The Relationship between Obesity-Related Factors and Graves’ Orbitopathy: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Subjects
2.3. Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bahn, R.S. Graves’ ophthalmopathy. N. Engl. J. Med. 2010, 362, 726–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiersinga, W.M.; Bartalena, L. Epidemiology and prevention of Graves’ ophthalmopathy. Thyroid Off. J. Am. Thyroid Assoc. 2002, 12, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Stan, M.N.; Garrity, J.A.; Bahn, R.S. The Evaluation and Treatment of Graves Ophthalmopathy. Med. Clin. N. Am. 2012, 96, 311–328. [Google Scholar] [CrossRef] [Green Version]
- Bartalena, L.; Kahaly, G.J.; Baldeschi, L.; Dayan, C.M.; Eckstein, A.; Marcocci, C.; Marinò, M.; Vaidya, B.; Wiersinga, W.M.; Ayvaz, G.; et al. The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur. J. Endocrinol. 2021, 185, G43–G67. [Google Scholar] [CrossRef]
- Bartalena, L.; Baldeschi, L.; Dickinson, A.J.; Eckstein, A.; Kendall-Taylor, P.; Marcocci, C.; Mourits, M.P.; Perros, P.; Boboridis, K.; Boschi, A.; et al. Consensus Statement of the European Group on Graves’ Orbitopathy (EUGOGO) on Management of Graves’ Orbitopathy. Thyroid Off. J. Am. Thyroid Assoc. 2008, 18, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Bartalena, L.; Baldeschi, L.; Boboridis, K.; Eckstein, A.; Kahaly, G.J.; Marcocci, C.; Perros, P.; Salvi, M.; Wiersinga, W.M.; on behalf of the European Group on Graves’ Orbitopathy (EUGOGO). The 2016 European Thyroid Association/European Group on Graves’ Orbitopathy Guidelines for the Management of Graves’ Orbitopathy. Eur. Thyroid. J. 2016, 5, 9–26. [Google Scholar] [CrossRef] [Green Version]
- Ross, D.S.; Burch, H.B.; Cooper, D.S.; Greenlee, M.C.; Laurberg, P.; Maia, A.L.; Rivkees, S.A.; Samuels, M.; Sosa, J.A.; Stan, M.N.; et al. 2016 American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and Other Causes of Thyrotoxicosis. Thyroid Off. J. Am. Thyroid Assoc. 2016, 26, 1343–1421. [Google Scholar] [CrossRef] [Green Version]
- Stan, M.; Bahn, R.S. Risk Factors for Development or Deterioration of Graves’ Ophthalmopathy. Thyroid Off. J. Am. Thyroid Assoc. 2010, 20, 777–783. [Google Scholar] [CrossRef]
- Wang, Y.; Smith, T.J. Current Concepts in the Molecular Pathogenesis of Thyroid-Associated Ophthalmopathy. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1735–1748. [Google Scholar] [CrossRef] [Green Version]
- Bahn, R.S. Current Insights into the Pathogenesis of Graves’ Ophthalmopathy. Horm. Metab. Res. 2015, 47, 773–778. [Google Scholar] [CrossRef]
- Versini, M.; Jeandel, P.-Y.; Rosenthal, E.; Shoenfeld, Y. Obesity in autoimmune diseases: Not a passive bystander. Autoimmun. Rev. 2014, 13, 981–1000. [Google Scholar] [CrossRef] [PubMed]
- Jung, U.J.; Choi, M.S. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2014, 15, 6184–6223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huffman, F.G.; Whisner, S.; Zarini, G.G.; Nath, S. Waist Circumference and BMI in Relation to Serum High Sensitivity C-Reactive Protein (hs-CRP) in Cuban Americans With and Without Type 2 Diabetes. Int. J. Environ. Res. Public Health 2010, 7, 842–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapadia, K.B.; Bhatt, P.A.; Shah, J.S. Association between altered thyroid state and insulin resistance. J. Pharmacol. Pharmacother. 2012, 3, 156–160. [Google Scholar] [CrossRef]
- Karadag, A.; Tutal, E.; Ertugrul, D. Insulin Resistance is Increased in Patients with Vitiligo. Acta Derm. Venereol. 2011, 91, 541–544. [Google Scholar] [CrossRef]
- Cojocaru, M.; Cojocaru, I.M.; Silosi, I.; Vrabie, C.D. Metabolic syndrome in rheumatoid arthritis. Maedica 2012, 7, 148–152. [Google Scholar] [PubMed]
- Dessein, P.H.; Joffe, B.I. Insulin resistance and impaired beta cell function in rheumatoid arthritis. Arthritis Rheum. 2006, 54, 2765–2775. [Google Scholar] [CrossRef] [PubMed]
- Kalmann, R.; Mourits, M.P. Diabetes mellitus: A risk factor in patients with Graves’ orbitopathy. Br. J. Ophthalmol. 1999, 83, 463–465. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Lee, S.Y.; Yoon, J.S. Risk Factors Associated with the Severity of Thyroid-Associated Orbitopathy in Korean Patients. Korean J. Ophthalmol. 2010, 24, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Le Moli, R.; Muscia, V.; Tumminia, A.; Frittitta, L.; Buscema, M.; Palermo, F.; Sciacca, L.; Squatrito, S.; Vigneri, R. Type 2 diabetic patients with Graves’ disease have more frequent and severe Graves’ orbitopathy. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 452–457. [Google Scholar] [CrossRef]
- Dandona, P.; Aljada, A.; Bandyopadhyay, A. Inflammation: The link between insulin resistance, obesity and diabetes. Trends Immunol. 2004, 25, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackburn, H.; Jacobs, D.; Keys, A.; Fidanza, F.; Karvonen, M.J.; Kimura, N.; Taylor, H.L. Commentary: Origins and evolution of body mass index (BMI): Continuing saga. Int. J. Epidemiol. 2014, 43, 665–669. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. Standards of Medical Care in Diabetes-2016. Diabetes Care 2016, 39 (Suppl. 1), S13–S22, Erratum in Classification and diagnosis of diabetes. Sec. 2. Diabetes Care 2016, 39, 1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, C.E.; Ma, S.; Wai, D.; Chew, S.K.; Tai, E.S. Can we apply the National Cholesterol Education Program Adult Treatment Panel definition of the metabolic syndrome to Asians? Diabetes Care 2004, 27, 1182–1186. [Google Scholar] [CrossRef] [Green Version]
- Werner, S.C. Modification of the Classification of the Eye Changes of Graves’ Disease: Recommendations of the Ad Hoc Committee of The American Thyroid Association. J. Clin. Endocrinol. Metab. 1977, 44, 203–204. [Google Scholar] [CrossRef]
- Tsai, C.-C.; Kau, H.-C.; Kao, S.-C.; Hsu, W.-M. Exophthalmos of patients with Graves’ disease in Chinese of Taiwan. Eye 2006, 20, 569–573. [Google Scholar] [CrossRef]
- Bartley, G.B.; Fatourechi, V.; Kadrmas, E.F.; Jacobsen, S.J.; Ilstrup, D.M.; Garrity, J.A.; Gorman, C.A. The Chronology of Graves’ Ophthalmopathy in an Incidence Cohort. Am. J. Ophthalmol. 1996, 121, 426–434. [Google Scholar] [CrossRef]
- Marinò, M.; Ionni, I.; Lanzolla, G.; Sframeli, A.; Latrofa, F.; Rocchi, R.; Marcocci, C. Orbital diseases mimicking graves’ orbitopathy: A long-standing challenge in differential diagnosis. J. Endocrinol. Investig. 2020, 43, 401–411. [Google Scholar] [CrossRef]
- Peyster, R.G.; Ginsberg, F.; Silber, J.H.; Adler, L.P. Exophthalmos caused by excessive fat: CT volumetric analysis and dif-ferential diagnosis. AJR Am. J. Roentgenol. 1986, 146, 459–464. [Google Scholar] [CrossRef]
- Gerding, M.N.; Van Der Meer, J.W.C.; Broenink, M.; Bakker, O.; Wiersinga, W.M.; Prummel, M.F. Association of thyrotrophin receptor antibodies with the clinical features of Graves’ ophthalmopathy. Clin. Endocrinol. 2000, 52, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Eckstein, A.K.; Plicht, M.; Lax, H.; Neuhäuser, M.; Mann, K.; Lederbogen, S.; Heckmann, C.; Esser, J.; Morgenthaler, N.G. Thyrotropin Receptor Autoantibodies Are Independent Risk Factors for Graves’ Ophthalmopathy and Help to Predict Severity and Outcome of the Disease. J. Clin. Endocrinol. Metab. 2006, 91, 3464–3470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartalena, L.; Marcocci, C.; Bogazzi, F.; Manetti, L.; Tanda, M.L.; Dell’Unto, E.; Bruno-Bossio, G.; Nardi, M.; Bartolomei, M.P.; Lepri, A.; et al. Relation between Therapy for Hyperthyroidism and the Course of Graves’ Ophthalmopathy. N. Engl. J. Med. 1998, 338, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.H.; Avenell, A.; Philip, S.; Burr, J.; Bevan, J.S.; Abraham, P. Radioiodine therapy (RAI) for Graves’ disease (GD) and the effect on ophthalmopathy: A systematic review*. Clin. Endocrinol. 2008, 69, 943–950. [Google Scholar] [CrossRef]
- Tallstedt, L.; Lundell, G.; Tørring, O.; Wallin, G.; Ljunggren, J.-G.; Blomgren, H.; Taube, A.; the Thyroid Study Group. Occurrence of Ophthalmopathy after Treatment for Graves’ Hyperthyroidism. N. Engl. J. Med. 1992, 326, 1733–1738. [Google Scholar] [CrossRef]
- Vannucchi, G.; Campi, I.; Covelli, D.; Dazzi, D.; Currò, N.; Simonetta, S.; Ratiglia, R.; Beck-Peccoz, P.; Salvi, M. Graves’ Orbitopathy Activation after Radioactive Iodine Therapy with and without Steroid Prophylaxis. J. Clin. Endocrinol. Metab. 2009, 94, 3381–3386. [Google Scholar] [CrossRef] [Green Version]
- Prummel, M.F.; Wiersinga, W.M.; Mourits, M.P.; Koornneef, L.; Berghout, A.; Van Der Gaag, R. Effect of abnormal thyroid function on the severity of Graves’ ophthalmopathy. Arch. Intern. Med. 1990, 150, 1098–1101. [Google Scholar] [CrossRef]
- Smolders, M.H.; Graniewski-Wijnands, H.S.; Meinders, A.E.; Fogteloo, A.J.; Pijl, H.; De Keizer, R.J.W. Exophthalmos in obesity. Ophthalmic Res. 2004, 36, 78–81. [Google Scholar] [CrossRef]
- Carlson, R.E.; Scheribel, K.W.; Hering, P.J.; Wolin, L. Exophthalmos, global luxation, rapid weight gain: Differential diagnosis. Ann. Ophthalmol. 1982, 14, 724–729. [Google Scholar]
- Merritt, R.J.; Hack, S.L.; Kalsch, M.; Olson, D. Corticosteroid Therapy-induced Obesity in Children. Clin. Pediatr. 1986, 25, 149–152. [Google Scholar] [CrossRef]
- Sabini, E.; Mazzi, B.; Profilo, M.A.; Mautone, T.; Casini, G.; Rocchi, R.; Ionni, I.; Menconi, F.; Leo, M.; Nardi, M.; et al. High Serum Cholesterol Is a Novel Risk Factor for Graves’ Orbitopathy: Results of a Cross-Sectional Study. Thyroid Off. J. Am. Thyroid Assoc. 2018, 28, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Lanzolla, G.; Sabini, E.; Profilo, M.A.; Mazzi, B.; Sframeli, A.; Rocchi, R.; Menconi, F.; Leo, M.; Nardi, M.; Vitti, P.; et al. Relationship between serum cholesterol and Graves’ orbitopathy (GO): A confirmatory study. J. Endocrinol. Investig. 2018, 41, 1417–1423. [Google Scholar] [CrossRef] [PubMed]
- Howard, B.V. Insulin resistance and lipid metabolism. Am. J. Cardiol. 1999, 84, 28j–32j. [Google Scholar] [CrossRef] [PubMed]
- Lender, D.; Arauz-Pacheco, C.; Breen, L.; Mora-Mora, P.; Ramirez, L.C.; Raskin, P. A double blind comparison of the effects of amlodipine and enalapril on insulin sensitivity in hypertensive patients. Am. J. Hypertens. 1999, 12, 298–303. [Google Scholar] [CrossRef]
- Potenza, M.A.; Marasciulo, F.L.; Tarquinio, M.; Quon, M.J.; Montagnani, M. Treatment of Spontaneously Hypertensive Rats with Rosiglitazone and/or Enalapril Restores Balance Between Vasodilator and Vasoconstrictor Actions of Insulin With Simultaneous Improvement in Hypertension and Insulin Resistance. Diabetes 2006, 55, 3594–3603. [Google Scholar] [CrossRef] [Green Version]
- Botta, R.; Lisi, S.; Marcocci, C.; Sellari-Franceschini, S.; Rocchi, R.; Latrofa, F.; Menconi, F.; Altea, M.A.; Leo, M.; Sisti, E.; et al. Enalapril Reduces Proliferation and Hyaluronic Acid Release in Orbital Fibroblasts. Thyroid Off. J. Am. Thyroid Assoc. 2013, 23, 92–96. [Google Scholar] [CrossRef]
- Dludla, P.V.; Nkambule, B.B.; Jack, B.; Mkandla, Z.; Mutize, T.; Silvestri, S.; Orlando, P.; Tiano, L.; Louw, J.; Mazibuko-Mbeje, S.E. Inflammation and Oxidative Stress in an Obese State and the Protective Effects of Gallic Acid. Nutrients 2018, 11, 23. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-C.; Chuang, L.-M. The role of oxidative stress in the pathogenesis of type 2 diabetes: From molecular mechanism to clinical implication. Am. J. Transl. Res. 2010, 2, 316–331. [Google Scholar]
- Tangvarasittichai, S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes 2015, 6, 456–480. [Google Scholar] [CrossRef]
- Vincent, H.K.; Bourguignon, C.M.; Weltman, A.L.; Vincent, K.R.; Barrett, E.; Innes, K.E.; Taylor, A.G. Effects of antioxidant supplementation on insulin sensitivity, endothelial adhesion molecules, and oxidative stress in normal-weight and overweight young adults. Metabolism 2009, 58, 254–262. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.C.; Cheng, C.Y.; Liu, C.Y.; Kao, S.C.; Kau, H.C.; Hsu, W.M.; Wei, Y.H. Oxidative stress in patients with Graves’ ophthalmopathy: Rela-tionship between oxidative DNA damage and clinical evolution. Eye 2009, 23, 1725–1730. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.Y.; Lee, H.J.; Chae, M.K.; Byun, J.W.; Lee, E.J.; Yoon, J.S. Therapeutic Effect of Resveratrol on Oxidative Stress in Graves’ Orbitopathy Orbital Fibroblasts. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6352–6361. [Google Scholar] [CrossRef] [PubMed]
- Marcocci, C.; Kahaly, G.J.; Krassas, G.E.; Bartalena, L.; Prummel, M.; Stahl, M.; Altea, M.A.; Nardi, M.; Pitz, S.; Boboridis, K.; et al. Selenium and the Course of Mild Graves’ Orbitopathy. N. Engl. J. Med. 2011, 364, 1920–1931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepys, M.B.; Hirschfield, G. C-reactive protein: A critical update. J. Clin. Investig. 2003, 111, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.D.; Childers, D.; Gupta, S.; Talwar, N.; Nan, B.; Lee, B.J.; Smith, T.; Douglas, R. Risk Factors for Developing Thyroid-Associated Ophthalmopathy Among Individuals with Graves Disease. JAMA Ophthalmol. 2015, 133, 290–296. [Google Scholar] [CrossRef]
- Ridker, P.M.; Rifai, N.; Pfeffer, M.A.; Sacks, F.; Braunwald, E. The Cholesterol and Recurrent Events (CARE) Investigators. Long-Term Effects of Pravastatin on Plasma Concentration of C-reactive Protein. Circulation 1999, 100, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.J. Teprotumumab in Thyroid-Associated Ophthalmopathy: Rationale for Therapeutic Insulin-Like Growth Factor–I Receptor Inhibition. J. Neuro-Ophthalmol. 2020, 40, 74–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, T.J.; Kahaly, G.J.; Ezra, D.G.; Fleming, J.C.; Dailey, R.A.; Tang, R.A.; Harris, G.J.; Antonelli, A.; Salvi, M.; Goldberg, R.A.; et al. Teprotumumab for Thyroid-Associated Ophthalmopathy. N. Engl. J. Med. 2017, 376, 1748–1761. [Google Scholar] [CrossRef]
- Boucher, J.; Tseng, Y.-H.; Kahn, C.R. Insulin and Insulin-like Growth Factor-1 Receptors Act as Ligand-specific Amplitude Modulators of a Common Pathway Regulating Gene Transcription. J. Biol. Chem. 2010, 285, 17235–17245. [Google Scholar] [CrossRef] [Green Version]
- Nagi, D.K.; Yudkin, J.S. Effects of Metformin on Insulin Resistance, Risk Factors for Cardiovascular Disease, and Plasminogen Activator Inhibitor in NIDDM Subjects: A study of two ethnic groups. Diabetes Care 1993, 16, 621–629. [Google Scholar] [CrossRef]
Total | Absence of GO | Presence of GO | p | |
---|---|---|---|---|
N | 84 | 42 | 42 | --- |
Age (year) | 42 ± 12 | 41.6 ± 12.2 | 42.6 ± 11.5 | 0.700 |
Male/female (n) | 20/64 | 10/32 | 10/32 | 1 |
Antithyroid drug treatment period of Graves’ disease (year) | 6.1 ± 6.7 | 6.6 ± 5.8 | 5.6 ± 7.5 | 0.200 |
BMI (kg/m2) | 22.7 ± 3.2 | 22.0 ± 2.7 | 23.4 ± 3.4 | 0.034 |
Central obesity (−/+) | 63/21 | 32/10 | 31/11 | 0.801 |
Smoking (−/+) | 65/19 | 36/6 | 29/13 | 0.068 |
Co-morbidity (−/+) | ||||
Diabetes + prediabetes | 70/14 | 39/3 | 31/11 | 0.019 |
Hypertension | 78/6 | 41/1 | 37/5 | 0.202 |
Hyperlipidemia | 78/6 | 42/0 | 36/6 | 0.026 |
Treatment (−/+) | ||||
Anti-thyroid drugs | 1/83 | 0/42 | 1/41 | 1 |
Thyroidectomy | 76/8 | 37/5 | 39/3 | 0.713 |
Iodine-131 | 82/2 | 40/2 | 42/0 | 0.494 |
Steroid use | 81/3 | 42/0 | 39/3 | 0.241 |
Thyroid dysfunction (−/+) | 64/20 | 33/9 | 31/11 | 0.608 |
Titers of TSHR antibodies (%) | 38.3 ± 26.4 | 33.8 ± 25.2 | 42.9 ± 27.3 | 0.112 |
Fasting plasma glucose (mg/dL) | 92 ± 9 | 88.9 ± 8.5 | 94.6 ± 9.8 | 0.005 |
Fasting plasma insulin (uIU/mL) | 5.9 ± 5.7 | 4.7 ± 2.9 | 7.1 ± 7.5 | 0.081 |
HOMA-IR | 1.4 ± 1.3 | 1.1 ± 0.7 | 1.7 ± 1.7 | 0.045 |
hs-CRP (mg/dL) | 0.1 ± 0.2 | 0.1 ± 0.2 | 0.2 ± 0.3 | 0.007 |
Severity of GO (−/+) § | ||||
Absent | 42/42 | 0/42 | 42/0 | |
Mild | 55/29 | 42/0 | 13/29 | |
Moderate to severe | 71/13 | 42/0 | 29/13 |
Model 1 | Model 2 | Model 3 | Model 4 | |||||
---|---|---|---|---|---|---|---|---|
Odds Ratio (95% CI) | p | Odds Ratio (95% CI) | p | Odds Ratio (95% CI) | p | Odds Ratio (95% CI) | p | |
BMI | 1.172 (1.001–1.372) | 0.048 * | 1.173 (0.997-1.379) | 0.054 | 1.186 (1.007–1.398) | 0.042 * | 1.182 (1.003–1.393) | 0.046 * |
Diabetes + prediabetes | 3.011 (0.840–10.979) | 0.091 | 2.936 (0.807–10.681 | 0.102 | 2.416 (0.643–9.076) | 0.192 | 1.890 (0.470–7.591) | 0.370 |
Hyperlipidemia | 1.886 × 109 (0.000-) | 0.999 | 2.733 × 109 (0.000-) | 0.999 | 3.839 × 109 (0.000-) | 0.999 | 3.672 × 109 (0.000-) | 0.999 |
Fasting plasma glucose | 1.071 (1.012–1.132) | 0.017 * | 1.07 (1.011–1.132) | 0.019 * | 1.060 (1.001–1.123) | 0.046 * | 1.057 (0.995–1.123) | 0.070 |
Fasting plasma insulin | 1.161 (1.010–1.335) | 0.035 * | 1.162 (1.005–1.344) | 0.043 * | 1.178 (1.012–1.372) | 0.035 * | 1.165 (1.001–1.355) | 0.048 * |
HOMA-IR | 2.005 (1.113–3.611) | 0.021 * | 2.002 (1.084–3.696) | 0.027 * | 2.081 (1.105–3.921) | 0.023 * | 1.985 (1.046–3.764) | 0.036 * |
hs-CRP | 8.476 (0.582–123.500) | 0.118 | 8.700 (0.518–146.042) | 0.133 | 8.875 (0.533–147.813) | 0.128 | 7.950 (0.346–182.869) | 0.195 |
Spearman’s Correlation Coefficients | p | |
---|---|---|
BMI | 0.285 | 0.009 |
Fasting plasma glucose | 0.298 | 0.006 |
Fasting plasma insulin | 0.243 | 0.026 |
HOMA-IR | 0.270 | 0.013 |
hs-CRP | 0.299 | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.; Lai, C.-L.; Yang, C.-M.; Liao, K.C.-W.; Kao, C.-S.; Chang, T.-C.; Perng, M.-D. The Relationship between Obesity-Related Factors and Graves’ Orbitopathy: A Pilot Study. Medicina 2022, 58, 1748. https://doi.org/10.3390/medicina58121748
Lu C, Lai C-L, Yang C-M, Liao KC-W, Kao C-S, Chang T-C, Perng M-D. The Relationship between Obesity-Related Factors and Graves’ Orbitopathy: A Pilot Study. Medicina. 2022; 58(12):1748. https://doi.org/10.3390/medicina58121748
Chicago/Turabian StyleLu, Ching, Chao-Lun Lai, Chih-Man Yang, Karen Chia-Wen Liao, Chie-Shung Kao, Tien-Chu Chang, and Ming-Der Perng. 2022. "The Relationship between Obesity-Related Factors and Graves’ Orbitopathy: A Pilot Study" Medicina 58, no. 12: 1748. https://doi.org/10.3390/medicina58121748
APA StyleLu, C., Lai, C. -L., Yang, C. -M., Liao, K. C. -W., Kao, C. -S., Chang, T. -C., & Perng, M. -D. (2022). The Relationship between Obesity-Related Factors and Graves’ Orbitopathy: A Pilot Study. Medicina, 58(12), 1748. https://doi.org/10.3390/medicina58121748