The Role of Diffusion Weighted MR Imaging in the Diagnosis of Tendon Injuries of the Ankle and Foot
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Test Methods
2.4. Analysis of Data Set
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuwada, G. Surgical correlation of pre-operative MRI findings of trauma to tendons and ligaments of the foot and Ankle. J. Am. Ped. Med. Assoc. 2008, 98, 370–373. [Google Scholar]
- Lamm, B.M.; Myers, D.; Dombek, M.; Mendicino, R.W.; Catanzariti, A.R.; Saltrick, K. Magnetic resonance imaging and surgical correlation of peroneus brevis tears. J. Foot Ankle Surg. 2004, 43, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, Z.S.; Beltran, J.; Bencardino, J.T. MR imaging of the ankle and foot. Radiogr. RSNA 2000, 20, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Marcus, D.S.; Reicher, M.A.; Kellerhouse, L.E. Achilles tendon injuries: The role of MR imaging. J. Comput. Assist. Tomogr. 1989, 13, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Casado-Hernández, I.; Becerro-De-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Santiago-Nuño, F.; Mazoteras-Pardo, V.; López-López, D.; Rodríguez-Sanz, D.; Calvo-Lobo, C. Association between anterior talofibular ligament injury and ankle tendon, ligament, and joint conditions revealed by magnetic resonance imaging. Quant. Imaging Med. Surg. 2021, 11, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Hertel, J. Functional Anatomy, Pathomechanics, and Pathophysiology of Lateral Ankle Instability. J. Athl. Train. 2002, 37, 364–375. [Google Scholar]
- Boss, A.P.; Hintermann, B. Anatomical study of the medial ankle ligament complex. Foot Ankle Int. 2002, 23, 547–553. [Google Scholar] [CrossRef]
- Kelly, M.; Masqoodi, N.; Vasconcellos, D.; Fowler, X.; Osman, W.S.; Elfar, J.C.; Olles, M.W.; Ketz, J.P.; Flemister, A.S.; Oh, I. Spring ligament tear decreases static stability of the ankle joint. Clin. Biomech. 2019, 61, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Hillier, J.C.; Peace, K.; Hulme, A.; Healy, J.C. MRI features of foot and ankle injuries in ballet dancers. Br. J. Radiol. 2004, 77, 532–537. [Google Scholar] [CrossRef]
- Rosenberg, Z.S.; Bencardino, J.; Astion, D.; Schweitzer, M.E.; Rokito, A.; Sheskier, S. MRI Features of Chronic Injuries of the Superior Peroneal Retinaculum. Am. J. Roentgenol. 2003, 181, 1551–1557. [Google Scholar] [CrossRef]
- Major, N.M.; Helms, C.A.; Fritz, R.C.; Speer, K.P. The MR Imaging Appearance of Longitudinal Split Tears of the Peroneus Brevis Tendon. Foot Ankle Int. 2000, 21, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Choo, H.J.; Suh, J.-S.; Kim, S.; Huh, Y.-M.; Kim, M.I.; Lee, J.-W. Ankle MRI for Anterolateral Soft Tissue Impingement: Increased Accuracy with the Use of Contrast-Enhanced Fat-Suppressed 3D-FSPGR MRI. Korean J. Radiol. 2008, 9, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Huh, Y.-M.; Song, H.-T.; Lee, S.-A.; Lee, J.-W.; Lee, J.E.; Chung, I.H.; Suh, J.-S. Chronic Tibiofibular Syndesmosis Injury of Ankle: Evaluation with Contrast-enhanced Fat-suppressed 3D Fast Spoiled Gradient-recalled Acquisition in the Steady State MR Imaging. Radiogr. RSNA 2001, 242, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Lobo, C.C.; Morales, C.R.; Sanz, D.R.; Corbalán, I.S.; Marín, A.G.; López, D.L. Ultrasonography Comparison of Peroneus Muscle Cross-sectional Area in Subjects with or Without Lateral Ankle Sprains. J. Manip. Physiol. Ther. 2016, 39, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Crofts, G.; Angin, S.; Mickle, K.J.; Hill, S.; Nester, C.J. Reliability of ultrasound for measurement of selected foot structures. Gait Posture 2014, 39, 35–39. [Google Scholar] [CrossRef]
- Fong, D.T.; Chan, Y.Y.; Mok, K.M.; Yung, P.S.; Chan, K.M. Understanding acute ankle ligamentous sprain injury in sports. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2009, 1, 14. [Google Scholar] [CrossRef] [Green Version]
- Kazemi, K.; Arab, A.M.; Abdollahi, I.; López-López, D.; Calvo-Lobo, C. Electromiography comparison of distal and proximal lower limb muscle activity patterns during external perturbation in subjects with and without functional ankle instability. Hum. Mov. Sci. 2017, 55, 211–220. [Google Scholar] [CrossRef]
- Lee, K.C.; Bamford, A.; Gardiner, F.; Agovino, A.; ter Horst, B.; Bishop, J.; Sitch, A.; Grover, L.; Logan, A.; Moiemen, N.S. Investigating the intra- and inter-rater reliability of a panel of subjective and objective burn scar measurement tools. Burns 2019, 45, 1311–1324. [Google Scholar] [CrossRef]
- Shoukri, M.M.; Asyali, M.H.; Donner, A. Sample size requirements for the design of reliability study: Review and new results. Stat. Methods Med. Res. 2004, 13, 251–271. [Google Scholar] [CrossRef]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef]
- Gutierrez, J.; Burcal, C.J.; Wilkins, S.J.; Takahashi, K.Z.; Rosen, A.B. Inter-rater and Intra-rater Reliability of Novice Clinician Users of Diagnostic Ultrasound to Assess Anterior Talofibular Ankle Ligament Length. Athl. Train. Sports Heal. Care 2021, 13, e425–e431. [Google Scholar] [CrossRef]
- Baltes, T.P.A.; Arnaiz, J.; Al-Naimi, M.R.; Al-Sayrafi, O.; Geertsema, C.; Geertsema, L.; Evans, T.; D’Hooghe, P.; Kerkhoffs, G.M.M.J.; Tol, J.L. Limited intrarater and interrater reliability of acute ligamentous ankle injuries on 3 T MRI. J. ISAKOS 2021, 6, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Franchi, M.; Fini, M.; Quaranta, M.; De Pasquale, V.; Raspanti, M.; Giavaresi, G.; Ottani, V.; Ruggeri, A. Crimp morphology in relaxed and stretched rat Achilles tendon. J. Anat. 2007, 210, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Eliasson, K.; Palm, P.; Nyman, T.; Forsman, M. Inter- and intra- observer reliability of risk assessment of repetitive work without an explicit method. Appl. Ergon. 2017, 62, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lindblom, H.; Hägglund, M.; Sonesson, S. Intra- and interrater reliability of subjective assessment of the drop vertical jump and tuck jump in youth athletes. Phys. Ther. Sport 2021, 47, 156–164. [Google Scholar] [CrossRef]
- Karjalainen, P.T.; Soila, K.; Aronen, H.J.; Pihlajamäki, H.; Tynninen, O.; Paavonen, T.; Tirman, P.F.J. MR Imaging of Overuse Injuries of the Achilles Tendon. Am. J. Roentgenol. 2000, 175, 251–260. [Google Scholar] [CrossRef]
- Schweitzer, M.E.; Eid, M.E.; Deely, D.; Wapner, K.; Hecht, P. Using MR imaging to differentiate peroneal splits from other peroneal disorders. Am. J. Roentgenol. 1997, 168, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, Z.S.; Beltran, J.; Cheung, Y.Y.; Colon, E.; Herraiz, F. MR features of longitudinal tears of the peroneus brevis tendon. Am. J. Roentgenol. 1997, 168, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Saupe, N.; Mengiardi, B.; Pfirrmann, C.W.A.; Vienne, P.; Seifert, B.; Zanetti, M. Anatomic variants associated with peroneal tendon disorders: MR imaging findings in volunteers with asymptomatic ankles. Radiology 2007, 242, 509–517. [Google Scholar] [CrossRef]
- Perrich, K.D.; Goodwin, D.W.; Hecht, P.J.; Cheung, Y. Ankle ligaments and tendons on MRI, appereance of normal and injured ligaments and tendons. AJR 2009, 193, 687–695. [Google Scholar] [CrossRef] [Green Version]
- Linklater, J. MR Imaging of Ankle Impingement Lesions. Magn. Reson. Imaging Clin. N. Am. 2009, 17, 775–800. [Google Scholar] [CrossRef] [PubMed]
- Shalabi, A. Magnetic resonance imaging in chronic achilles tendinopathy. Acta Radiol. Suppl. 2004, 45, 1–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Triantafyllopoulos, I.; Panagopoulos, A.; Fitzgerald, S.; van Niekerk, L. Deficiencies of MRI in the diagnosis of chronic symptomatic lateral ankle ligament injuries. Foot Ankle Surg. 2007, 13, 171–176. [Google Scholar] [CrossRef]
- Toye, L.R.; Helms, C.A.; Hoffman, B.D.; Easley, M.; Nunley, J.A. MRI of Spring Ligament Tears. Am. J. Roentgenol. 2005, 184, 1475–1480. [Google Scholar] [CrossRef] [PubMed]
- Shalabi, A.; Svensson, L.; Kristoffersen-Wiberg, M.; Aspelin, P.; Movin, T. Tendon injury and repair after biopsies in chronic Achilles tendinosis evaluated by serial magnetic imaging. Br. J. Sports Med. 2004, 38, 606–612. [Google Scholar] [CrossRef] [Green Version]
- Erdem, G.; Erdem, T.; Muammer, H.; Mutlu, D.Y.; Fırat, A.K.; Sahin, I.; Alkan, A. Diffusion-weighted images differentiate benign from malignant thyroid nodules. J. Magn. Reson. Imaging 2010, 31, 94–100. [Google Scholar] [CrossRef]
- Wang, J.; Takashima, S.; Takayama, F.; Kawakami, S.; Saito, A.; Matsushita, T.; Momose, M.; Ishiyama, T. Head and Neck Lesions: Characterization with Diffusion-weighted Echo-planar MR Imaging. Radiology 2001, 220, 621–630. [Google Scholar] [CrossRef]
- Le Bihan, D.; Breton, E.; Lallemand, D.; Grenier, P.; Cabanis, E.; Laval-Jeantet, M. MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology 1988, 161, 497–505. [Google Scholar] [CrossRef]
- Koh, D.-M.; Collins, D. Diffusion-Weighted MRI in the Body: Applications and Challenges in Oncology. Am. J. Roentgenol. 2007, 188, 1622–1635. [Google Scholar] [CrossRef] [Green Version]
- Baur, A.; Huber, A.; Arbogast, S.; Dürr, H.R.; Zysk, S.; Wendtner, C.; Deimling, M.; Reiser, M. Diffusion weighted imaging of tumor recurrencies and post-therapeutical soft tissue changes in humans. Eur. Radiol. 2001, 11, 828–833. [Google Scholar]
- Ward, R.; Caruthers, S.; Yablon, C.; Blake, M.; DiMasi, M.; Eustace, S. Analysis of diffusion changes in posttraumatic bone marrow using navigator-corrected diffusion gradients. Am. J. Roentgenol. 2000, 174, 731–734. [Google Scholar] [CrossRef] [PubMed]
- Aydin, H.; Kizilgöz, V.; Tatar, I.; Damar, Ç.; Güzel, H.; Hekimoǧlu, B.; Delibaşi, T. The role of proton MR spectroscopy and apparent diffusion coefficient values in the diagnosis of malignant thyroid nodules: Preliminary results. Clin. Imaging 2012, 36, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Wengler, K.; Tank, D.; Fukuda, T.; Paci, J.M.; Huang, M.; Schweitzer, M.E.; He, X. Diffusion tensor imaging of human Achilles tendon by stimulated echo readout-segmented EPI (ste-RS-EPI). Magn. Reson. Med. 2018, 80, 2464–2474. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.-C.; Hung, S.-T.; Kuo, D.-P.; Chen, Y.-L.; Lee, H.-M. Quantitative diffusion-weighted magnetic resonance imaging for the diagnosis of partial-thickness rotator cuff tears. J. Shoulder Elb. Surg. 2016, 25, 1433–1441. [Google Scholar] [CrossRef]
- Chianca, V.; Zappia, M.; Oliva, F.; Luca, B.; Maffulli, N. Post-operative MRI and US appearance of the Achilles tendons. J. Ultrasound 2020, 23, 387–395. [Google Scholar] [CrossRef]
All Tendons | 2. Observer | Total | |||||
---|---|---|---|---|---|---|---|
Normal | Partial Tear | Rupture | Tenosynovitis | ||||
1. Observer | Partial-Tear | n | 0 | 29 | 4 | 4 | 37 |
% | 0.0% | 82.9% | 5.7% | 11.4% | 100.0% | ||
Rupture | n | 0 | 1 | 5 | 2 | 8 | |
% | 0.0% | 20.0% | 60.0% | 20.0% | 100.0% | ||
Tenosynovitis | n | 1 | 17 | 0 | 18 | 36 | |
% | 2.8% | 47.2% | 0.0% | 50.0% | 100.0% | ||
Normal | n | 0 | 0 | 0 | 0 | 0 | |
TOTAL | % | 1 1.3% | 47 61.8% | 9 6.6% | 24 30.3% | 81 100.0% |
(a) | ||||||||||
Tendon | Surgery Result | Total | Sensitivity | Specificity | Fisher’s p Value | Kappa Coefficient | ||||
− | + | |||||||||
EHL | DWI-Partial Tear | − | n | 1 | 0 | 1 | 100% | 100% | 1.000 | 1.000 |
% | 100.0% | 0.0% | 100.0% | |||||||
+ | n | 0 | 1 | 1 | ||||||
% | 0.0% | 100.0% | 100.0% | |||||||
Total | n | 1 | 1 | 2 | ||||||
% | 50.0% | 50.0% | 100.0% | |||||||
EDL | DWI-Partial Tear | − | n | 1 | 0 | 1 | 100% | 100% | 0.250 | 1.000 |
% | 100.0% | 0.0% | 100.0% | |||||||
+ | n | 0 | 3 | 3 | ||||||
% | 0.0% | 100.0% | 100.0% | |||||||
Total | n | 1 | 3 | 4 | ||||||
% | 25.0% | 75.0% | 100.0% | |||||||
FDL | DWI-Partial Tear | − | n | 1 | 0 | 1 | 100% | 100% | 1.000 | 0.400 |
% | 100.0% | 0.0% | 100.0% | |||||||
+ | n | 1 | 1 | 2 | ||||||
% | 50.0% | 50.0% | 100.0% | |||||||
Total | n | 2 | 1 | 3 | ||||||
% | 66.7% | 33.3% | 100.0% | |||||||
FHL | DWI-Partial Tear | − | n | 7 | 0 | 7 | 100% | 88% | 0.001 * | 0.875 |
% | 100.0% | 0.0% | 100.0% | |||||||
+ | n | 1 | 8 | 9 | ||||||
% | 11.1% | 88.9% | 100.0% | |||||||
Total | n | 8 | 8 | 16 | ||||||
% | 50.0% | 50.0% | 100.0% | |||||||
PT. | DWI-Partial Tear | − | n | 7 | 0 | 7 | 100% | 100% | 0.000 * | 1.000 |
% | 100.0% | 0.0% | 100.0% | |||||||
+ | n | 0 | 8 | 8 | ||||||
% | 0.0% | 100.0% | 100.0% | |||||||
Total | n | 7 | 8 | 15 | ||||||
% | 46.7% | 53.3% | 100.0% | |||||||
(b) | ||||||||||
Surgery-Results | Total | Sensitivity | Specificity | Fisher’s p Value | Kappa Coefficient | |||||
− | + | |||||||||
DWI-Tenosynovitis | + | n | 1 | 1 | ||||||
% | 100.0% | 100.0% | ||||||||
Total | n | 1 | 1 | |||||||
% | 100.0% | 100.0% | ||||||||
DWI-Tenosynovitis | − | n | 1 | 0 | 1 | 100% | 100% | 0.125 | 1.000 | |
% | 100.0% | 0.0% | 100.0% | |||||||
+ | n | 0 | 7 | 7 | ||||||
% | 0.0% | 100.0% | 100.0% | |||||||
Total | n | 1 | 7 | 8 | ||||||
% | 12.5% | 87.5% | 100.0% | |||||||
DWI-Tenosynovitis | − | n | 2 | 0 | 2 | 100% | 67% | 0.107 | 0.714 | |
% | 100.0% | 0.0% | 100.0% | |||||||
+ | n | 1 | 5 | 6 | ||||||
% | 16.7% | 83.3% | 100.0% | |||||||
Total | n | 3 | 5 | 8 | ||||||
% | 37.5% | 62.5% | 100.0% | |||||||
DWI-Tenosynovitis | − | n | 1 | 0 | 1 | 100% | 100% | 0.333 | 1.000 | |
% | 100.0% | 0.0% | 100.0% | |||||||
+ | n | 0 | 2 | 2 | ||||||
% | 0.0% | 100.0% | 100.0% | |||||||
Total | n | 1 | 2 | 3 | ||||||
% | 33.3% | 66.7% | 100.0% | |||||||
DWI-Tenosynovitis | − | n | 1 | 0 | 1 | 100% | 100% | 0.091 | 1.000 | |
% | 100.0% | 0.0% | 100.0% | |||||||
+ | n | 0 | 10 | 10 | ||||||
% | 0.0% | 100.0% | 100.0% | |||||||
Total | n | 1 | 10 | 11 | ||||||
% | 9.1% | 90.9% | 100.0% |
(a) | |||||||||
Rupture | MRI | Total | Sensitivity | Specificity | Fisher’s p Value | Kappa Coefficient | |||
− | + | ||||||||
DWI | − | n | 3 | 0 | 3 | 100% | 75% | 0.048 * | 0.769 |
% | 100.0% | 0.0% | 100.0% | ||||||
+ | n | 1 | 5 | 6 | |||||
% | 16.7% | 83.3% | 100.0% | ||||||
Total | n | 4 | 5 | 9 | |||||
% | 44.4% | 55.6% | 100.0% | ||||||
(b) | |||||||||
Partial Tear | MRI | Total | Sensitivity | Specificity | Fisher’s p Value | Kappa Coefficient | |||
− | + | ||||||||
DWI | − | n | 16 | 1 | 17 | 92% | 55% | 0.006 * | 0.362 |
% | 94.1% | 5.9% | 100.0% | ||||||
+ | n | 13 | 11 | 23 | |||||
% | 54.2% | 45.8% | 100.0% | ||||||
Total | n | 29 | 12 | 41 | |||||
% | 70.7% | 29.3% | 100.0% | ||||||
(c) | |||||||||
Tenosynovitis | MRI | Total | Sensitivity | Specificity | Fisher’s p Value | Kappa Coefficient | |||
− | + | ||||||||
DWI | − | n | 4 | 1 | 5 | 97% | 44% | 0.017 * | 0.459 |
% | 80.0% | 20.0% | 100.0% | ||||||
+ | n | 5 | 21 | 26 | |||||
% | 19.2% | 80.8% | 100.0% | ||||||
Total | n | 9 | 22 | 31 | |||||
% | 29.0% | 71.0% | 100.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aydın, H.; Kızılgöz, V.; Ersan, Ö.; Hekimoğlu, B. The Role of Diffusion Weighted MR Imaging in the Diagnosis of Tendon Injuries of the Ankle and Foot. Medicina 2022, 58, 321. https://doi.org/10.3390/medicina58020321
Aydın H, Kızılgöz V, Ersan Ö, Hekimoğlu B. The Role of Diffusion Weighted MR Imaging in the Diagnosis of Tendon Injuries of the Ankle and Foot. Medicina. 2022; 58(2):321. https://doi.org/10.3390/medicina58020321
Chicago/Turabian StyleAydın, Hasan, Volkan Kızılgöz, Önder Ersan, and Baki Hekimoğlu. 2022. "The Role of Diffusion Weighted MR Imaging in the Diagnosis of Tendon Injuries of the Ankle and Foot" Medicina 58, no. 2: 321. https://doi.org/10.3390/medicina58020321
APA StyleAydın, H., Kızılgöz, V., Ersan, Ö., & Hekimoğlu, B. (2022). The Role of Diffusion Weighted MR Imaging in the Diagnosis of Tendon Injuries of the Ankle and Foot. Medicina, 58(2), 321. https://doi.org/10.3390/medicina58020321