BNT162b2 COVID-19 Vaccination and Its Effect on Blood Pressure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects’ Eligibility
2.2. Data Collection
2.3. Measuring of Blood Pressure
2.4. Definition of AEFIs
2.5. The BNT162B2 COVID-19 Vaccine
2.6. The HCTM Vaccination Protocol
2.7. Statistical Analysis Plan
2.7.1. Sample Size
2.7.2. Data Analysis
2.8. Ethical Approval
3. Results
3.1. Study Population
3.2. Trends and Means of SBP, DBP, and PP Changes between Pre- and 15-Minute Post-BNT162B2 Vaccination in the Analysis
3.3. Vaccination and Blood Pressure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loo, K.-Y.; Letchumanan, V.; Ser, H.-L.; Teoh, S.L.; Law, J.W.-F.; Tan, L.T.-H.; Ab Mutalib, N.-S.; Chan, K.-G.; Lee, L.-H.J.M. COVID-19: Insights into potential vaccines. Microorganisms 2021, 9, 605. [Google Scholar] [CrossRef] [PubMed]
- FDA. Fact Sheet for Healthcare Providers Administering Vaccine (Vaccination Providers): Emergency Use Authorization (EUA) of the Pfizer-BioNTech COVID-19 Vaccine to Prevent Coronavirus Disease 2019 (COVID-19). Available online: https://www.fda.gov/media/144413/download (accessed on 19 April 2022).
- CDC COVID-19 Response Team; Food and Drug Administration. Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer-BioNTech COVID-19 vaccine—United States, 14–23 December 2020. Morb. Mortal. Wkly. Rep. 2021, 70, 46. [Google Scholar] [CrossRef] [PubMed]
- Di Pasquale, A.; Bonanni, P.; Garçon, N.; Stanberry, L.R.; El-Hodhod, M.; Da Silva, F.T. Vaccine safety evaluation: Practical aspects in assessing benefits and risks. Vaccine 2016, 34, 6672–6680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islahudin, F.; Shah, N.M.; Hasim, N. Determinants of childhood vaccine hesitancy among Malaysian youths. Arch. Pharm. Pract. 2020, 1, 15. [Google Scholar]
- Meylan, S.; Livio, F.; Foerster, M.; Genoud, P.J.; Marguet, F.; Wuerzner, G. Stage III hypertension in patients after mRNA-based SARS-CoV-2 vaccination. Hypertension 2021, 77, e56–e57. [Google Scholar] [CrossRef]
- Bouhanick, B.; Brusq, C.; Bongard, V.; Tessier, S.; Montastruc, J.-L.; Senard, J.-M.; Montastruc, F.; Herin, F. Blood pressure measurements after mRNA-SARS-CoV-2 tozinameran vaccination: A retrospective analysis in a university hospital in France. J. Hum. Hypertens. 2022, 36, 580–581. [Google Scholar] [CrossRef]
- Sanidas, E.; Anastasiou, T.; Papadopoulos, D.; Velliou, M.; Mantzourani, M. Short term blood pressure alterations in recently COVID-19 vaccinated patients. Eur. J. Intern. Med. 2022, 96, 115–116. [Google Scholar] [CrossRef]
- Zappa, M.; Verdecchia, P.; Spanevello, A.; Visca, D.; Angeli, F. Blood pressure increase after Pfizer/BioNTech SARS-CoV-2 vaccine. Eur. J. Intern. Med. 2021, 90, 111–113. [Google Scholar] [CrossRef]
- Angeli, F.; Spanevello, A.; Reboldi, G.; Visca, D.; Verdecchia, P. SARS-CoV-2 vaccines: Lights and shadows. Eur. J. Intern. Med. 2021, 88, 1–8. [Google Scholar] [CrossRef]
- Ogata, A.F.; Cheng, C.-A.; Desjardins, M.; Senussi, Y.; Sherman, A.C.; Powell, M.; Novack, L.; Von, S.; Li, X.; Baden, L.R. Circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine antigen detected in the plasma of mRNA-1273 vaccine recipients. Clin. Infect. Dis. 2022, 74, 715–718. [Google Scholar] [CrossRef]
- Verdecchia, P.; Cavallini, C.; Spanevello, A.; Angeli, F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur. J. Intern. Med. 2020, 76, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Verdecchia, P.; Cavallini, C.; Spanevello, A.; Angeli, F. COVID-19: ACE2centric infective disease? Hypertension 2020, 76, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Lamb, Y.N. BNT162b2 mRNA COVID-19 vaccine: First approval. Drugs 2021, 81, 495–501. [Google Scholar] [CrossRef]
- Tuomilehto, J.; Ryynänen, O.-P.; Koistinen, A.; Rastenyte, D.; Nissinen, A.; Puska, P. Low diastolic blood pressure and mortality in a population-based cohort of 16 913 hypertensive patients in North Karelia, Finland. J. Hypertens. 1998, 16, 1235–1242. [Google Scholar] [CrossRef] [PubMed]
- Witteman, J.C.; Grobbee, D.E.; Valkenburg, H.A.; Stijnen, T.; Burger, H.; Hofman, A.; van Hemert, A. J-shaped relation between change in diastolic blood pressure and progression of aortic atherosclerosis. Lancet 1994, 343, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miall, W.E.; Medical Research Council (Great Britain). Working Party on Mild to Moderate Hypertension, and Greenberg, G. In Mild Hypertension: Is There Pressure to Treat?: An Account of the MRC Trial; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Hata, Y.; Kimura, Y.; Muratani, H.; Fukiyama, K.; Kawano, Y.; Ashida, T.; Yokouchi, M.; Imai, Y.; Ozawa, T.; Fujii, J. Office blood pressure variability as a predictor of brain infarction in elderly hypertensive patients. Hypertens. Res. 2000, 23, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Ong, T.; Raymond, A. Risk factors for stroke and predictors of one-month mortality. Singap. Med. J. 2002, 43, 517–521. [Google Scholar]
- Oteh, M.; Azarisman, S.M.S.; Azreen, S.A.; Jamaluddin, A.R.; Aszrin, A.; Ting, C.K.; Shaiful Bahri, I. Institutional hypertension control in Malaysia: A multicenter study focusing on gender and cardiovascular risk factor profile difference. Hypertens. Res. 2011, 34, 319–324. [Google Scholar] [CrossRef] [Green Version]
- McCloskey, L.W.; Psaty, B.M.; Koepsell, T.D.; Aagaard, G.N. Level of blood pressure and risk of myocardial infarction among treated hypertensive patients. Arch. Intern. Med. 1992, 152, 513–520. [Google Scholar] [CrossRef]
- Stewart, I.M.G. Relation of reduction in pressure to first myocardial infarction in patients receiving treatment for severe hypertension. Lancet 1979, 313, 861–865. [Google Scholar] [CrossRef]
- Fletcher, A.; Beevers, D.; Bulpitt, C.; Butler, A.; Coles, E.; Hunt, D.; Munro-Faure, A.; Newson, R.; O’Riordan, P.; Petrie, J. The relationship between a low treated blood pressure and IHD mortality: A report from the DHSS Hypertension Care Computing Project (DHCCP). J. Hum. Hypertens. 1988, 2, 11–15. [Google Scholar] [PubMed]
- Pan, Y.; Cai, W.; Cheng, Q.; Dong, W.; An, T.; Yan, J. Association between anxiety and hypertension: A systematic review and meta-analysis of epidemiological studies. Neuropsychiatr. Dis. Treat. 2015, 11, 1121. [Google Scholar] [PubMed]
- Wajngarten, M.; Silva, G.S. Hypertension and stroke: Update on treatment. Eur. Cardiol. Rev. 2019, 14, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blacher, J.; Staessen, J.A.; Girerd, X.; Gasowski, J.; Thijs, L.; Liu, L.; Wang, J.G.; Fagard, R.H.; Safar, M.E. Pulse pressure not mean pressure determines cardiovascular risk in older hypertensive patients. Arch. Intern. Med. 2000, 160, 1085–1089. [Google Scholar] [CrossRef] [PubMed]
- Vaccarino, V.; Holford, T.R.; Krumholz, H.M. Pulse pressure and risk for myocardial infarction and heart failure in the elderly. J. Am. Coll. Cardiol. 2000, 36, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Benetos, A.; Safar, M.; Rudnichi, A.; Smulyan, H.; Richard, J.-L.; Ducimetière, P.; Guize, L. Pulse pressure: A predictor of long-term cardiovascular mortality in a French male population. Hypertension 1997, 30, 1410–1415. [Google Scholar] [CrossRef]
- Madhavan, S.; Ooi, W.L.; Cohen, H.; Alderman, M.H. Relation of pulse pressure and blood pressure reduction to the incidence of myocardial infarction. Hypertension 1994, 23, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Aw, J.; Seah, S.S.Y.; Seng, B.J.J.; Low, L.L. COVID-19-Related Vaccine Hesitancy among Community Hospitals’ Healthcare Workers in Singapore. Vaccines 2022, 10, 537. [Google Scholar] [CrossRef]
- Aw, J.; Seng, J.J.B.; Seah, S.S.Y.; Low, L.L. COVID-19 vaccine hesitancy—A scoping review of literature in high-income countries. Vaccines 2021, 9, 900. [Google Scholar] [CrossRef]
Demographic Characteristics | Number of Vaccinees (N = 287) |
---|---|
Age, years, median (IQR) | 33 (31–39) |
Age group, years, n (%) | |
21–29 | 58 (20.2) |
30–39 | 165 (57.5) |
40–49 | 54 (18.8) |
50–60 | 10 (3.5) |
Gender, n (%) | |
Male | 76 (26.5) |
Female | 211 (73.5) |
Comorbidities, n (%) | 45 (15.7) |
Asthma | 9 (3.1) |
HTN | 8 (2.8) |
Diabetes Mellitus | 7 (2.4) |
Ischemic Heart Disease | 3 (1.0) |
Allergy | 2 (0.7) |
Renal Disease | 1 (0.3) |
Others | 15 (5.2) |
1st Dose (n = 287) | 2nd Dose (n = 287) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Blood Pressure Trends | Frequency, n (%) | BP Changes, Mean, mmHg | Standard Deviation, mmHg | Standard Error | 95% Confidence Interval, mmHg | Frequency, n (%) | BP Changes Mean, mmHg | Standard Deviation, mmHg | Standard Error | 95% Confidence Interval, mmHg |
Systolic | ||||||||||
Elevated * | 15 (5.2) | 25 | 5 | 1.33 | 23 to 28 | 9 (3.1) | 26 | 3 | 1.08 | 24 to 28 |
Decreased † | 14 (4.9) | 27 | 6 | 1.69 | 23 to 30 | 32 (11.1) | 27 | 7 | 1.20 | 25 to 30 |
No Change ‡ | 258 (89.9) | 0 | 9 | 1 | −1 to 1 | 246 (85.7) | 1 | 9 | 0.58 | −1 to 2 |
Diastolic | ||||||||||
Elevated * | 19 (6.6) | 15 | 5 | 1.10 | 13 to 17 | 26 (9.1) | 15 | 9 | 1.64 | 12 to 19 |
Decreased † | 72 (25.1) | 15 | 6 | 0.68 | 14 to 17 | 36 (12.5) | 13 | 6 | 0.97 | 12 to 15 |
No Change ‡ | 196 (68.3) | 1 | 5 | 0.34 | 1 to 2 | 225 (78.4) | 0 | 5 | 0.2 | −1 to 1 |
Pulse Pressure | ||||||||||
Widened | 82 (28.6) | 17 | 8 | 0.81 | 16 to 19 | 37 (12.9) | 15 | 6 | 0.93 | 14 to 17 |
Narrowed | 35 (12.2) | 15 | 5 | 0.77 | 13 to 16 | 62 (21.6) | 18 | 9 | 1.17 | 16 to 21 |
No Change | 170 (59.2) | −1 | 5 | 0.38 | −1 to 1 | 188 (65.5) | 1 | 12 | 0.36 | 1 to 4 |
Vaccine Doses | 1st Dose (n = 287) | 2nd Dose (n = 287) | |||||
---|---|---|---|---|---|---|---|
Mean, mmHg (SD) | 95% Confidence Interval, mmHg | p-Value (Student’s t-Test) | Mean, mmHg (SD) | 95% Confidence Interval, mmHg | p-Value (Student’s t-Test) | ||
Systolic | pre-vaccination | 125 (15) | 123 to 127 | 1.00 | 127 (18) | 125 to 129 | 0.001 * |
post-vaccination | 125 (16) | 123 to 127 | 124 (17) | 122 to 126 | |||
Diastolic | pre-vaccination | 81 (10) | 80 to 83 | <0.001 * | 80 (10) | 79 to 82 | 0.55 |
post-vaccination | 78 (11) | 76 to 79 | 80 (11) | 79 to 81 | |||
Mean arterial pressure | pre-vaccination | 96 (11) | 95 to 97 | 0.003 * | 96 (12) | 95 to 97 | 0.025 * |
post-vaccination | 94 (12) | 91 to 94 | 95 (12) | 94 to 96 | |||
Pulse pressure | pre-vaccination | 44 (11) | 42 to 45 | <0.001 * | 47 (12) | 45 to 48 | <0.001 * |
post-vaccination | 47 (12) | 46 to 49 | 44 (11) | 42 to 46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, T.L.; Salleh, S.A.; Che Man, Z.; Tan, M.H.P.; Kader, R.; Jarmin, R. BNT162b2 COVID-19 Vaccination and Its Effect on Blood Pressure. Medicina 2022, 58, 1789. https://doi.org/10.3390/medicina58121789
Tan TL, Salleh SA, Che Man Z, Tan MHP, Kader R, Jarmin R. BNT162b2 COVID-19 Vaccination and Its Effect on Blood Pressure. Medicina. 2022; 58(12):1789. https://doi.org/10.3390/medicina58121789
Chicago/Turabian StyleTan, Toh Leong, Sharifah Azura Salleh, Zuraidah Che Man, Michelle Hwee Peng Tan, Rashid Kader, and Razman Jarmin. 2022. "BNT162b2 COVID-19 Vaccination and Its Effect on Blood Pressure" Medicina 58, no. 12: 1789. https://doi.org/10.3390/medicina58121789
APA StyleTan, T. L., Salleh, S. A., Che Man, Z., Tan, M. H. P., Kader, R., & Jarmin, R. (2022). BNT162b2 COVID-19 Vaccination and Its Effect on Blood Pressure. Medicina, 58(12), 1789. https://doi.org/10.3390/medicina58121789