A Systematic Review of Candidate Genes for Major Depression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Selection
2.2. Data Synthesis
2.3. Gene Functional Enrichment Analysis
3. Results
3.1. Literature Search
3.2. Summary of Eligible Studies
3.3. Comparison of Results with the Previous Systematic Analysis Regarding Associations between Gene Candidates and MDD
3.4. Results of Gene Functional Enrichment Analysis
4. Discussion
4.1. Characteristics of Most Studied Genes
4.1.1. Genes Involved in the Glutamatergic Pathway
4.1.2. Genes Involved in Neurotransmition through Regulation of Calcium Channel Activity
4.1.3. Genes Involved in Apoptosis
4.2. Important Characteristic of Included Studies
4.3. Strengths and Limitations of This Review
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Watanabe, S.Y.; Iga, J.I.; Ishii, K.; Numata, S.; Shimodera, S.; Fujita, H.; Ohmori, T. Biological tests for major depressive disorder that involve leukocyte gene expression assays. J. Psychiatr. Res. 2015, 66–67, 1–6. [Google Scholar] [CrossRef] [PubMed]
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global burden of disease study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar]
- Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.T.; et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet 2018, 391, 1357–1366. [Google Scholar]
- Flint, J.; Kendler, K.S. The genetics of major depression. Neuron 2014, 81, 484–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenblat, J.D.; Cha, D.S.; Mansur, R.B.; McIntyre, R.S. Inflamed moods: A review of the interactions between inflammation and mood disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 53, 23–34. [Google Scholar] [CrossRef]
- Yang, Z.; Ma, X.; Wang, Y.; Wang, J.; Xiang, B.; Wu, J.; Deng, W.; Li, M.; Wang, Q.; Li, T. Association of APC and REEP5 gene polymorphisms with major depression disorder and treatment response to antidepressants in a Han Chinese population. Gen. Hosp. Psychiatry 2012, 34, 571–577. [Google Scholar] [CrossRef]
- Lohoff, F.W. Overview of the genetics of major depressive disorder. Curr. Psychiatry Rep. 2010, 12, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, P.F.; Neale, M.C.; Kendler, K.S. Genetic epidemiology of major depression: Review and meta-analysis. AJP 2000, 157, 1552–1562. [Google Scholar]
- Shadrina, M.; Bondarenko, E.A.; Slominsky, P.A. Genetics factors in major depression disease. Front. Psychiatry 2018, 9, 334. [Google Scholar] [CrossRef] [Green Version]
- Wray, N.R.; Ripke, S.; Mattheisen, M.; Trzaskowski, M.; Byrne, E.M.; Abdellaoui, A.; Adams, M.J.; Agerbo, E.; Air, T.M.; Andlauer, T.M.F.; et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 2018, 50, 668–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Border, R.; Johnson, E.C.; Evans, L.M.; Smolen, A.; Berley, N.; Sullivan, P.F.; Keller, M.C. No support for historical candidate gene or candidate gene-by-interaction hypotheses for major depression across multiple large samples. Am. J. Psychiatry 2019, 176, 376–387. [Google Scholar] [CrossRef]
- Luo, X.; Stavrakakis, N.; Penninx, B.W.; Bosker, F.J.; Nolen, W.A.; Boomsma, D.I.; de Geus, E.J.; Smit, J.H.; Snieder, H.; Nolte, I.M.; et al. Does refining the phenotype improve replication rates? A review and replication of candidate gene studies on Major Depressive Disorder and Chronic Major Depressive Disorder. Am. J. Med. Genet. 2016, 171, 215–236. [Google Scholar] [CrossRef]
- Chen, M.-H.; Lin, W.-C.; Wu, H.-J.; Cheng, C.-M.; Li, C.-T.; Hong, C.-J.; Tu, P.-C.; Bai, Y.-M.; Tsai, S.-J.; Su, T.-P. Antisuicidal effect, BDNF Val66Met polymorphism, and low-dose ketamine infusion: Reanalysis of adjunctive ketamine study of Taiwanese patients with treatment-resistant depression (AKSTP-TRD). J. Affect. Disord. 2019, 251, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Lansche, J. Tool to Assess Risk of Bias in Case Control Studies. Available online: https://www.evidencepartners.com/wp-content/uploads/2021/03/Tool-to-Assess-Risk-of-Bias-in-Case-Control-Studies-DistillerSR.pdf. (accessed on 12 January 2022).
- Li, W.; Ju, K.; Li, Z.; He, K.; Chen, J.; Wang, Q.; Yang, B.; An, L.; Feng, G.; Sun, W.; et al. Significant association of GRM7 and GRM8 genes with schizophrenia and major depressive disorder in the Han Chinese population. Eur. Neuropsychopharmacol. 2016, 26, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Y.J.; Hua, L.; Yang, Y.T.; Zhang, M.; Zhang, D.; Wang, C.; Xu, Z.Q.D. Lack of association between dendritic cell nuclear protein-1 gene and major depressive disorder in the Han Chinese population. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 45, 7–10. [Google Scholar] [CrossRef]
- Sarubin, N.; Hilbert, S.; Naumann, F.; Zill, P.; Wimmer, A.-M.; Nothdurfter, C.; Rupprecht, R.; Baghai, T.C.; Bühner, M.; Schüle, C. The sex-dependent role of the glucocorticoid receptor in depression: Variations in the NR3C1 gene are associated with major depressive disorder in women but not in men. Eur. Arch. Psychiatry Clin. Neurosci. 2017, 267, 123–133. [Google Scholar] [CrossRef]
- Wang, L.; Shi, C.; Zhang, K.; Xu, Q. The gender-specific association of EHD3 polymorphisms with major depressive disorder. Neurosci. Lett. 2014, 567, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, H.X.; Li, Z.Q.; Li, T.; Li, J.-Y.; Wang, T.; Li, Y.; Feng, G.-Y.; Shi, Y.-Y.; He, L.; et al. The YWHAE gene confers risk to major depressive disorder in the male group of Chinese Han population. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 77, 172–177. [Google Scholar] [CrossRef]
- Santos, M.; Carvalho, S.; Lima, L.; Nogueira, A.; Assis, J.; Mota-Pereira, J.; Pimentel, P.; Maia, D.; Correia, D.; Gomes, S.; et al. Common genetic polymorphisms in the ABCB1 gene are associated with risk of major depressive disorder in male Portuguese individuals. Genet. Test. Mol. Biomark. 2014, 18, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, L.; Ma, J.; Qiao, Z.; Zhao, M.; Qi, D.; Zhao, Y.; Ban, B.; Zhu, X.; He, J.; et al. Interaction of estrogen receptor β and negative life events in susceptibility to major depressive disorder in a Chinese Han female population. J. Affect. Disord. 2017, 208, 628–633. [Google Scholar] [CrossRef]
- Pérez-Olmos, I.; Bustamante, D.; Ibáñez-Pinilla, M. Serotonin transporter gene (5-HTT) polymorphism and major depressive disorder in patients in Bogotá, Colombia. Biomedica 2016, 36, 285. [Google Scholar] [CrossRef] [Green Version]
- Du, T.; Rao, S.; Wu, L.; Ye, N.; Liu, Z.; Hu, H.; Xiu, J.; Shen, Y.; Xu, Q. An association study of the m6A genes with major depressive disorder in Chinese Han population. J. Affect. Disord. 2015, 183, 279–286. [Google Scholar] [CrossRef]
- Nazree, N.E.; Loke, A.C.; Zainal, N.Z.; Mohamed, Z. Lack of association between TPH2 gene polymorphisms with major depressive disorder in multiethnic Malaysian population: Pharmacogenetics of MDD. Asia-Pac. Psychiatry 2015, 7, 72–77. [Google Scholar] [CrossRef]
- Wang, L.; Chen, J.; Li, Z.; Sun, W.; Chen, B.; Li, S.; Li, W.; Lu, D.; Wang, Y.; Shi, Y. Association study of NDST3 gene for schizophrenia, bipolar disorder, major depressive disorder in the Han Chinese population. Am. J. Med. Genet. 2018, 177, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya-Baba, M.; Matsuo, J.; Sasayama, D.; Hori, H.; Teraishi, T.; Ota, M.; Hattori, K.; Noda, T.; Ishida, I.; Shibata, S.; et al. Association of body mass index-related single nucleotide polymorphisms with psychiatric disease and memory performance in a Japanese population. Acta Neuropsychiatr. 2017, 29, 299–308. [Google Scholar] [CrossRef]
- Khan, R.A.W.; Chen, J.; Wang, M.; Wen, Z.; Shen, J.; Song, Z.; Li, Z.; Wang, Q.; Li, W.; Xu, Y.; et al. Analysis of association between common variants in the SLCO6A1 gene with schizophrenia, bipolar disorder and major depressive disorder in the Han Chinese population. World J. Biol. Psychiatry 2016, 17, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.-C.; Chen, C.; Zhu, F.; Jia, W.; Gao, C.-G. Association of the GDNF gene with depression and heroin dependence, but not schizophrenia, in a Chinese population. Psychiatry Res. 2013, 210, 1296–1298. [Google Scholar] [CrossRef] [PubMed]
- Crisafulli, C.; Chiesa, A.; Han, C.; Lee, S.-J.; Balzarro, B.; Andrisano, C.; Sidoti, A.; Patkar, A.A.; Pae, C.-U.; Serretti, A. Case-control association study of 36 single-nucleotide polymorphisms within 10 candidate genes for major depression and bipolar disorder. Psychiatry Res. 2013, 209, 121–123. [Google Scholar] [CrossRef]
- Wang, Q.; He, K.; Li, Z.; Chen, J.; Li, W.; Wen, Z.; Shen, J.; Qiang, Y.; Ji, J.; Wang, Y.; et al. The CMYA5 gene confers risk for both schizophrenia and major depressive disorder in the Han Chinese population. World J. Biol. Psychiatry 2014, 15, 553–560. [Google Scholar] [CrossRef]
- Ji, W.; Li, T.; Pan, Y.; Tao, H.; Ju, K.; Wen, Z.; Fu, Y.; An, Z.; Zhao, Q.; Wang, T.; et al. CNTNAP2 is significantly associated with schizophrenia and major depression in the Han Chinese population. Psychiatry Res. 2013, 207, 225–228. [Google Scholar] [CrossRef]
- Koido, K.; Traks, T.; Balõtšev, R.; Eller, T.; Must, A.; Koks, S.; Maron, E.; Tõru, I.; Shlik, J.; Vasar, V.; et al. Associations between LSAMP gene polymorphisms and major depressive disorder and panic disorder. Transl. Psychiatry 2012, 2, e152. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, X.; Yu, Y.; Han, Y.; Wei, J.; Collier, D.; Li, T.; Ma, X. The role of single nucleotide polymorphism of D2 dopamine receptor gene on major depressive disorder and response to antidepressant treatment. Psychiatry Res. 2012, 200, 1047–1050. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.A.; Bicalho, M.A.C.; de Moraes, E.N.; Malloy-Diniz, L.; Bozzi, I.C.R.S.; Nicolato, R.; Valadão, D.R.; Miranda, D.M.; Romano-Silva, M.A. Genetic variant of AKT1 and AKTIP associated with late-onset depression in a Brazilian population: Variant of AKT1 and AKTIP associated with LOD. Int. J. Geriatr. Psychiatry 2014, 29, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Ching-López, A.; Cervilla, J.; Rivera, M.; Molina, E.; McKenney, K.; Ruiz, I.; Rodríguez-Barranco, M.; Gutiérrez, B. Epidemiological support for genetic variability at hypothalamic-pituitary-adrenal axis and serotonergic system as risk factors for major depression. NDT 2015, 11, 2743–2754. [Google Scholar] [CrossRef] [Green Version]
- Marsden, W.N. Stressor-induced NMDAR dysfunction as a unifying hypothesis for the aetiology, pathogenesis and comorbidity of clinical depression. Med. Hypotheses 2011, 77, 508–528. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Bi, Y.; Xu, F.; Niu, W.; Zhang, R.; Hu, J.; Guo, Z.; Wu, X.; Cao, Y.; Huang, X.; et al. Common variants in GRIK4 and major depressive disorder: An association study in the Chinese Han population. Neurosci. Lett. 2017, 653, 239–243. [Google Scholar] [CrossRef]
- Dadkhah, T.; Rahimi-Aliabadi, S.; Jamshidi, J.; Ghaedi, H.; Taghavi, S.; Shokraeian, P.; Akhavan-Niaki, H.; Tafakhori, A.; Ohadi, M.; Darvish, H. A genetic variant in miRNA binding site of glutamate receptor 4, metabotropic (GRM4) is associated with increased risk of major depressive disorder. J. Affect. Disord. 2017, 208, 218–222. [Google Scholar] [CrossRef]
- Yin, H.; Pantazatos, S.P.; Galfalvy, H.; Huang, Y.; Rosoklija, G.B.; Dwork, A.J.; Burke, A.; Arango, V.; Oquendo, M.A.; Mann, J.J. A pilot integrative genomics study of GABA and glutamate neurotransmitter systems in suicide, suicidal behavior, and major depressive disorder. Am. J. Med. Genet. 2016, 171, 414–426. [Google Scholar] [CrossRef]
- Heilig, M.; Zachrisson, O.; Thorsell, A.; Ehnvall, A.; Mottagui-Tabar, S.; Sjögren, M.; Åsberg, M.; Ekman, R.; Wahlestedt, C.; Ågren, H. Decreased cerebrospinal fluid neuropeptide Y (NPY) in patients with treatment refractory unipolar major depression: Preliminary evidence for association with preproNPY gene polymorphism. J. Psychiatr. Res. 2004, 38, 113–121. [Google Scholar] [CrossRef]
- Kloster, E.; Saft, C.; Akkad, D.A.; Epplen, J.T.; Arning, L. Association of age at onset in Huntington disease with functional promoter variations in NPY and NPY2R. J. Mol. Med. 2014, 92, 177–184. [Google Scholar] [CrossRef]
- Treutlein, J.; Strohmaier, J.; Frank, J.; Witt, S.H.; Rietschel, L.; Forstner, A.J.; Lang, M.; Degenhardt, F.; Dukal, H.; Herms, S.; et al. Association between neuropeptide Y receptor Y2 promoter variant rs6857715 and major depressive disorder. Psychiatr. Genet. 2017, 27, 34–37. [Google Scholar] [CrossRef]
- Clarke, H.; Flint, J.; Attwood, A.S.; Munafò, M.R. Association of the 5-HTTLPR genotype and unipolar depression: A meta-analysis. Psychol. Med. 2010, 40, 1767–1778. [Google Scholar] [CrossRef]
- Manoharan, A.; Shewade, D.G.; Rajkumar, R.P.; Adithan, S. Serotonin transporter gene (SLC6A4) polymorphisms are associated with response to fluoxetine in south Indian major depressive disorder patients. Eur. J. Clin. Pharmacol. 2016, 72, 1215–1220. [Google Scholar] [CrossRef]
- Fan, T.; Hu, Y.; Xin, J.; Zhao, M.; Wang, J. Analyzing the genes and pathways related to major depressive disorder via a systems biology approach. Brain Behav. 2020, 10, e01502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, N. Effects of polymorphisms of serotonin transporter promoter (5-HTTLPR) and brain derived neurotrophic factor gene (G196A rs6265) on the risk of major depressive disorder in the Chinese Han population. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 1852–1859. [Google Scholar]
- Wang, Y.; Sun, N.; Liu, Z.; Li, X.; Yang, C.; Zhang, K. Psychosocial mechanisms of serotonin transporter’s genetic polymorphism in susceptibility to major depressive disorder: Mediated by trait coping styles and interacted with life events. Am. J. Transl. Res. 2016, 8, 1281–1292. [Google Scholar]
- Kostic, M.; Canu, E.; Agosta, F.; Munjiza, A.; Novakovic, I.; Dobricic, V.; Maria Ferraro, P.; Miler Jerkovic, V.; Pekmezovic, T.; Lecic Tosevski, D.; et al. The cumulative effect of genetic polymorphisms on depression and brain structural integrity: Multigene effect and brain integrity in MDD. Hum. Brain Mapp. 2016, 37, 2173–2184. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.-S.; Ho, K.K.-J.; Huang, W.-S.; Yen, C.-H.; Shih, M.-C.; Shen, L.-H.; Ma, K.-H.; Huang, S.-Y. Association study of serotonin transporter availability and SLC6A4 gene polymorphisms in patients with major depression. Psychiatry Res. Neuroimaging 2013, 212, 216–222. [Google Scholar] [CrossRef]
- Kitzlerová, E.; Fišar, Z.; Lelková, P.; Jirák, R.; Zvěřová, M.; Hroudová, J.; Manukyan, A.; Martásek, P.; Raboch, J. Interactions among polymorphisms of susceptibility loci for alzheimer’s disease or depressive disorder. Med. Sci. Monit. 2018, 24, 2599–2619. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Leung, C.S.T.; Lam, M.H.; Wing, Y.K.; Waye, M.M.Y.; Tsui, S.K.W. Resequencing three candidate genes discovers seven potentially deleterious variants susceptibility to major depressive disorder and suicide attempts in Chinese. Gene 2017, 603, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Stacey, D.; Cohen-Woods, S.; Toben, C.; Arolt, V.; Dannlowski, U.; Baune, B.T. Evidence of increased risk for major depressive disorder in individuals homozygous for the high-expressing 5-HTTLPR/rs25531 (LA) allele of the serotonin transporter promoter. Psychiatr. Genet. 2013, 23, 222–223. [Google Scholar] [CrossRef]
- Sarmiento-Hernández, E.I.; Ulloa-Flores, R.E.; Camarena-Medellín, B.; Sanabrais-Jiménez, M.A.; Aguilar-García, A.; Hernández-Muñoz, S. Association between 5-HTTLPR polymorphism, suicide attempt and comorbidity in Mexican adolescents with major depressive disorder. Actas Esp. Psiquiatr. 2019, 47, 1–6. [Google Scholar] [PubMed]
- Watanabe, S.Y.; Iga, J.I.; Numata, S.; Umehara, H.; Nishi, A.; Kinoshita, M.; Inoshita, M.; Ohmori, T. Polymorphism in the promoter of the gene for the serotonin transporter affects the age of onset of major depressive disorder in the Japanese population. J. Affect. Disord. 2015, 183, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Han, K.M.; Choi, S.; Kim, A.; Kang, J.; Won, E.; Tae, W.-S.; Kim, Y.-K.; Lee, M.-S.; Ham, B.-J. The effects of 5-HTTLPR and BDNF Val66Met polymorphisms on neurostructural changes in major depressive disorder. Psychiatry Res. Neuroimaging 2018, 273, 25–34. [Google Scholar] [CrossRef]
- Tatham, E.L.; Ramasubbu, R.; Gaxiola-Valdez, I.; Cortese, F.; Clark, D.; Goodyear, B.; Foster, J.; Hall, G.B. White matter integrity in major depressive disorder: Implications of childhood trauma, 5-HTTLPR and BDNF polymorphisms. Psychiatry Res. Neuroimaging 2016, 253, 15–25. [Google Scholar] [CrossRef]
- Kalska, H.; Pesonen, U.; Lehikoinen, S.; Stenberg, J.-H.; Lipsanen, J.; Niemi-Pynttäri, J.; Tuunainen, A. Association between neurocognitive impairment and the short allele of the 5-HTT promoter polymorphism in depression: A pilot study. Psychiatry J. 2013, 2013, 1–6. [Google Scholar] [CrossRef]
- Ahdidan, J.; Foldager, L.; Rosenberg, R.; Rodell, A.; Videbech, P.; Mors, O. Hippocampal volume and serotonin transporter polymorphism in major depressive disorder. Acta Neuropsychiatr. 2013, 25, 206–214. [Google Scholar] [CrossRef]
- Bi, Y.; Huang, X.; Niu, W.; Chen, S.; Wu, X.; Cao, Y.; Zhang, R.; Yang, F.; Wang, L.; Li, W.; et al. Common variants in SLC6A2, SLC6A3, DRD2, and major depressive disorder: An association study in the Chinese Han population. Psychiatr. Genet. 2017, 27, 103–104. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, N.; Li, S.; Du, Q.; Xu, Y.; Liu, Z.; Zhang, K. A genetic susceptibility mechanism for major depression: Combinations of polymorphisms defined the risk of major depression and subpopulations. Medicine 2015, 94, e778. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.X.; Li, H.F.; Zhao, X.F.; Pang, J.Y.; Liu, Q.; Xie, G.R. Association between T-182C, G1287A polymorphism in NET gene and suicidality in major depressive disorder in Chinese patients. Int. J. Psychiatry Clin. Pract. 2018, 22, 304–309. [Google Scholar] [CrossRef]
- Drago, A.; Crisafulli, C.; Sidoti, A.; Serretti, A. The molecular interaction between the glutamatergic, noradrenergic, dopaminergic and serotoninergic systems informs a detailed genetic perspective on depressive phenotypes. Prog. Neurobiol. 2011, 94, 418–460. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Sun, N.; Ren, Y.; Sun, Y.; Xu, Y.; Li, A.; Wu, K.; Zhang, K. Association between AKT1 gene polymorphisms and depressive symptoms in the Chinese Han population with major depressive disorder. Neural Regen. Res. 2012, 7, 235–239. [Google Scholar]
- Shishkina, T.V.; Mishchenko, T.A.; Mitroshina, E.V.; Shirokova, O.M.; Pimashkin, A.S.; Kastalskiy, I.A.; Mukhina, I.V.; Kazantsev, V.B.; Vedunova, M.V. Glial cell line-derived neurotrophic factor (GDNF) counteracts hypoxic damage to hippocampal neural network function in vitro. Brain Res. 2018, 1678, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Tsybko, A.S.; Ilchibaeva, T.V.; Popova, N.K. Role of glial cell line-derived neurotrophic factor in the pathogenesis and treatment of mood disorders. Rev. Neurosci. 2017, 28, 219–233. [Google Scholar] [CrossRef]
- Mackenzie, F.; Ruhrberg, C. Diverse roles for VEGF-A in the nervous system. Development 2012, 139, 1371–1380. [Google Scholar] [CrossRef] [Green Version]
- Uribe, E.; Wix, R. Neuronal migration, apoptosis and bipolar disorder. Rev. Psiquiatr. Salud Ment. 2012, 5, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Prata, D.P.; Breen, G.; Osborne, S.; Munro, J.; Clair, D.S.; Collier, D.A. An association study of the neuregulin 1 gene, bipolar affective disorder and psychosis. Psychiatr. Genet. 2009, 19, 113–116. [Google Scholar] [CrossRef] [Green Version]
- Buttenschøn, H.N.; Demontis, D.; Kaas, M.; Elfving, B.; Mølgaard, S.; Gustafsen, C.; Kaerlev, L.; Petersen, C.M.; Børglum, A.D.; Mors, O.; et al. Increased serum levels of sortilin are associated with depression and correlated with BDNF and VEGF. Transl. Psychiatry 2015, 5, e677. [Google Scholar] [CrossRef] [Green Version]
- Khalilova, Z.L.; Zainullina, A.G.; Valiullina, A.R.; Zakharova, G.G.; Valinurov, R.G.; Khusnutdinova, E.K. Association of YWHAE gene polymorphism with suicidal behavior. Russ. J. Genet. 2013, 49, 667–672. [Google Scholar] [CrossRef]
- Gałecka, E.; Szemraj, J.; Bieńkiewicz, M.; Majsterek, I.; Przybyłowska-Sygut, K.; Gałecki, P.; Lewiński, A. Single nucleotide polymorphisms of NR3C1 gene and recurrent depressive disorder in population of Poland. Mol. Biol. Rep. 2013, 40, 1693–1699. [Google Scholar] [CrossRef] [Green Version]
- Gałecki, P.; Gałecka, E.; Maes, M.; Orzechowska, A.; Berent, D.; Talarowska, M.; Bobińska, K.; Lewiński, A.; Bieńkiewicz, M.; Szemraj, J. Vascular endothelial growth factor gene (VEGFA) polymorphisms may serve as prognostic factors for recurrent depressive disorder development. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 45, 117–124. [Google Scholar] [CrossRef]
- Li, Z.; He, B.; Xu, J.; Dai, N.; Ping, L.; Zhou, C.; Shen, Z.; Xu, X.; Cheng, Y. Roles of 5,10-methylenetetrahydrofolate reductase C677T polymorphisms in first-episode, drug-naive adult patients with depression. Front. Psychiatry 2020, 11, 1122. [Google Scholar] [CrossRef]
- Zhang, C.; Ran, L.; Ai, M.; Wang, W.; Chen, J.; Wu, T.; Liu, W.; Jin, J.; Wang, S.; Kuang, L. Targeted sequencing of the bdnf gene in young chinese han people with major depressive disorder. Mol. Genet. Genom. Med. 2020, 8, e1484. [Google Scholar] [CrossRef] [PubMed]
- Fratelli, C.; Siqueira, J.; Silva, C.; Ferreira, E.; Silva, I. 5HTTLPR genetic variant and major depressive disorder: A review. Genes 2020, 11, 1260. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Ji, W.; Zhou, G.; He, K.; Li, Z.; Chen, J.; Li, W.; Wen, Z.; Shen, J.; et al. SNAP25 is associated with schizophrenia and major depressive disorder in the Han Chinese population. J. Clin. Psychiatry 2015, 76, e76–e82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldoghachi, A.F.; Tor, Y.S.; Redzun, S.Z.; Lokman, K.A.B.; Razaq, N.A.A.; Shahbudin, A.F.; Badamasi, I.M.; Cheah, P.-S.; Stanslas, J.; Veerakumarasivam, A.; et al. Screening of brain-derived neurotrophic factor (BDNF) single nucleotide polymorphisms and plasma BDNF levels among Malaysian major depressive disorder patients. Hashimoto K, editor. PLoS ONE 2019, 14, e0211241. [Google Scholar] [CrossRef]
- Chao, J.K.; Yang, M.C.; Chen, C.S.; Wang, I.C.; Kao, W.T.; Shi, M.D. A gender-specific COMT haplotype contributes to risk modulation rather than disease severity of major depressive disorder in a Chinese population. J. Affect. Disord. 2019, 246, 376–386. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, X.; Ma, J.; Qiao, Z.; Yang, X.; Zhao, E.; Ban, B.; Zhu, X.; Cao, D.; Yang, Y.; et al. The interaction of TPH2 and 5-HT2A polymorphisms on major depressive disorder susceptibility in a Chinese Han population: A case-control study. Front. Psychiatry 2019, 10, 172. [Google Scholar] [CrossRef] [Green Version]
- Xie, T.; Stathopoulou, M.G.; de Andrés, F.; Siest, G.; Murray, H.; Martin, M.; Cobaleda, J.; Delgado, A.; Lamont, J.; Peñas-LIedó, E.; et al. VEGF-related polymorphisms identified by GWAS and risk for major depression. Transl. Psychiatry 2017, 7, e1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmood, S.; Evinová, A.; Škereňová, M.; Ondrejka, I.; Lehotský, J. Association of EGF, IGFBP-3 and TP53 gene polymorphisms with major depressive disorder in Slovak population. Cent. Eur. J. Public Health 2016, 24, 223–230. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, Z.; Zhao, G.; Wang, F.; Fang, Y. Identification of IL6 as a susceptibility gene for major depressive disorder. Sci. Rep. 2016, 6, 31264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayadi, M.A.; Achour, O.; Ezzaher, A.; Hellara, I.; Omezzine, A.; Douki, W.; Bousslama, A.; Gaha, L.; Najjar, M.F. CT genotype of 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism is protector factor of major depressive disorder in the Tunisian population: A case control study. Ann. Gen. Psychiatry 2016, 15, 18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xie, W.W.; Wu, R.R.; Yu, Y.; Zhao, J.-P.; Li, L.H. Case-control association study of ABCB1 gene and major depressive disorder in a local Chinese Han population. NDT 2015, 11, 1967–1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Zhao, G.; Sun, R.; Mao, Y.; Li, G.; Chen, X.; Gao, L.; Hu, Z. Genetic variants in the promoters of let-7 family are associated with an increased risk of major depressive disorder. J. Affect. Disord. 2015, 183, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ni, J.; Zhang, J.; Tang, W.; Li, X.; Wu, Z.; Zhang, C. A haplotype in the 5′-upstream region of the NDUFV2 gene is associated with major depressive disorder in Han Chinese. J. Affect. Disord. 2016, 190, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Congiu, C.; Minelli, A.; Bonvicini, C.; Bortolomasi, M.; Sartori, R.; Maj, C.; Scassellati, C.; Maina, G.; Trabucchi, L.; Segala, M.; et al. The role of the potassium channel gene KCNK2 in major depressive disorder. Psychiatry Res. 2015, 225, 489–492. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; He, Y.; Zhou, J.; Xi, Q.; Song, X.; Ye, Y.; Ying, B. Association between dopamine beta-hydroxylase 19-bp insertion/deletion polymorphism and major depressive disorder. J. Mol. Neurosci. 2015, 55, 367–371. [Google Scholar] [CrossRef]
- Kokut, S.; Atay, I.M.; Uz, E.; Akpinar, A.; Demirdas, A. The polymorphisms of Ser49Gly and Gly389Arg in beta-1-adrenergic receptor gene in major depression. Arch. Neuropsychiatr. 2015, 52, 124–127. [Google Scholar] [CrossRef]
- McFarquhar, M.; Elliott, R.; McKie, S.; Thomas, E.; Downey, D.; Mekli, K.; Toth, Z.G.; Anderson, I.M.; Deakin, J.W.; Juhasz, G. TOMM40 rs2075650 may represent a new candidate gene for vulnerability to major depressive disorder. Neuropsychopharmacology 2014, 39, 1743–1753. [Google Scholar] [CrossRef]
- Mocking, R.J.T.; Lok, A.; Assies, J.; Koeter, M.W.J.; Visser, I.; Ruhé, H.G.; Bockting, C.L.H.; Schene, A.H. Ala54thr fatty acid-binding protein 2 (FABP2) polymorphism in recurrent depression: Associations with fatty acid concentrations and waist circumference. Alquier T, editor. PLoS ONE 2013, 8, e82980. [Google Scholar] [CrossRef] [Green Version]
- Hua, P.; Liu, W.; Chen, D.; Zhao, Y.; Chen, L.; Zhang, N.; Wang, C.; Guo, S.; Wang, L.; Xiao, H.; et al. Cry1 and Tef gene polymorphisms are associated with major depressive disorder in the Chinese population. J. Affect. Disord. 2014, 157, 100–103. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Yan, H.; Duan, Z.-X.; Qu, W.; Gong, H.-Y.; Fan, Z.-L.; Kang, J.-Y.; Li, B.-C.; Wang, J.-M. Genetic distribution and association analysis of DRD2 gene polymorphisms with major depressive disorder in the Chinese Han population. Int. J. Clin. Exp. Pathol. 2013, 6, 1142–1149. [Google Scholar]
- Evinova, A.; Babusikova, E.; Straka, S.; Ondrejka, I.; Lehotsky, J. Analysis of genetic polymorphisms of brain-derived neurotrophic factor and methylenetetrahydrofolate reductase in depressed patients in a Slovak (Caucasian) population. GPB 2012, 31, 415–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.J.; Li, H.; Yang, Y.T.; Tie, C.-L.; Li, F.; Xu, Z.-Q.D.; Wang, C.-Y. Association of galanin and major depressive disorder in the Chinese Han population. PLoS ONE 2013, 8, e64617. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Zhang, J.; Zhang, K.; Yang, H.; Sun, Y.; Shen, Y.; Xu, Q. A study of the functional significance of epidermal growth factor in major depressive disorder. Psychiatr. Genet. 2012, 22, 161–167. [Google Scholar] [CrossRef]
- Minelli, A.; Scassellati, C.; Cloninger, C.R.; Tessari, E.; Bortolomasi, M.; Bonvicini, C.; Giacopuzzi, M.; Frisoni, G.B.; Gennarelli, M. PCLO gene: Its role in vulnerability to major depressive disorder. J. Affect. Disord. 2012, 139, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Vereczkei, A.; Abdul-Rahman, O.; Halmai, Z.; Nagy, G.; Szekely, A.; Somogyi, A.; Faludi, G.; Nemoda, Z. Association of purinergic receptor P2RX7 gene polymorphisms with depression symptoms. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2019, 92, 207–216. [Google Scholar] [CrossRef]
- Tao, S.; Chattun, M.R.; Yan, R.; Geng, J.; Zhu, R.; Shao, J.; Lu, Q.; Yao, Z. TPH-2 gene polymorphism in major depressive disorder patients with early-wakening symptom. Front. Neurosci. 2018, 12, 827. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Zhao, X.; Li, H. No association between a polymorphism of the adenylate cyclase type IX gene and major depressive disorder in the Chinese Han population. Neural Regen. Res. 2012, 7, 1914–1919. [Google Scholar]
- Zeng, D.; He, S.; Yu, S.; Li, G.; Ma, C.; Wen, Y.; Shen, Y.; Yu, Y.; Li, H. Analysis of the association of MIR124-1 and its target gene RGS4 polymorphisms with major depressive disorder and antidepressant response. NDT 2018, 14, 715–723. [Google Scholar] [CrossRef] [Green Version]
- Şahin Can, M.; Baykan, H.; Baykan, Ö.; Erensoy, N.; Karlıdere, T. Vitamin D levels and vitamin D receptor gene polymorphism in major depression. Psychiatr. Danub. 2017, 29, 179–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, K.M.; Won, E.; Kang, J.; Choi, S.; Kim, A.; Lee, M.-S.; Tae, W.-S.; Ham, B.-J. TESC gene-regulating genetic variant (rs7294919) affects hippocampal subfield volumes and parahippocampal cingulum white matter integrity in major depressive disorder. J. Psychiatr. Res. 2017, 93, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Cribb, L.; Murphy, J.; Froud, A.; Oliver, G.; Bousman, C.A.; Ng, C.H.; Sarris, J. Erythrocyte polyunsaturated fatty acid composition is associated with depression and FADS genotype in Caucasians. Nutr. Neurosci. 2018, 21, 589–601. [Google Scholar] [CrossRef]
- Wang, Q.; Ji, W.; He, K.; Li, Z.; Chen, J.; Li, W.; Wen, Z.; Shen, J.; Yu, Q.; Feng, G.; et al. Genetic analysis of common variants in the ZNF804A gene with schizophrenia and major depressive disorder. Psychiatr. Genet. 2018, 28, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, Z.; Cao, X.; Li, J.; Zhang, A.; Sun, N.; Yang, C.; Zhang, K. A combined study of SLC6A15 gene polymorphism and the resting-state functional magnetic resonance imaging in first-episode drug-naive major depressive disorder. Genet. Test. Mol. Biomark. 2017, 21, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Won, E.; Han, K.M.; Kang, J.; Kim, A.; Yoon, H.-K.; Chang, H.S.; Park, J.-Y.; Lee, M.-S.; Greenberg, T.; Tae, W.-S.; et al. Vesicular monoamine transporter 1 gene polymorphism and white matter integrity in major depressive disorder. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 77, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Tollenaar, M.S.; Molendijk, M.L.; Penninx, B.W.J.H.; Milaneschi, Y.; Antypa, N. The association of childhood maltreatment with depression and anxiety is not moderated by the oxytocin receptor gene. Eur. Arch. Psychiatry Clin. Neurosci. 2017, 267, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Wang, L.; Yang, Y.; Qiao, Z.; Fang, D.; Qiu, X.; Yang, X.; Zhu, X.; He, J.; Pan, H.; et al. GNB3 and CREB1 gene polymorphisms combined with negative life events increase susceptibility to major depression in a Chinese Han population. PLoS ONE 2017, 12, e0170994. [Google Scholar] [CrossRef]
- Han, K.M.; Won, E.; Sim, Y.; Kang, J.; Han, C.; Kim, Y.-K.; Kim, S.-H.; Joe, S.-H.; Lee, M.-S.; Tae, W.-S.; et al. Influence of FKBP5 polymorphism and DNA methylation on structural changes of the brain in major depressive disorder. Sci. Rep. 2017, 7, 42621. [Google Scholar] [CrossRef] [Green Version]
- Mandelli, L.; Wang, S.M.; Han, C.; Lee, S.-J.; Patkar, A.A.; Masand, P.S.; Pae, C.-U.; Serretti, A. The impact of a single nucleotide polymorphism in SIGMAR1 on depressive symptoms in major depressive disorder and bipolar disorder. Adv. Ther. 2017, 34, 713–724. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Xu, C.; Cao, X.; Liu, Z.; Sun, N.; Zhang, A.; Li, X.; Zhang, K. Polymorphism of ERK/PTPRR genes in major depressive disorder at resting-state brain function. Dev. Neuropsychol. 2017, 42, 231–240. [Google Scholar] [CrossRef]
- Xu, C.; Yang, C.; Zhang, A.; Xu, Y.; Li, X.; Liu, Z.; Liu, S.; Sun, N.; Zhang, K. The interaction of miR-34b/c polymorphisms and negative life events increases susceptibility to major depressive disorder in Han Chinese population. Neurosci. Lett. 2017, 651, 65–71. [Google Scholar] [CrossRef]
- Han, D.; Qiao, Z.; Chen, L.; Qiu, X.; Fang, D.; Yang, X.; Ma, J.; Chen, M.; Yang, J.; Wang, L.; et al. Interactions between the vascular endothelial growth factor gene polymorphism and life events in susceptibility to major depressive disorder in a Chinese population. J. Affect. Disord. 2017, 217, 295–298. [Google Scholar] [CrossRef]
- Choi, S.; Han, K.M.; Kang, J.; Won, E.; Chang, H.S.; Tae, W.S.; Son, K.R.; Kim, S.-J.; Lee, M.-S.; Ham, B.-J. Effects of a polymorphism of the neuronal amino acid transporter SLC6A15 gene on structural integrity of white matter tracts in major depressive disorder. PLoS ONE 2016, 11, e0164301. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, R.; Tarfarosh, S.F.A.; Dar, M.M.; Hussain, A.; Shoib, S.; Shah, T.; Shah, S.; Manzoor, M. Is there a link between depressive disorders and tryptophan hydroxylase 1 (TPH1) gene polymorphism? Study from a distressed area, Kashmir (india). Cureus 2016, 8, e673. [Google Scholar] [CrossRef] [Green Version]
- Bondarenko, E.; Shadrina, M.; Grishkina, M.; Druzhkova, T.; Akzhigitov, R.; Gulyaeva, N.; Guekht, A.; Slominsky, P. Genetic analysis of BDNF, GNB3, MTHFR, ACE and APOE variants in major and recurrent depressive disorders in Russia. Int. J. Med. Sci. 2016, 13, 977–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sublette, M.E.; Vaquero, C.; Baca-Garcia, E.; Pachano, G.; Huang, Y.; Oquendo, M.A.; Mann, J.J. Lack of association of SNPs from the FADS1-FADS2 gene cluster with major depression or suicidal behavior. Psychiatr. Genet. 2016, 26, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.B.; Martinsson, L.; Liu, J.J.; Forsell, Y.; Schalling, M.; Backlund, L.; Lavebratt, C. hTERT genetic variation in depression. J. Affect. Disord. 2016, 189, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Xiao, H.; Yang, Y.; Cao, D.; Wang, L.; Yang, X.; Qiu, X.; Qiao, Z.; Song, J.; Liu, Y.; et al. Interaction of tryptophan hydroxylase 2 gene and life events in susceptibility to major depression in a Chinese Han population. J. Affect. Disord. 2015, 188, 304–309. [Google Scholar] [CrossRef]
- Wen, Z.; Chen, J.; Khan, R.A.W.; Song, Z.; Wang, M.; Li, Z.; Shen, J.; Li, W.; Shi, Y. Genetic association between NRG1 and schizophrenia, major depressive disorder, bipolar disorder in Han Chinese population. Am. J. Med. Genet. 2016, 171, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Chen, J.; Khan, R.A.W.; Wang, M.; Song, Z.; Li, Z.; Shen, J.; Li, W.; Shi, Y. Polymorphisms in NRGN are associated with schizophrenia, major depressive disorder and bipolar disorder in the Han Chinese population. J. Affect. Disord. 2016, 194, 180–187. [Google Scholar] [CrossRef]
- Won, E.; Kang, J.; Kim, A.; Choi, S.; Han, K.-M.; Tae, W.S.; Chang, H.S.; Son, K.R.; Greenberg, T.; Joe, S.-H.; et al. Influence of BclI C/G (rs41423247) on hippocampal shape and white matter integrity of the parahippocampal cingulum in major depressive disorder. Psychoneuroendocrinology 2016, 72, 147–155. [Google Scholar] [CrossRef]
- Quteineh, L.; Preisig, M.; Rivera, M.; Milaneschi, Y.; Castelao, E.; Gholam-Rezaee, M.; Vandenberghe, F.; Saigi-Morgui, N.; Delacrétaz, A.; Cardinaux, J.-R.; et al. Association of CRTC1 polymorphisms with obesity markers in subjects from the general population with lifetime depression. J. Affect. Disord. 2016, 198, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.S.; Won, E.S.; Lee, H.Y.; Ham, B.J.; Kim, Y.G.; Lee, M.S. Association of ARRB1 polymorphisms with the risk of major depressive disorder and with treatment response to mirtazapine. J. Psychopharmacol. 2015, 29, 615–622. [Google Scholar] [CrossRef]
- He, M.; He, H.; Yang, L.; Zhang, J.; Chen, K.; Duan, Z. Functional tag SNPs inside the DRD2 gene as a genetic risk factor for major depressive disorder in the Chinese Han population. Int. J. Clin. Exp. Pathol. 2019, 12, 628–639. [Google Scholar]
- Milaneschi, Y.; Lamers, F.; Mbarek, H.; Hottenga, J.J.; Boomsma, D.I.; Penninx, B.W.J.H. The effect of FTO rs9939609 on major depression differs across MDD subtypes. Mol. Psychiatry 2014, 19, 960–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.S.; Won, E.; Lee, H.Y.; Ham, B.J.; Lee, M.S. Association analysis for corticotropin releasing hormone polymorphisms with the risk of major depressive disorder and the response to antidepressants. Behav. Brain Res. 2015, 292, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Gabriela Nielsen, M.; Congiu, C.; Bortolomasi, M.; Bonvicini, C.; Bignotti, S.; Abate, M.; Milanesi, E.; Conca, A.; Cattane, N.; Tessari, E.; et al. MTHFR: Genetic variants, expression analysis and COMT interaction in major depressive disorder. J. Affect. Disord. 2015, 183, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Inoue, A.; Akiyoshi, J.; Muronaga, M.; Masuda, K.; Aizawa, S.; Hirakawa, H.; Ishitobi, Y.; Higuma, H.; Maruyama, Y.; Ninomiya, T.; et al. Association of TMEM132D, COMT, and GABRA6 genotypes with cingulate, frontal cortex and hippocampal emotional processing in panic and major depressive disorder. Int. J. Psychiatry Clin. Pract. 2015, 19, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Traks, T.; Koido, K.; Balõtšev, R.; Eller, T.; Kõks, S.; Maron, E.; Tõru, I.; Shlik, J.; Vasar, E.; Vasar, V. Polymorphisms of IKBKE gene are associated with major depressive disorder and panic disorder. Brain Behav. 2015, 5, e00314. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ji, W.; Li, Z.; He, K.; Wang, Q.; Chen, J.; Qiang, Y.; Feng, G.; Li, X.; Shen, J.; et al. Genetic association of ACSM1 variation with schizophrenia and major depressive disorder in the Han Chinese population. Am. J. Med. Genet. 2015, 168, 144–149. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, S.; Kang, W.S.; Jahng, G.-H.; Park, H.J.; Kim, S.K.; Park, J.K. Gray matter volume reductions were associated with TPH1 polymorphisms in depressive disorder patients with suicidal attempts. Psychiatry Investig. 2018, 15, 1174–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elfving, B.; Buttenschøn, H.N.; Foldager, L.; Poulsen, P.H.P.; Andersen, J.H.; Grynderup, M.B.; Hansen, Å.M.; Kolstad, H.A.; Kaerlev, L.; Mikkelsen, S.; et al. Depression, the Val66Met polymorphism, age, and gender influence the serum BDNF level. J. Psychiatr. Res. 2012, 46, 1118–1125. [Google Scholar] [CrossRef]
- Jia, W.; Zhang, R.; Wu, B.; Dai, Z.; Zhu, Y.; Li, P.; Zhu, F. Metabotropic glutamate receptor 3 is associated with heroin dependence but not depression or schizophrenia in a chinese population. PLoS ONE 2014, 9, e87247. [Google Scholar]
- Sasayama, D.; Hori, H.; Yamamoto, N.; Nakamura, S.; Teraishi, T.; Tatsumi, M.; Hattori, K.; Ota, M.; Higuchi, T.; Kunugi, H. ITIH3 polymorphism may confer susceptibility to psychiatric disorders by altering the expression levels of GLT8D1. J. Psychiatr. Res. 2014, 50, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Z.; Wu, Y.; Yuan, Y.; Hou, Z.; Hou, G. Association analysis of the catechol-O-methyltransferase /methylenetetrahydrofolate reductase genes and cognition in late-onset depression. Psychiatry Clin. Neurosci. 2014, 68, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Wu, Z.; Hong, W.; Wang, Z.; Peng, D.; Chen, J.; Yuan, C.; Yu, S.; Xu, L.; Fang, Y. Influence of BCL2 gene in major depression susceptibility and antidepressant treatment outcome. J. Affect. Disord. 2014, 155, 288–294. [Google Scholar] [CrossRef]
- Stacey, D.; Redlich, R.; Opel, N.; Grotegerd, D.; Arolt, V.; Kugel, H.; Heindel, W.; Baune, B.T.; Dannlowski, U. No evidence of DISC1-associated morphological changes in the hippocampus, anterior cingulate cortex, or striatum in major depressive disorder cases and healthy controls. J. Affect. Disord. 2014, 166, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Frazier, T.W.; Youngstrom, E.A.; Frankel, B.A.; Zunta-Soares, G.B.; Sanches, M.; Escamilla, M.; Nielsen, D.A.; Soares, J.C. Candidate gene associations with mood disorder, cognitive vulnerability, and fronto-limbic volumes. Brain Behav. 2014, 4, 418–430. [Google Scholar] [CrossRef] [PubMed]
- Ozbey, G.; Yucel, B.; Taycan, S.E.; Kan, D.; Bodur, N.E.; Arslan, T.; Percin, F.; Yuksel, N.; Guzey, C.; Uluoglu, C. ABCB1 C3435T polymorphism is associated with susceptibility to major depression, but not with a clinical response to citalopram in a Turkish population. Pharmacol. Rep. 2014, 66, 235–238. [Google Scholar] [CrossRef]
- Szczepankiewicz, A.; Leszczyńska-Rodziewicz, A.; Pawlak, J.; Narozna, B.; Rajewska-Rager, A.; Wilkosc, M.; Zaremba, D.; Maciukiewicz, M.; Twarowska-Hauser, J. FKBP5 polymorphism is associated with major depression but not with bipolar disorder. J. Affect. Disord. 2014, 164, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Wu, Y.; Guan, T.; Wang, X.; Qian, M.; Lin, M.; Shen, Z.; Sun, J.; Zhong, H.; Yang, J.; et al. Association analysis of COMT/MTHFR polymorphisms and major depressive disorder in Chinese Han population. J. Affect. Disord. 2014, 161, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Elbozan Cumurcu, B.; Ozyurt, H.; Ates, O.; Gogcegoz Gul, I.; Demir, S.; Karlıdag, R. Analysis of manganese superoxide dismutase (MnSOD: Ala-9Val) and glutathione peroxidase (GSH-Px: Pro 197 Leu) gene polymorphisms in mood disorders. Bosn. J. Basic Med. Sci. 2013, 13, 109. [Google Scholar] [CrossRef] [Green Version]
- Halmai, Z.; Dome, P.; Vereczkei, A.; Abdul-Rahman, O.; Szekely, A.; Gonda, X.; Faludi, G.; Sasvari-Szekely, M.; Nemoda, Z. Associations between depression severity and purinergic receptor P2RX7 gene polymorphisms. J. Affect. Disord. 2013, 150, 104–109. [Google Scholar] [CrossRef]
- Mitjans, M.; Serretti, A.; Fabbri, C.; Gastó, C.; Catalán, R.; Fañanás, L.; Arias, B. Screening genetic variability at the CNR1 gene in both major depression etiology and clinical response to citalopram treatment. Psychopharmacology 2013, 227, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, Y.; Zhang, J.; Liu, Z.; Xu, C.; Zhang, K.; Shen, Y.; Xu, Q. Genotypic association of the DAOA gene with resting-state brain activity in major depression. Mol. Neurobiol. 2012, 46, 361–373. [Google Scholar] [CrossRef]
- Firouzabadi, N.; Shafiei, M.; Bahramali, E.; Ebrahimi, S.A.; Bakhshandeh, H.; Tajik, N. Association of angiotensin-converting enzyme (ACE) gene polymorphism with elevated serum ACE activity and major depression in an Iranian population. Psychiatry Res. 2012, 200, 336–342. [Google Scholar] [CrossRef]
- Carballedo, A.; Amico, F.; Ugwu, I.; Fagan, A.J.; Fahey, C.; Morris, D.; Meaney, J.F.; Leemans, A.; Frodl, T. Reduced fractional anisotropy in the uncinate fasciculus in patients with major depression carrying the met-allele of the Val66Met brain-derived neurotrophic factor genotype. Am. J. Med. Genet. 2012, 159B, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Green, E.K.; Grozeva, D.; Forty, L.; Gordon-Smith, K.; Russell, E.; Farmer, A.; Hamshere, M.; Jones, I.R.; Jones, L.; McGuffin, P.; et al. Association at SYNE1 in both bipolar disorder and recurrent major depression. Mol. Psychiatry 2013, 18, 614–617. [Google Scholar] [CrossRef]
- Wigner, P.; Czarny, P.; Synowiec, E.; Bijak, M.; Białek, K.; Talarowska, M.; Galecki, P.; Szemraj, J.; Sliwinski, T. Variation of genes involved in oxidative and nitrosative stresses in depression. Eur. Psychiatr. 2018, 48, 38–48. [Google Scholar] [CrossRef]
- Wigner, P.; Czarny, P.; Synowiec, E.; Bijak, M.; Białek, K.; Talarowska, M.; Galecki, P.; Szemraj, J.; Sliwinski, T. Association between single nucleotide polymorphisms of TPH1 and TPH2 genes, and depressive disorders. J. Cell. Mol. Med. 2018, 22, 1778–1791. [Google Scholar] [CrossRef] [Green Version]
- Czarny, P.; Wigner, P.; Strycharz, J.; Watala, C.; Swiderska, E.; Synowiec, E.; Galecki, P.; Talarowska, M.; Szemraj, J.; Su, K.-P.; et al. Single-nucleotide polymorphisms of uracil-processing genes affect the occurrence and the onset of recurrent depressive disorder. PeerJ 2018, 6, e5116. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Hong, W.; Smith, A.; Yu, S.; Li, Z.; Wang, D.; Yuan, C.; Cao, L.; Wu, Z.; Huang, J.; et al. Association analysis between mitogen-activated protein/extracellular signal-regulated kinase (MEK) gene polymorphisms and depressive disorder in the Han Chinese population. J. Affect. Disord. 2017, 222, 120–125. [Google Scholar] [CrossRef]
- Gałecka, E.; Talarowska, M.; Orzechowska, A.; Górski, P.; Bieńkiewicz, M.; Szemraj, J. Association of the DIO2 gene single nucleotide polymorphisms with recurrent depressive disorder. Acta Biochim. Pol. 2015, 62, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Czarny, P.; Kwiatkowski, D.; Galecki, P.; Talarowska, M.; Orzechowska, A.; Bobinska, K.; Bielecka-Kowalska, A.; Szemraj, J.; Maes, M.; Su, K.-P.; et al. Association between single nucleotide polymorphisms of MUTYH, hOGG1 and NEIL1 genes, and depression. J. Affect. Disord. 2015, 184, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Seripa, D.; Panza, F.; D’Onofrio, G.; Paroni, G.; Bizzarro, A.; Fontana, A.; Paris, F.; Cascavilla, L.; Copetti, M.; Masullo, C.; et al. The serotonin transporter gene locus in late-life major depressive disorder. Am. J. Geriatr. Psychiatry 2013, 21, 67–77. [Google Scholar] [CrossRef]
- Bobińska, K.; Szemraj, J.; Czarny, P.; Gałecki, P. Role of MMP-2, MMP-7, MMP-9 and TIMP-2 in the development of recurrent depressive disorder. J. Affect. Disord. 2016, 205, 119–129. [Google Scholar] [CrossRef]
- Gałecka, E.; Talarowska, M.; Maes, M.; Su, K.P.; Górski, P.; Szemraj, J. Polymorphisms of iodothyronine deiodinases (DIO1, DIO3) genes are not associated with recurrent depressive disorder. Pharmacol. Rep. 2016, 68, 913–917. [Google Scholar] [CrossRef]
- Wigner, P.; Czarny, P.; Synowiec, E.; Bijak, M.; Talarowska, M.; Galecki, P.; Szemraj, J.; Sliwinski, T. Variation of genes encoding KAT1, AADAT and IDO1 as a potential risk of depression development. Eur. Psychiatr. 2018, 52, 95–103. [Google Scholar] [CrossRef]
- Taylor, W.D.; Zhao, Z.; Ashley-Koch, A.; Payne, M.E.; Steffens, D.C.; Krishnan, R.R.; Hauser, E.; MacFall, J.R. Fiber tract-specific white matter lesion severity findings in late-life depression and by AGTR1 A1166C genotype. Hum. Brain Mapp. 2013, 34, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Yang, Y.; Yang, X.; Qiu, X.; Qiao, Z.; Wang, L.; Zhu, X.; Sui, H.; Ma, J. CREB1 gene polymorphisms combined with environmental risk factors increase susceptibility to major depressive disorder (MDD). Int. J. Clin. Exp. Pathol. 2015, 8, 906–913. [Google Scholar]
- He, Y.; Zhou, Y.; Xi, Q.; Cui, H.; Luo, T.; Song, H.; Nie, X.; Wang, L.; Ying, B. Genetic variations in microRNA processing genes are associated with susceptibility in depression. DNA Cell Biol. 2012, 31, 1499–1506. [Google Scholar] [CrossRef]
- Buttenschøn, H.N.; Krogh, J.; Nielsen, M.N.; Kaerlev, L.; Nordentoft, M.; Mors, O. Association analyses of depression and genes in the hypothalamus-pituitary-adrenal axis. Acta Neuropsychiatr. 2017, 29, 59–64. [Google Scholar] [CrossRef]
- Yuan, F.; Yuan, R.; Niu, W.; Ren, D.; Bi, Y.; Xu, F.; Hu, J.; Sun, Q.; Ma, G.; Guo, Z.; et al. No association of NR3C1 polymorphisms with major depressive disorder in the Chinese Han population. Psychiatr. Genet. 2018, 28, 38–39. [Google Scholar] [CrossRef]
- Froud, A.; Murphy, J.; Cribb, L.; Ng, C.H.; Sarris, J. The relationship between dietary quality, serum brain-derived neurotrophic factor (BDNF) level, and the Val66met polymorphism in predicting depression. Nutr. Neurosci. 2019, 22, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Czarny, P.; Kwiatkowski, D.; Toma, M.; Gałecki, P.; Orzechowska, A.; Bobińska, K.; Bielecka-Kowalska, A.; Szemraj, J.; Berk, M.; Anderson, G.; et al. Single-nucleotide polymorphisms of genes involved in repair of oxidative DNA damage and the risk of recurrent depressive disorder. Med. Sci. Monit. 2016, 22, 4455–4474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gałecki, P.; Orzechowska, A.; Berent, D.; Talarowska, M.; Bobińska, K.; Gałecka, E.; Lewiński, A.; Maes, M.; Szemraj, J. Vascular endothelial growth factor receptor 2 gene (KDR) polymorphisms and expression levels in depressive disorder. J. Affect. Disord. 2013, 147, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Bu, S.; Liu, X.; Li, H. Association study of three single-nucleotide polymorphisms in the cyclic adenosine monophosphate response element binding 1 gene and major depressive disorder. Exp. Ther. Med. 2015, 9, 2235–2240. [Google Scholar] [CrossRef] [Green Version]
- Mihailova, S.; Ivanova-Genova, E.; Lukanov, T.; Stoyanova, V.; Milanova, V.; Naumova, E. A study of TNF-α, TGF-β, IL-10, IL-6, and IFN-γ gene polymorphisms in patients with depression. J. Neuroimmunol. 2016, 293, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Yoshimura, R.; Kakeda, S.; Kishi, T.; Abe, O.; Umene-Nakano, W.; Katsuki, A.; Hori, H.; Ikenouchi-Sugita, A.; Watanabe, K.; et al. COMT Val158Met, but not BDNF Val66Met, is associated with white matter abnormalities of the temporal lobe in patients with first-episode, treatment-naive major depressive disorder: A diffusion tensor imaging study. NDT 2014, 10, 1183–1190. [Google Scholar]
- Li, T.; Zeng, Z.; Zhao, Q.; Wang, T.; Huang, K.; Li, J.; Li, Y.; Liu, J.; Wei, Z.; Wang, Y.; et al. FoxP2 is significantly associated with schizophrenia and major depression in the Chinese Han population. World J. Biol. Psychiatry 2013, 14, 146–150. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norkeviciene, A.; Gocentiene, R.; Sestokaite, A.; Sabaliauskaite, R.; Dabkeviciene, D.; Jarmalaite, S.; Bulotiene, G. A Systematic Review of Candidate Genes for Major Depression. Medicina 2022, 58, 285. https://doi.org/10.3390/medicina58020285
Norkeviciene A, Gocentiene R, Sestokaite A, Sabaliauskaite R, Dabkeviciene D, Jarmalaite S, Bulotiene G. A Systematic Review of Candidate Genes for Major Depression. Medicina. 2022; 58(2):285. https://doi.org/10.3390/medicina58020285
Chicago/Turabian StyleNorkeviciene, Audrone, Romena Gocentiene, Agne Sestokaite, Rasa Sabaliauskaite, Daiva Dabkeviciene, Sonata Jarmalaite, and Giedre Bulotiene. 2022. "A Systematic Review of Candidate Genes for Major Depression" Medicina 58, no. 2: 285. https://doi.org/10.3390/medicina58020285
APA StyleNorkeviciene, A., Gocentiene, R., Sestokaite, A., Sabaliauskaite, R., Dabkeviciene, D., Jarmalaite, S., & Bulotiene, G. (2022). A Systematic Review of Candidate Genes for Major Depression. Medicina, 58(2), 285. https://doi.org/10.3390/medicina58020285