161.76 | 291.75 ± 227.62 | 141.75 ± 71.66 |
LWAP-EO | 17.72 ± 9.51 | 14.40 ± 7.64 | 18.25 ± 13.96 | 15.00 ± 6.44 | 17.33 ± 8.51 | 13.36 ± 7.82 | 19.00 ± 6.38 | 17.25 ± 11.84 |
LWML-EO | 15.56 ± 9.42 | 12.85 ± 6.66 | 15.87 ± 10.79 | 12.15 ± 7.32 | 14.51 ± 6.91 | 13.32 ± 7.07 | 21.25 ± 18.59 | 12.00 ± 2.58 |
SP-EC | 492.10 ± 518.72 | 342.90 ± 297.45 | 783.37 ± 740.71 | 250.15 ± 174.03 | 413.69 ± 448.71 | 332.64 ± 257.87 | 380.00 ± 152.12 | 404.50 ± 228.75 |
SPAP-EC | 386.36 ± 387.68 | 264.02 ± 233.44 | 574.62 ± 519.42 | 178.23 ± 129.26 b,M | 328.37 ± 356.07 | 252.14 ± 168.08 | 357.75 ± 171.37 | 346.50 ± 190.85 |
SPML-EC | 229.42 ± 295.60 | 136.47 ± 108.44 | 386.62 ± 476.86 | 126.84 ± 103.26 | 193.01 ± 227.48 | 122.64 ± 83.01 | 133.50 ± 57.61 | 145.00 ± 89.08 |
LWAP-EC | 22.48 ± 16.61 | 16.72 ± 10.37 | 21.12 ± 14.49 | 13.92 ± 10.04 | 23.55 ± 18.29 | 16.32 ± 10.05 | 18.75 ± 11.47 | 23.00 ± 7.87 |
LWML-EC | 20.61 ± 13.76 | 14.97 ± 10.05 | 21.25 ± 17.53 | 12.31 ± 8.70 | 20.83 ± 13.38 | 13.41 ± 8.26 b,S | 18.00 ± 10.49*,a,M | 29.75 ± 12.58 *,a,M |
Variables | Spearman’s Correlation | |||
---|---|---|---|---|
MS-MD-F | MS-MD-F0 | MS-MD-F1 | MS-MD-F2 | |
SP-EO | 0.050 | 0.106 | −0.035 | 0.476 |
SPAP-EO | 0.118 | 0.327 | 0.016 | 0.333 |
SPML-EO | 0.019 | −0.067 | −0.003 | 0.452 |
LWAP-EO | 0.065 | 0.041 | 0.059 | 0.275 |
LWML-EO | 0.073 | 0.330 | −0.067 | 0.108 |
SP-EC | 0.108 | 0.370 | −0.070 | 0.167 |
SPAP-EC | 0.125 | 0.457 | −0.083 | −0.095 |
SPML-EC | 0.172 | 0.413 | −0.014 | 0.619 |
LWAP-EC | 0.251 | 0.472 | 0.070 | 0.667 |
LWML-EC | 0.347 | 0.436 | 0.302 | 0.667 |
MAAP-EO | 0.040 | −0.234 | 0.119 | 0.405 |
MAML-EO | 0.167 | 0.150 | 0.212 | −0.191 |
MDDB-EO L | −0.033 | −0.081 | 0.013 | −0.786 |
MDDB-EO R | 0.034 | 0.081 | −0.013 | 0.786 |
MAAP-EC | 0.002 | −0.181 | 0.037 | 0.371 |
MAML-EC | 0.074 | 0.288 | −0.081 | 0.467 |
MDDB-EC L | −0.017 | −0.042 | 0.072 | −0.754 |
MDDB-EC R | 0.017 | 0.042 | −0.073 | 0.754 |
Variables | Spearman’s Correlation | |||||||
---|---|---|---|---|---|---|---|---|
MS-MD-F | MS-MD-F0 | MS-MD-F1 | MS-MD-F2 | |||||
MALES (N = 36) | FEMALES (N = 40) | MALES (N = 9) | FEMALES (N = 13) | MALES (N = 24) | FEMALES (N = 22) | MALES (N = 4) | FEMALES (N = 4) | |
SP-EO | −0.037 | 0.001 | 0.548 | −0.390 | −0.199 | 0.023 | 0.001 | 0.800 |
SPAP-EO | −0.018 | 0.175 | 0.595 | −0.016 | −0.183 | 0.151 | 0.600 | 0.400 |
SPML-EO | −0.040 | −0.195 | 0.619 | −0.582 | −0.145 | −0.151 | 0.001 | 1.000 |
LWAP-EO | 0.075 | −0.054 | 0.587 | −0.305 | 0.030 | −0.133 | 0.800 | 0.105 |
LWML-EO | −0.057 | 0.090 | 0.503 | 0.208 | −0.193 | −0.025 | 0.800 | −0.200 |
SP-EC | 0.049 | 0.021 | 0.667 | −0.165 | −0.109 | −0.121 | 0.600 | 0.001 |
SPAP-EC | 0.035 | 0.068 | 0.738 | −0.049 | −0.115 | −0.150 | 0.001 | 0.001 |
SPML-EC | 0.122 | 0.048 | 0.667 | −0.038 | −0.121 | −0.091 | 1.000 | 0.600 |
LWAP-EC | 0.216 | 0.206 | 0.671 | 0.328 | 0.077 | −0.138 | 0.600 | 0.800 |
LWML-EC | 0.369 | 0.190 | 0.595 | 0.377 | 0.292 | −0.072 | 0.800 | 0.800 |
MAAP-EO | −0.187 | 0.106 | −0.120 | −0.281 | −0.295 | 0.368 | 0.200 | 0.200 |
MAML-EO | 0.226 | −0.041 | 0.238 | 0.148 | 0.197 | 0.010 | 0.400 | −0.600 |
MDDB-EO L | −0.104 | −0.128 | 0.182 | −0.689 | −0.194 | 0.285 | −0.949 | −0.632 |
MDDB-EO R | 0.104 | 0.128 | −0.182 | 0.689 | 0.194 | −0.285 | 0.949 | 0.632 |
MAAP-EC | −0.160 | 0.067 | −0.190 | −0.060 | −0.211 | 0.067 | 0.949 | 0.200 |
MAML-EC | −0.115 | 0.204 | 0.287 | 0.355 | −0.299 | 0.051 | 0.800 | 0.001 |
MDDB-EC L | −0.092 | −0.056 | 0.144 | −0.135 | −0.171 | 0.345 | −0.400 | −0.632 |
MDDB-EC R | 0.092 | 0.056 | −0.144 | 0.135 | 0.171 | −0.345 | 0.400 | 0.632 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Redlicka, J.; Zielińska-Nowak, E.; Lipert, A.; Miller, E. The Relationship between Cognitive Dysfunction and Postural Stability in Multiple Sclerosis. Medicina 2022, 58, 6. https://doi.org/10.3390/medicina58010006
Redlicka J, Zielińska-Nowak E, Lipert A, Miller E. The Relationship between Cognitive Dysfunction and Postural Stability in Multiple Sclerosis. Medicina. 2022; 58(1):6. https://doi.org/10.3390/medicina58010006
Chicago/Turabian StyleRedlicka, Justyna, Ewa Zielińska-Nowak, Anna Lipert, and Elżbieta Miller. 2022. "The Relationship between Cognitive Dysfunction and Postural Stability in Multiple Sclerosis" Medicina 58, no. 1: 6. https://doi.org/10.3390/medicina58010006
APA StyleRedlicka, J., Zielińska-Nowak, E., Lipert, A., & Miller, E. (2022). The Relationship between Cognitive Dysfunction and Postural Stability in Multiple Sclerosis. Medicina, 58(1), 6. https://doi.org/10.3390/medicina58010006