Current Evidence, Limitations and Future Challenges of Survival Prediction for Glioblastoma Based on Advanced Noninvasive Methods: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Future Challenges
4.1.1. Data Availability
4.1.2. Opening the Black Box
4.1.3. Humanizing AI
4.1.4. Integrating AI into Clinical Practice
4.2. Limitations
- Patient selection: In most published articles, patients were included without considering the extent of resection, which is one of the main factors associated with overall survival. Therefore, if the intention is to use the imaging characteristics independently to predict the outcome, it is necessary either to include only patients with gross total resection or perhaps to introduce in the model a variable through which the degree of resectability of the tumor can be quantified [55].
- Image preprocessing and data extraction: There is significant variability in the methods employed to preprocess MRI images and in the parameters used to extract radiomic features. This pitfall explains the differences in the results obtained on the same patient dataset (such as the TCIA patient cohort) [47,49]. Therefore, the lack of details about the preprocessing pipeline used by the different authors limits the reproducibility of their results [11,35,44,54].
- Classification task vs. survival regression: There are discrepancies in how different authors approach the challenge of predicting survival in GBM. On the one hand, some studies attempt to carry out a survival analysis, in which the relationship between the radiomic variables and survival in days is expressed by the Harrell index or the hazard ratio [6,18,35,37]. On the other hand, there are works in which a classification task has been carried out to create survival groups. The latter methodology is much easier to interpret and has a clinical orientation [6,19,23]. However, the cut-off point for establishing survival groups is entirely arbitrary in various publications [19]. For example, it does not seem helpful to define a short-term survivor as one who does not exceed ten months of life when the overall median survival is 15 months. Therefore, unifying the criteria for short- and long-term survival definitions in this neoplasm is essential.
- Lack of validation in multi-institutional data: Although there are studies with promising results, the lack of validation in a multicenter cohort seriously limits the application of predictions in a clinical setting [55]. One of the challenges of models based on radiomic features is to find a set of stable and reproducible features so that they can be used regardless of artifacts produced during image acquisition, MRI acquisition protocols, and scanner manufacturers.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostrom, Q.T.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro-Oncology 2021, 23, iii1–iii105. [Google Scholar] [CrossRef]
- McKinnon, C.; Nandhabalan, M.; A Murray, S.; Plaha, P. Glioblastoma: Clinical presentation, diagnosis, and management. BMJ 2021, 374, n1560. [Google Scholar] [CrossRef] [PubMed]
- Prados, M.D.; Byron, S.; Tran, N.L.; Phillips, J.J.; Molinaro, A.M.; Ligon, K.L.; Wen, P.Y.; Kuhn, J.G.; Mellinghoff, I.K.; De Groot, J.F.; et al. Toward precision medicine in glioblastoma: The promise and the challenges. Neuro-Oncology 2015, 17, 1051–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Gu, Y.; Basu, S.; Berglund, A.; Eschrich, S.A.; Schabath, M.B.; Forster, K.; Aerts, H.J.W.L.; Dekker, A.; Fenstermacher, D.; et al. Radiomics: The process and the challenges. Magn. Reson. Imaging 2012, 30, 1234–1248. [Google Scholar] [CrossRef] [Green Version]
- Litvin, A.; Burkin, D.; Kropinov, A.; Paramzin, F. Radiomics and Digital Image Texture Analysis in Oncology (Review). Sovrem. Teh. Med. 2021, 13, 97. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Qin, L.; Bay, C.; Chen, X.; Yu, K.-H.; Miskin, N.; Li, A.; Xu, X.; Young, G. Deep Transfer Learning and Radiomics Feature Prediction of Survival of Patients with High-Grade Gliomas. Am. J. Neuroradiol. 2019, 41, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.-Y.; Wen, L.-H.; Wu, G.; Hu, M.-Z.; Zhang, C.-C.; Chen, F.; Zhao, J.-N. Comparison of Radiomics Analyses Based on Different Magnetic Resonance Imaging Sequences in Grading and Molecular Genomic Typing of Glioma. J. Comput. Assist. Tomogr. 2021, 45, 110–120. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, B.; Zhang, S.; Cheng, J.; Liu, X.; Wang, W.; Dong, Y.; Zhang, L.; Mo, X.; Chen, Q.; et al. Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients. NPJ Precis. Oncol. 2021, 5, 72. [Google Scholar] [CrossRef]
- Rudie, J.D.; Rauschecker, A.M.; Bryan, R.N.; Davatzikos, C.; Mohan, S. Emerging Applications of Artificial Intelligence in Neuro-Oncology. Radiology 2019, 290, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Meng, Y.; Qiu, K.; Topatana, W.; Li, S.; Wei, C.; Chen, T.; Chen, M.; Ding, Z.; Niu, G. Applications of Artificial Intelligence Based on Medical Imaging in Glioma: Current State and Future Challenges. Front. Oncol. 2022, 12, 892056. [Google Scholar] [CrossRef]
- Moradmand, H.; Aghamiri, S.M.R.; Ghaderi, R.; Emami, H. The role of deep learning-based survival model in improving survival prediction of patients with glioblastoma. Cancer Med. 2021, 10, 7048–7059. [Google Scholar] [CrossRef]
- van der Voort, S.R.; Incekara, F.; Wijnenga, M.M.J.; Kapsas, G.; Gahrmann, R.; Schouten, J.W.; Tewarie, R.N.; Lycklama, G.J.; Hamer, P.C.; Eijgelaar, R.S.; et al. Combined molecular subtyping, grading, and segmentation of glioma using multi-task deep learning. Neuro-Oncology 2022, noac166. [Google Scholar] [CrossRef] [PubMed]
- Yogananda, C.G.B.; Shah, B.R.; Vejdani-Jahromi, M.; Nalawade, S.S.; Murugesan, G.K.; Yu, F.F.; Pinho, M.C.; Wagner, B.C.; Mickey, B.; Patel, T.R.; et al. A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas. Neuro-Oncology 2020, 22, 402–411. [Google Scholar] [CrossRef]
- Ben Ahmed, K.; Hall, L.O.; Goldgof, D.B.; Gatenby, R. Ensembles of Convolutional Neural Networks for Survival Time Estimation of High-Grade Glioma Patients from Multimodal MRI. Diagnostics 2022, 12, 345. [Google Scholar] [CrossRef] [PubMed]
- Lao, J.; Chen, Y.; Li, Z.-C.; Li, Q.; Zhang, J.; Liu, J.; Zhai, G. A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme. Sci. Rep. 2017, 7, 10353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, D.; Rao, G.; Martinez, J.; Veeraraghavan, A.; Rao, A. Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma. Med. Phys. 2015, 42, 6725–6735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaddad, A.; Tanougast, C. Extracted magnetic resonance texture features discriminate between phenotypes and are associated with overall survival in glioblastoma multiforme patients. Med. Biol. Eng. Comput. 2016, 54, 1707–1718. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, H.; Rekik, I.; Chen, X.; Wang, Q.; Shen, D. Outcome Prediction for Patient with High-Grade Gliomas from Brain Functional and Structural Networks. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; Volume 9901, pp. 26–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macyszyn, L.; Akbari, H.; Pisapia, J.M.; Da, X.; Attiah, M.; Pigrish, V.; Bi, Y.; Pal, S.; Davuluri, R.V.; Roccograndi, L.; et al. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro-Oncology 2015, 18, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Kickingereder, P.; Götz, M.; Muschelli, J.; Wick, A.; Neuberger, U.; Shinohara, R.T.; Sill, M.; Nowosielski, M.; Schlemmer, H.-P.; Radbruch, A.; et al. Large-scale Radiomic Profiling of Recurrent Glioblastoma Identifies an Imaging Predictor for Stratifying Anti-Angiogenic Treatment Response. Clin. Cancer Res. 2016, 22, 5765–5771. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Jain, R.; Khalil, K.; Griffith, B.; Bosca, R.; Rao, G.; Rao, A. Texture Feature Ratios from Relative CBV Maps of Perfusion MRI Are Associated with Patient Survival in Glioblastoma. Am. J. Neuroradiol. 2015, 37, 37–43. [Google Scholar] [CrossRef]
- Ingrisch, M.; Schneider, M.J.; Nörenberg, D.; de Figueiredo, G.N.; Maier-Hein, K.; Suchorska, B.; Schüller, U.; Albert, N.; Brückmann, H.; Reiser, M.; et al. Radiomic Analysis Reveals Prognostic Information in T1-Weighted Baseline Magnetic Resonance Imaging in Patients With Glioblastoma. Investig. Radiol. 2017, 52, 360–366. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Yin, L.; Zhang, X.; Li, L.; Lu, H. Relationship between Glioblastoma Heterogeneity and Survival Time: An MR Imaging Texture Analysis. Am. J. Neuroradiol. 2017, 38, 1695–1701. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Bai, H.; Chen, Y.; Sun, Q.; Liu, L.; Zhou, S.; Wang, G.; Liang, C.; Li, Z.-C. A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme. Sci. Rep. 2017, 7, 14331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasanna, P.; Patel, J.; Partovi, S.; Madabhushi, A.; Tiwari, P. Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: Preliminary findings. Eur. Radiol. 2016, 27, 4188–4197. [Google Scholar] [CrossRef]
- Kickingereder, P.; Neuberger, U.; Bonekamp, D.; Piechotta, P.L.; Goetz, M.; Wick, A.; Sill, M.; Kratz, A.; Shinohara, R.T.; Jones, D.T.W.; et al. Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma. Neuro-Oncology 2017, 20, 848–857. [Google Scholar] [CrossRef]
- Bae, S.; Choi, Y.S.; Ahn, S.S.; Chang, J.H.; Kang, S.-G.; Kim, E.H.; Kim, S.H.; Lee, S.-K. Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Prediction. Radiology 2018, 289, 797–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanghani, P.; Ang, B.T.; King, N.K.K.; Ren, H. Overall survival prediction in glioblastoma multiforme patients from volumetric, shape and texture features using machine learning. Surg. Oncol. 2018, 27, 709–714. [Google Scholar] [CrossRef]
- Chaddad, A.; Sabri, S.; Niazi, T.; Abdulkarim, B. Prediction of survival with multi-scale radiomic analysis in glioblastoma patients. Med. Biol. Eng. Comput. 2018, 56, 2287–2300. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Feng, N.; Yin, L.; He, Y.; Xu, X.; Lu, H. The effect of glioblastoma heterogeneity on survival stratification: A multimodal MR imaging texture analysis. Acta Radiol. 2018, 59, 1239–1246. [Google Scholar] [CrossRef]
- Molina-García, D.; Vera-Ramírez, L.; Pérez-Beteta, J.; Arana, E.; Pérez-García, V.M. Prognostic models based on imaging findings in glioblastoma: Human versus Machine. Sci. Rep. 2019, 9, 5982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, Y.; Mu, W.; Wang, X.-C.; Yang, G.-Q.; Gillies, R.J.; Zhang, H. Improving survival prediction of high-grade glioma via machine learning techniques based on MRI radiomic, genetic and clinical risk factors. Eur. J. Radiol. 2019, 120, 108609. [Google Scholar] [CrossRef]
- Nie, D.; Lu, J.; Zhang, H.; Adeli, E.; Wang, J.; Yu, Z.; Liu, L.; Wang, Q.; Wu, J.; Shen, D. Multi-Channel 3D Deep Feature Learning for Survival Time Prediction of Brain Tumor Patients Using Multi-Modal Neuroimages. Sci. Rep. 2019, 9, 1103. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Ahn, K.-J.; Nam, Y.; Jang, J.; Shin, N.-Y.; Choi, H.S.; Jung, S.-L.; Kim, B.-S. Analysis of heterogeneity of peritumoral T2 hyperintensity in patients with pretreatment glioblastoma: Prognostic value of MRI-based radiomics. Eur. J. Radiol. 2019, 120, 108642. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Fang, M.; Dong, D.; Liu, L.; Xu, X.; Wei, X.; Jiang, X.; Qin, L.; Liu, Z. Development and Validation of a MRI-Based Radiomics Prognostic Classifier in Patients with Primary Glioblastoma Multiforme. Acad. Radiol. 2019, 26, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Kinoshita, M.; Fujita, K.; Fukai, J.; Hayashi, N.; Uematsu, Y.; Okita, Y.; Nonaka, M.; Moriuchi, S.; Uda, T.; et al. Radiomics and MGMT promoter methylation for prognostication of newly diagnosed glioblastoma. Sci. Rep. 2019, 9, 14435. [Google Scholar] [CrossRef] [Green Version]
- Um, H.; Tixier, F.; Bermudez, D.; Deasy, J.O.; Young, R.J.; Veeraraghavan, H. Impact of image preprocessing on the scanner dependence of multi-parametric MRI radiomic features and covariate shift in multi-institutional glioblastoma datasets. Phys. Med. Biol. 2019, 64, 165011. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Lafata, K.; Sun, W.; Wang, C.; Chang, Z.; Kirkpatrick, J.P.; Yin, F.-F. An investigation of machine learning methods in delta-radiomics feature analysis. PLoS ONE 2019, 14, e0226348. [Google Scholar] [CrossRef] [Green Version]
- Tixier, F.; Um, H.; Bermudez, D.; Iyer, A.; Apte, A.; Graham, M.S.; Nevel, K.S.; Deasy, J.O.; Young, R.J.; Veeraraghavan, H. Preoperative MRI-radiomics features improve prediction of survival in glioblastoma patients over MGMT methylation status alone. Oncotarget 2019, 10, 660–672. [Google Scholar] [CrossRef]
- Shboul, Z.; Alam, M.; Vidyaratne, L.; Pei, L.; Elbakary, M.I.; Iftekharuddin, K.M. Feature-Guided Deep Radiomics for Glioblastoma Patient Survival Prediction. Front. Neurosci. 2019, 13, 966. [Google Scholar] [CrossRef]
- Chaddad, A.; Daniel, P.; Sabri, S.; Desrosiers, C.; Abdulkarim, B. Integration of Radiomic and Multi-omic Analyses Predicts Survival of Newly Diagnosed IDH1 Wild-Type Glioblastoma. Cancers 2019, 11, 1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.Y.; Yoon, M.J.; Park, J.E.; Choi, E.J.; Lee, J.; Kim, H.S. Radiomics in peritumoral non-enhancing regions: Fractional anisotropy and cerebral blood volume improve prediction of local progression and overall survival in patients with glioblastoma. Neuroradiology 2019, 61, 1261–1272. [Google Scholar] [CrossRef]
- Liao, X.; Cai, B.; Tian, B.; Luo, Y.; Song, W.; Li, Y. Machine-learning based radiogenomics analysis of MRI features and metagenes in glioblastoma multiforme patients with different survival time. J. Cell. Mol. Med. 2019, 23, 4375–4385. [Google Scholar] [CrossRef]
- Osman, A.F.I. A Multi-parametric MRI-Based Radiomics Signature and a Practical ML Model for Stratifying Glioblastoma Patients Based on Survival Toward Precision Oncology. Front. Comput. Neurosci. 2019, 13, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaddad, A.; Daniel, P.; Desrosiers, C.; Toews, M.; Abdulkarim, B. Novel Radiomic Features Based on Joint Intensity Matrices for Predicting Glioblastoma Patient Survival Time. IEEE J. Biomed. Health Inform. 2018, 23, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lu, H.; Tian, Q.; Feng, N.; Yin, L.; Xu, X.; Du, P.; Liu, Y. A radiomics nomogram based on multiparametric MRI might stratify glioblastoma patients according to survival. Eur. Radiol. 2019, 29, 5528–5538. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lu, D.; Gao, P.; Tian, Q.; Lu, H.; Xu, X.; He, X.; Liu, Y. Survival-relevant high-risk subregion identification for glioblastoma patients: The MRI-based multiple instance learning approach. Eur. Radiol. 2020, 30, 5602–5610. [Google Scholar] [CrossRef]
- Suter, Y.; Knecht, U.; Alão, M.; Valenzuela, W.; Hewer, E.; Schucht, P.; Wiest, R.; Reyes, M. Radiomics for glioblastoma survival analysis in pre-operative MRI: Exploring feature robustness, class boundaries, and machine learning techniques. Cancer Imaging 2020, 20, 55. [Google Scholar] [CrossRef]
- Bakas, S.; Shukla, G.; Akbari, H.; Erus, G.; Sotiras, A.; Rathore, S.; Sako, C.; Ha, S.M.; Rozycki, M.; Singh, A.; et al. Integrative radiomic analysis for pre-surgical prognostic stratification of glioblastoma patients: From advanced to basic MRI protocols. SPIE Med. Imaging 2020, 11315, 113151S. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Kim, H.S.; Jo, Y.; Yoo, R.-E.; Choi, S.H.; Nam, S.J.; Kim, J.H. Radiomics prognostication model in glioblastoma using diffusion- and perfusion-weighted MRI. Sci. Rep. 2020, 10, 4250. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Patel, M.; Natarajan, K.; Ughratdar, I.; Sanghera, P.; Jena, R.; Watts, C.; Sawlani, V. Machine learning-based radiomic, clinical and semantic feature analysis for predicting overall survival and MGMT promoter methylation status in patients with glioblastoma. Magn. Reson. Imaging 2020, 74, 161–170. [Google Scholar] [CrossRef]
- Baid, U.; Rane, S.; Talbar, S.; Gupta, S.; Thakur, M.H.; Moiyadi, A.; Mahajan, A. Overall Survival Prediction in Glioblastoma With Radiomic Features Using Machine Learning. Front. Comput. Neurosci. 2020, 14, 61. [Google Scholar] [CrossRef]
- Priya, S.; Agarwal, A.; Ward, C.; Locke, T.; Monga, V.; Bathla, G. Survival prediction in glioblastoma on post-contrast magnetic resonance imaging using filtration based first-order texture analysis: Comparison of multiple machine learning models. Neuroradiol. J. 2021, 34, 355–362. [Google Scholar] [CrossRef]
- Cepeda, S.; Pérez-Nuñez, A.; García-García, S.; García-Pérez, D.; Arrese, I.; Jiménez-Roldán, L.; García-Galindo, M.; González, P.; Velasco-Casares, M.; Zamora, T.; et al. Predicting Short-Term Survival after Gross Total or Near Total Resection in Glioblastomas by Machine Learning-Based Radiomic Analysis of Preoperative MRI. Cancers 2021, 13, 5047. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Z.; Mei, N.; Lu, Y.; Xiong, J.; Li, X.; Zheng, W.; Liu, L.; Yin, B. A Comparative and Summative Study of Radiomics-based Overall Survival Prediction in Glioblastoma Patients. J. Comput. Assist. Tomogr. 2022, 46, 470–479. [Google Scholar] [CrossRef]
- Wiki for the VASARI feature Set the National Cancer Institute Web Site. 2008. Available online: https://wikicancerimagingarchivenet/display/Public/VASARI+Research+Project (accessed on 15 September 2022).
- Peeken, J.C.; Hesse, J.; Haller, B.; Kessel, K.A.; Nüsslin, F.; Combs, S.E. Semantic imaging features predict disease progression and survival in glioblastoma multiforme patients. Strahlenther. Onkol. 2018, 194, 580–590. [Google Scholar] [CrossRef]
- Nie, D.; Zhang, H.; Adeli, E.; Liu, L.; Shen, D. 3D Deep Learning for Multi-modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients. Med. Image Comput. Comput. Assist. Interv. 2016, 9901, 212–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itakura, H.; Achrol, A.S.; Mitchell, L.A.; Loya, J.J.; Liu, T.; Westbroek, E.M.; Feroze, A.H.; Rodriguez, S.; Echegaray, S.; Azad, T.D.; et al. Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Sci. Transl. Med. 2015, 7, 303ra138. [Google Scholar] [CrossRef] [Green Version]
- Rathore, S.; Akbari, H.; Rozycki, M.; Abdullah, K.G.; Nasrallah, M.P.; Binder, Z.A.; Davuluri, R.V.; Lustig, R.A.; Dahmane, N.; Bilello, M.; et al. Radiomic MRI signature reveals three distinct subtypes of glioblastoma with different clinical and molecular characteristics, offering prognostic value beyond IDH1. Sci. Rep. 2018, 8, 5087. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, Y.; Chen, Y.; Wang, W.; Duan, W.; Wang, L.; Zhang, S.; Ding, T.; Liu, L.; Sun, Q.; et al. Deep learning features from diffusion tensor imaging improve glioma stratification and identify risk groups with distinct molecular pathway activities. EBioMedicine 2021, 72, 103583. [Google Scholar] [CrossRef] [PubMed]
- Zlochower, A.; Chow, D.S.; Chang, P.; Khatri, D.; Boockvar, J.A.; Filippi, C.G. Deep Learning AI Applications in the Imaging of Glioma. Top. Magn. Reson. Imaging 2020, 29, 115-00. [Google Scholar] [CrossRef]
- Welch, M.L.; McIntosh, C.; Haibe-Kains, B.; Milosevic, M.; Wee, L.; Dekker, A.; Huang, S.H.; Purdie, T.; O’Sullivan, B.; Aerts, H.J.; et al. Vulnerabilities of radiomic signature development: The need for safeguards. Radiother. Oncol. 2019, 130, 2–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, P.; Grinband, J.; Weinberg, B.D.; Bardis, M.; Khy, M.; Cadena, G.; Su, M.-Y.; Cha, S.; Filippi, C.G.; Bota, D.; et al. Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas. Am. J. Neuroradiol. 2018, 39, 1201–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gennatas, E.D.; Friedman, J.H.; Ungar, L.H.; Pirracchio, R.; Eaton, E.; Reichmann, L.G.; Interian, Y.; Luna, J.M.; Ii, C.B.S.; Auerbach, A.; et al. Expert-augmented machine learning. Proc. Natl. Acad. Sci. USA 2020, 117, 4571–4577. [Google Scholar] [CrossRef] [Green Version]
- Budd, S.; Robinson, E.C.; Kainz, B. A survey on active learning and human-in-the-loop deep learning for medical image analysis. Med. Image Anal. 2021, 71, 102062. [Google Scholar] [CrossRef]
- De Angeli, K.; Gao, S.; Alawad, M.; Yoon, H.; Schaefferkoetter, N.; Wu, X.; Durbin, E.B.; Doherty, J.; Stroup, A.; Coyle, L.; et al. Deep active learning for classifying cancer pathology reports. BMC Bioinform. 2021, 22, 113. [Google Scholar] [CrossRef]
Author Year | N | Cases from Public Database * | MRI Sequence Radiomics Analysis | Segmentation Method (Labels) | Image Preprocessing | F. Extraction Software | N of F. | Feature Type | Feature Selection/ ML Classifier | Validation Method | Model Performance | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Yang [17] 2015 | 82 | Yes TCIA | T1C FLAIR | Manual Enhancing tumor Whole tumor | Intensity Normalization Re-Slicing | MATLAB | 976 | SFTA, GLRLM, Local Binary Patterns, Histogram of oriented gradients, Haralick | RF | Out-Bag Validation | SFTA T1C AUC = 0.69 |
2 | Chaddad [18] 2016 | 40 | Yes TCIA | T1 FLAIR | Manual Enhancing Tumor Necrosis Edema | Co-Registration Intensity Normalization | MATLAB | 22 | GLCM | DA, NB, DT, SVM | LOOCV | AUC = 0.793 Phenotypes with KM significantly different |
3 | Liu [19] 2016 | 68 | No | RS-F- MRI DTI | Automatic Anatomical Labelling | RS-F-MRI: SPM8 and DPARSF DTI: FSL and PANDA | GRETNA Toolbox for Connectomics | 2797 | Functional and Structural Networks, Clinical | SVM | No | Accuracy = 75% |
4 | Macyszyn [20] 2016 | 134 | No | T1C T1 T2 T2FLAIR DTI DS | Automatic Enhancing Tumor Non/Enhancing Tumor Edema Ventricles | Co-Registration | N/A | 216 | First Order, Tumor Location, GLISTR Outputs, Intensities | SVM | 10-FoldCV VD = 29 | Retrospective Accuracy = 77.14% Prospective Accuracy = 79.17% |
5 | Kickingereder [21] 2016 | 119 | No | T1 T1C FLAIR DWI DS-C | Semiautomatic, Enhancing Tumor Non/Enhancing Tumor | Co-Registration N4 bias Correction Intensity Normalization | MITK | 12,190 | First order, volumetric, Wavelet, Haralick, GLCM, GLRLM, | SPCA | VD = 40 | C-index = 0.61 HR = 3.45 KM |
6 | Lee [22] 2016 | 24 | Yes TCIA | DS-C | Manual Enhancing tumor Nonenhancing tumor Normal WM | Co-Registration Normalization | MATLAB | 18 | First order, GLCM, Haralick | Univariate Analyisis | No | AUC = 0.83 HR = 0.019 KM |
7 | Ingrisch [23] 2017 | 66 | No | T1C | Semiautomatic Whole Tumor | Resampling Normalization | Python | 208 | First order, Haralick, Parameter-free Threshold Adjacency Statistics | Minimal Depth, RF | 10-FoldCV | C-index = 0.67 HR = 1.04 KM |
8 | Liu [24] 2017 | 133 | Yes TCIA | T1C | Manual Enhancing Tumor | Resampling | MATLAB | 56 | First order, GLCM, GLRLM | RFE-SVM | 10-FoldCV | AUC = 0.81 Accuracy = 78% KM |
9 | Li [25] 2017 | 92 | Yes TCIA = 60 | T1 T1C FLAIR T2 | Automatic Enhancing Tumor Non/Enhancing Tumor Necrosis Edema | N4 bias correction, skull stripping, resampling, co-registration, histogram matching | MATLAB | 45,792 | First order, GLCM, GLRLM, GLSZM, NGTDM | LASSO | VD = 32 | C-index = 0.71 HR = 3.29 KM |
10 | Liu [24] 2017 | 133 | Yes TCGA | T1C | Manual Whole Tumor | Resampling | MATLAB | 56 | GLCM, GLRLM, Histogram | SVM | No | Accuracy = 78.2% AUC = 0.8104 |
11 | Lao [15] 2017 | 112 | Yes TCIA = 75 | T1 T1C FLAIR T2 | Manual Necrosis Enhancing tumor Edema | N4 Bias correction Resampling Co-Registration Histogram matching | MATLAB | 99,707 | First order, GLSM, GLRLM, GLSZM, NGTDM, Deep features | LASSO | VD = 37 | C-index = 0.71 HR = 5.13 KM Nomogram |
12 | Prasanna [26] 2017 | 65 | Yes TCIA | T1C FLAIR T2 | Manual Enhancing Tumor Necrosis Edema | Co-Registration Insensity Normalization Bias Field Correction | MATLAB | 402 | Haralick, Laws features, Histogram of oriented gradients, Laplacian pyramids | mRMR, RF | 3-FoldCV | KM C-index = 0.70 |
13 | Kickingereder [27] 2018 | 181 | No | T1 T1C FLAIR T2 | Semiautomatic, Enhancing Tumor Nonenhancing tumor Necrosis | Intensity Normalization Coregistration | MITK | 1043 | First order, shape, GLCM, GLRLM, GLSZM | LASSO | VD = 61 | HR = 2.72 |
14 | Bae [28] 2018 | 217 | No | T1C FLAIR T2 DTI | Manual. Necrosis Enhancing Tumor Non/Enhancing Tumor | Co-Registration N4-Bias Correction Normalization | Python | 796 | GLCM, GLRLM, GLSZM | VHA, RSF | VD = 54 | AUC = 0.652 KM |
15 | Sanghani [29] 2018 | 163 | Yes BRATS | T1 T1C FLAIR T2 | Manual Enhancing Tumor Non/Enhancing Tumor Edema | Co-Registration Resampling | Python | 2200 | Volumetric, Shape, First order, GLCM, Gabor texture | RFE-SVM | 5-FoldCV | Accuracy = 98.7% |
16 | Chaddad [30] 2018 | 40 | Yes TCIA | T1 FLAIR | Manual Enhancing Tumor Non/Enhancing Tumor Necrosis Edema | Co-Registration Resampling Intensity Normalization | MATLAB | 9 | Texture features based on LOG filter | RF | 5-FoldCV | AUC = 0.85 |
17 | Liu [31] 2018 | 119 | Yes | T1 T1C FLAIR T2 | Manual Enhancing tumor | Co-Registration Resampling | MATLAB | 54 | First order, GLCM, GLRLM | SVM-RFE | No | T1C AUC = 0.79, Accuracy = 80.67% KM |
18 | Molina-Garcia [32] 2019 | 404 | Yes TCIA | T1C | Manual Enhancing Tumor Necrotic Core | No | MATLAB | 44 | First Order, GLRLM, GLCM | NN SVM RT | VD = 93 | C-Index = 0.817 (Optimal Linear Prognosis Model) |
19 | Tan [33] 2019 | 147 | Yes TCIA = 112 | T1C FLAIR | Manual Whole tumor Edema Contralateral WM | Co-Registration N4 Bias Correction Resampling Intensity Normalization | MATLAB | 1456 | LASSO | VD = 35 | Radiomics C-index = 0.71 HR = 2.18 Nomogram C-Index = 0.76 | |
20 | Nie [34] 2019 | 93 | No | T1C DTI RS-F-MRI | Manual Whole Tumor | Co-Registration | N/A | 2048 | CNN supervised | CNN SVM | 10-FoldCV VD =25 | Accuracy = 90.46% (VD = 88%) |
21 | Choi [35] 2019 | 114 | Yes TCIA = 53 | T2 | Manual Peritumoral | N/A | Python | 106 | First Order, GLCM, GLRLM, GLSZM | No | VD = 34 | C-index 0.659 KM |
22 | Chen [36] 2019 | 127 | Yes TCIA | T1C | Manual Enhancing tumor | Insensity Normalization | MATLAB | 3824 | First order, Shape, GLCM, GLRLM | mRMR | N/A | HR = 3.65 AUC = 0.82 KM |
23 | Sasaki [37] 2019 | 182 | No | T1 T1C T2 | Manual Enhancing tumor Whole tumor | Co-Registration Intensity Normalization | MATLAB | 489 | First order, GLCM, GLRLM, shape | SPCA, LASSO | 10-FoldCV | HR = 1.62 High and Low risk Log Rank Test p = 0.004 |
24 | Um [38] 2019 | 161 | Yes TCIA | T1 T1C FLAIR | Semiautomatic Whole tumor | Co-Registration Rescaling Bias field Correction Histogram Matching Resampling | CERR | 420 | First order, Edge features (LoG, Sober, Gabor, Wavelet), GLCM, GLSZM, Haralick | LASSO | VD = 47 | HR = 3.61 KM |
25 | Chang [39] 2019 | 12 | No | T1 T2FLAIR Pretreatment Posttreatment1 Posttreatment2 | Manual Whole Tumor | Co-Registration | MATLAB | 61 | GLCM, GLDM, GLRLM, GLSZM, Delta Radiomics | RF, Linear- SVM, Kernel-SVM, NN, NB, LR | No | AUC = 0.889 Best Result: RF with SVM and NN with Delta Radiomics |
26 | Tixier [40] 2019 | 159 | Yes TCIA = 47 | T1 T1C FLAIR | Semiautomatic Whole tumor | Co-Registration Gabor Filtering Binning | CERR | 286 | First order, GLCM, GLSZM, Gabor | LASSO | VD = 61 | KM |
27 | Shboul [41] 2019 | 224 | Yes BRATS | T1 T1C FLAIR T2 | Automatic Whole tumor Edema Necrosis Enhancing Tumor | Co-Registration Bias Correction Normalization | N/A | 31,000 | Texture, Euler, Histogram | Univariate, RFS, RF, XGBoost | VD = 61 LOOCV | Accuracy = 73% VD-Accuracy = 68% |
28 | Chaddad [42] 2019 | 200 | Yes TCIA = 71 | T1C, FLAIR | Manual Whole tumor | Resampling | MATLAB | 45 | First order, GLCM, NGTDM, GLSZM | No | VD = 100 | AUC = 0.752 KM |
29 | Kim [43] 2019 | 83 | No | T1 T1C FLAIR T2 DTI DS-C | Semiautomatic Enhancing Tumor Non/Enhancing Tumor | Co-Registration Intensity Normalization Resampling | MATLAB | 6472 | First order, Wavelet, GLCM, GLRLM | LASSO | 10-FoldCV | DTI Radiomics AUC = 0.70 C-index 0.63 DS-C AUC = 0.76 C-index = 0.55 |
30 | Liao [44] 2019 | 137 | Yes TCIA | FLAIR | Manual | N/A | Python | 72 | First order, GLCM, GLSZM, GLRLM, NGTDM, GLDM | GBDT, SVM, kNN | VD = 41 | Accuracy = 81% Short survival AUC = 0.79 Long survival AUC = 0.81 |
31 | Osman [45] 2019 | 163 | Yes, BRATS | T1 T1C FLAIR T2 | Manual Enhancing Tumor Non/Enhancing Tumor Edema | Co-Registration Smoothing Interpolation Intensity Normalization Intensisty Rescaling | MATLAB | 147 | First order, GLCM, Histogram of oriented gradients, Local Binary Pattern. | LASSO, SVM, kNN, DA | VD = 54 | Accuracy = 57.8% Short survival AUC = 0.81 Median survival AUC = 0.47 Long survival AUC = 0.72 |
32 | Chaddad [46] 2019 | 73 | Yes TCIA | T1C FLAIR | Manual Enhancing Tumor Necrosis Edema | Co-Registration Resampling Intensity Normalization | MATLAB | 11 | JIM, GLCM | SpCoR RF | LOOCV | JIM features: HR = 1.88 AUC = 0.776 |
33 | Zhang 2019 [47] | 105 | Yes TCIA | T1 T1C FLAIR T2 | Manual FLAIR Signal Enhancing Tumor Necrosis Edema | Co-Registration Resampling Collewet Normalization | MATLAB | 4000 | First Order, GLCM, GLRLM, GLSZM, Wavelet | LASSO LR | VD = 35 | C-Index = 0.94 Nomogram |
34 | Han [6] 2020 | 178 | Yes TCIA = 128 | T1C | Manual Whole Tumor | Normalization Gray-Level Quantization Resampling | MATLAB (radiomics) CNN (Keras-TensorFlow) Elastic Net/Cox (R) | 8540 | First order, Nontexture, Histogram, GLCM, GLRLM, GLSZM, NGTDM Deep features(CNN) | MAD, C-Index, PearsonC | No | Long Rank Test Long/Short Survival p < 0.001 (HR = 3.26) |
35 | Zhang [48] 2020 | 104 | Yes TCIA | T1 T1C FLAIR T2 | Manual Whole Tumor Tumor subregions | Co-Registration Resampling Normalization | MATLAB | 180 | First Order, GLCM, GLRLM, GLSZM | Multiple Instance Learning, SVM | VD = 33 | Accuracy = 87.9% Sensitivity = 85.7% Specificity = 89.4% |
36 | Suter [49] 2020 | 109 | Yes TCIA = 76 | T1 T1C FLAIR T2 | Automatic Enhancing Tumor Non/Enhancing Tumor Necrosis Edema | Co-Registration Skull Stripping Resampling N4 Bias Correction | Python | 8327 | First order, GLCM, GLSZM, GLRLM, NGTDM, GLDM, Deep features. | 13 F selection (RelieF, GINI, CHSQ…) and 12 ML methods (CNN, SVM, RF, DT…) | VD = 76 | 2-Classes: AUC = 0.66 Accuracy = 64% 3-Classes: AUC = 0.58 Accuracy = 38% |
37 | Bakas [50] 2020 | 101 | No | T1 T1C FLAIR T2 DTI DS-C | Automatic Enhancing Tumor Non/Enhancing Tumor Edema | Co-Registration Resampling Noise Filtering Histogram Matching | CaPTk | 1612 | First order, Volumetric, Wavelet, GLCM, GLRLM, GLSZM, NGTDM, Spatial information, diffusion properties | Forward Selection, SVM | 5-FoldCV | Accuracy Advanced MRI = 73% Basic MRI = 74.3% KM |
38 | Park [51] 2020 | 216 | No | T1C FLAIR DWI DS-C | Semiautomatic Enhancing tumor | Co-Registration Intensity Normalization Resampling | MATLAB | 1618 | First order, GLCM, GLRLM, Wavelet | LASSO | VD = 58 | C-index = 0.64 KM Nomogram |
39 | Lu [52] 2020 | 181 | No | T1C | Semiautomatic Whole tumor Enhancing tumor Nonenhancing tumor Necrosis | Intensity Normalization N4 Bias Correction | Python | 333 | Shape, First order, GLCM, GLDM, GLRLM, GLSZM, NGTDM VASARI | VHA, RFS | VD = 78 | AUC = 0. 96 C-index = 0.90 |
40 | Baid [53] 2020 | 346 | Yes BRATS | T1 T1C FLAIR T2 | Automatic. Whole Tumor Enhancing tumor Tumor core | Co-Registration N4 Bias Correction Normalization | MATLAB | 678 | First order, Wavelet decomposition, GLCM | SpCoR, RF | VD = 53 | Accuracy = 57.1% |
41 | Moradmand [11] 2021 | 260 | Yes TCGA IVY | N/A | N/A | N/A | Python | N/A | Clinical, Tumor Data, PostSurgical Treatment, Molecular variables | CoxPH, RF, NN | TD = 78 | C-index = 0.823 Bayesian Hyperparameter Optimization |
42 | Yan [8] 2021 | 688 | Yes TCIA CGGA Local | DTI T2 Flair | Manual Whole Tumor | Coregistration Standardization | Python | N/A | Radiogenomics Clinical | CNN | VD = 77 | C-index = 0.825 (VD-C-index = 0.79) |
43 | Priya [54] 2021 | 85 | No | T1C | Manual Whole Tumor | N/A | TexRAD | 36 | Texture, Age | SVM NN RT | 5-FoldCV | AUC = 0.811 Accuracy = 67% AUC CV = 0.71 |
44 | Cepeda [55] 2022 | 203 | Yes TCIA = 34 BraTS = 119 | T1 T1C FLAIR T2 | Hybrid (GLISTRboost) Enhancing tumor Nonenhancing tumor Edema | Re-Orientation Co-Registration Resampling Normalization | CaPTk | 15,720 | First Order, Histogram, Volumetric, Morphologic, GLCM, GLDM, GLRLM, GLSZM, NGTDM | Gini Index, FCBF, InfoGain / LR, NB, kNN, RF, SVM, NN | TD = 60 | AUC = 0.98 Accuracy = 94% (TD-AUC = 0.77 TD-Accuracy = 80%) Naïve Bayes |
45 | Ben Ahmed [14] 2022 | 163 | Yes BRATS | T1C | Automatic Enhancing tumor Tumor core Whole Tumor | Null-Voxel Reduction Data Augmentation 2D Transformation | Python | 35,709 | Snapshot | CNN | VD = 46 | Accuracy = 74% |
46 | Ruan [56] 2022 | 200 | Yes TCGA = 129 | T1C T1 T2FLAIR | Manual Whole Tumor | Standardization | MATLAB 3D Slicer | 665 | First Order, VASARI, GLCM, GLDM, GLRLM, GLSZM, NGTDM | LASSO | VD | Radiomics C-Index = 0.935 RadiomicsVASARI C-Index = 0.622 |
Author and Year | Yang 2015 | Lee 2016 | Kickingereder 2016 | Macyszyn 2016 | Chaddad 2016 | Lao 2017 | Liu 2017 | Li 2017 | Ingrisch 2017 | Prasanna 2017 | Bae 2018 | Sanghani 2018 | Liao 2018 | Chaddad 2018 | Liu 2018 | Choi 2019 | ||
Image protocol quality | 1 | 0 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | ||
Multiple segmentations | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | ||
Phantom study on all scanners | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Imaging at multiple time points | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Feature reduction or adjustment for multiple testing | −3 | 3 | 3 | 3 | −3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | −3 | 3 | −3 | ||
Multivariate analysis with nonradiomic features | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | ||
Detect and discuss biologic correlates | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
Cutoff analysis | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | ||
Discrimination statistics | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 2 | 0 | 1 | 1 | 1 | 0 | ||
Calibration statistics | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Prospective study registered in trial data base | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Validation | 2 | −5 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | −5 | 2 | 2 | 2 | 2 | ||
Comparison with criterion standard | 0 | 2 | 2 | 0 | 0 | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | ||
Potential clinical utility | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Cost-effectiveness analysis | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
Open science and data | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 2 | 0 | 1 | 1 | 1 | ||
Total points | 4 | 5 | 13 | 12 | 4 | 19 | 10 | 15 | 10 | 11 | 14 | 1 | 8 | 4 | 10 | 6 | ||
% RQS | 11% | 14% | 36% | 33% | 11% | 53% | 28% | 42% | 28% | 31% | 39% | 3% | 22% | 11% | 28% | 17% | ||
Author and Year | Tixier 2019 | Shboul 2019 | Chaddad 2019 | Chen 2019 | Kim 2019 | Chang 2019 | Osman 2019 | Chaddad 2019 | Um 2019 | Zhang 2019 | Han 2020 | Zhang 2020 | Suter 2020 | Bakas 2020 | Park 2020 | Cepeda 2021 | Ruan 2022 | |
Image protocol quality | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 2 | 1 | 0 | 1 | 1 | 1 | 1 | |
Multiple segmentations | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | |
Phantom study on all scanners | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
Imaging at multiple time points | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Feature reduction or adjustment for multiple testing | 3 | 3 | −3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | |
Multivariate analysis with nonradiomic features | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | |
Detect and discuss biologic correlates | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | |
Cutoff analysis | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | |
Discrimination statistics | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
Calibration statistics | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | |
Prospective study registered in trial data base | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Validation | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 3 | 3 | 2 | |
Comparison with criterion standard | 0 | 0 | 2 | 2 | 2 | 1 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 1 | |
Potential clinical utility | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Cost-effectiveness analysis | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Open science and data | 1 | 2 | 1 | 1 | 0 | 0 | 3 | 1 | 0 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | |
Total points | 10 | 10 | 5 | 14 | 13 | 10 | 16 | 13 | 10 | 15 | 11 | 13 | 11 | 11 | 15 | 15 | 13 | |
% RQS | 28% | 28% | 14% | 39% | 36% | 28% | 44% | 36% | 28% | 42% | 31% | 36% | 31% | 31% | 42% | 42% | 36% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-García, S.; García-Galindo, M.; Arrese, I.; Sarabia, R.; Cepeda, S. Current Evidence, Limitations and Future Challenges of Survival Prediction for Glioblastoma Based on Advanced Noninvasive Methods: A Narrative Review. Medicina 2022, 58, 1746. https://doi.org/10.3390/medicina58121746
García-García S, García-Galindo M, Arrese I, Sarabia R, Cepeda S. Current Evidence, Limitations and Future Challenges of Survival Prediction for Glioblastoma Based on Advanced Noninvasive Methods: A Narrative Review. Medicina. 2022; 58(12):1746. https://doi.org/10.3390/medicina58121746
Chicago/Turabian StyleGarcía-García, Sergio, Manuel García-Galindo, Ignacio Arrese, Rosario Sarabia, and Santiago Cepeda. 2022. "Current Evidence, Limitations and Future Challenges of Survival Prediction for Glioblastoma Based on Advanced Noninvasive Methods: A Narrative Review" Medicina 58, no. 12: 1746. https://doi.org/10.3390/medicina58121746
APA StyleGarcía-García, S., García-Galindo, M., Arrese, I., Sarabia, R., & Cepeda, S. (2022). Current Evidence, Limitations and Future Challenges of Survival Prediction for Glioblastoma Based on Advanced Noninvasive Methods: A Narrative Review. Medicina, 58(12), 1746. https://doi.org/10.3390/medicina58121746