Hemi-Babim and Fenoterol as Potential Inhibitors of MPro and Papain-like Protease against SARS-CoV-2: An In-Silico Study
Abstract
:1. Introduction
2. Methodology
2.1. Protein Preparation
2.2. Ligand Library Collection and Preparation
2.3. Active Site Calculation and Glide Grid Generation
2.4. Molecular Docking
2.5. Molecular Dynamics Simulation
3. Results
3.1. Ligand Library Preparation
3.2. Molecular Docking
3.3. Molecular Dynamics Simulation
3.4. RMSD and RMSF
3.5. Intermolecular Interaction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pal, M.; Berhanu, G.; Desalegn, C.; Kandi, V. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): An update. Cureus 2020, 12, e7423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, S.; Chitkara, P.; Khan, F.N.; Kishan, A.; Alok, V.; Ramlal, A.; Mehta, S. Mobile technology solution for COVID-19: Surveillance and prevention. In Computational Intelligence Methods in COVID-19: Surveillance, Prevention, Prediction and Diagnosis; Springer: Singapore, 2021; pp. 79–108. [Google Scholar]
- Struyf, T.; Deeks, J.J.; Dinnes, J.; Takwoingi, Y.; Davenport, C.; Leeflang, M.M.; Spijker, R.; Hooft, L.; Emperador, D.; Domen, J. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19. Cochrane Database Syst. Rev. 2021, 7, CD013665. [Google Scholar]
- Sohrabi, C.; Alsafi, Z.; O’neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Tarique, M.; Ahmad, S.; Malik, A.; Ahmad, I.; Saeed, M.; Almatroudi, A.; Qadah, T.; Murad, M.A.; Mashraqi, M.; Alam, Q. Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) and Other Coronaviruses: A Genome-wide Comparative Annotation and Analysis. Mol. Cell. Biochem. 2021, 476, 2203–2217. [Google Scholar] [CrossRef] [PubMed]
- Worldometer, I. Coronavirus cases. Worldometer 2020, 164, 1–22. [Google Scholar]
- Rizou, M.; Galanakis, I.M.; Aldawoud, T.M.; Galanakis, C.M. Safety of foods, food supply chain and environment within the COVID-19 pandemic. Trends Food Sci. Technol. 2020, 102, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Mao, Y.; Jones, R.M.; Tan, Q.; Ji, J.S.; Li, N.; Shen, J.; Lv, Y.; Pan, L.; Ding, P. Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environ. Int. 2020, 144, 106039. [Google Scholar] [CrossRef]
- Yang, Q.; Zhou, Y.; Ai, J.; Ma, J.; Cao, F.; Cao, W.; Zhang, W.; Wang, S.; Chen, W.; Ma, X. Collaborated effort against SARS-CoV-2 outbreak in China. Clin. Transl. Med. 2020, 10, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, M.; Ren, R.; Li, L.; Chen, E.-Q.; Li, W.; Ying, B. International expansion of a novel SARS-CoV-2 mutant. J. Virol. 2020, 94, e00567-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, S.; Bhanu, P.; Kumar, J.; Pathak, R.K.; Mallick, D.; Uttarkar, A.; Niranjan, V.; Mishra, V. Molecular dynamics simulation and docking analysis of NF-κB protein binding with sulindac acid. Bioinformation 2022, 18, 170–179. [Google Scholar]
- Shelley, J.C.; Cholleti, A.; Frye, L.L.; Greenwood, J.R.; Timlin, M.R.; Uchimaya, M. Epik: A software program for pK a prediction and protonation state generation for drug-like molecules. J. Comput.-Aided Mol. Des. 2007, 21, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Banks, J.L.; Beard, H.S.; Cao, Y.; Cho, A.E.; Damm, W.; Farid, R.; Felts, A.K.; Halgren, T.A.; Mainz, D.T.; Maple, J.R. Integrated modeling program, applied chemical theory (IMPACT). J. Comput. Chem. 2005, 26, 1752–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008, 36, D901–D906. [Google Scholar] [CrossRef] [PubMed]
- Release, S. 2: LigPrep; Schrödinger, LLC.: New York, NY, USA, 2017. [Google Scholar]
- Halgren, T.A. Identifying and characterising binding sites and assessing druggability. J. Chem. Inf. Model. 2009, 49, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein—Ligand complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [Green Version]
- User, M. Schrödinger Release 2019-3: Glide; Schrödinger, LLC.: New York, NY, USA, 2019. [Google Scholar]
- Li, J.; Abel, R.; Zhu, K.; Cao, Y.; Zhao, S.; Friesner, R.A. The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins Struct. Funct. Bioinform. 2011, 79, 2794–2812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadioglu, O.; Saeed, M.; Greten, H.J.; Efferth, T. Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Comput. Biol. Med. 2021, 133, 104359. [Google Scholar] [CrossRef] [PubMed]
- Walters, W.P. Going further than Lipinski’s rule in drug design. Expert Opin. Drug Discov. 2012, 7, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the SC’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL, USA, 11–17 November 2006; p. 43. [Google Scholar]
- Huang, C.; Li, C.; Choi, P.Y.; Nandakumar, K.; Kostiuk, L.W. A novel method for molecular dynamics simulation in the isothermal–isobaric ensemble. Mol. Phys. 2011, 109, 191–202. [Google Scholar] [CrossRef]
- Katz, B.A.; Luong, C. Recruiting Zn2+ to mediate potent, specific inhibition of serine proteases. J. Mol. Biol. 1999, 292, 669–684. [Google Scholar] [CrossRef] [PubMed]
- Hochhaus, G.; Möllmann, H. Pharmacokinetic/pharmacodynamic characteristics of the beta-2-agonists terbutaline, salbutamol and fenoterol. Int. J. Clin. Pharmacol. Ther. Toxicol. 1992, 30, 342–362. [Google Scholar] [PubMed]
S. No. | Drug Bank ID | Protein Name | Drug | Docking Score | MMGBSA dG Bind | Rotatable Bonds | Ligand Efficiency sa | Ligand Efficiency ln | Evdw | Ecoul |
---|---|---|---|---|---|---|---|---|---|---|
1 | DB01767 | papain-like-protease | Hemi-babim | −7.09 | 62.392 | 3 | −2.225 | −7.977 | −17.444 | −71.398 |
2 | DB01288 | MPro | Fenoterol | −7.14 | 38.733 | 10 | −2.812 | −10.081 | −26.532 | −37.128 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzamami, A.; Alturki, N.A.; Alghamdi, Y.S.; Ahmad, S.; Alshamrani, S.; Asiri, S.A.; Mashraqi, M.M. Hemi-Babim and Fenoterol as Potential Inhibitors of MPro and Papain-like Protease against SARS-CoV-2: An In-Silico Study. Medicina 2022, 58, 515. https://doi.org/10.3390/medicina58040515
Alzamami A, Alturki NA, Alghamdi YS, Ahmad S, Alshamrani S, Asiri SA, Mashraqi MM. Hemi-Babim and Fenoterol as Potential Inhibitors of MPro and Papain-like Protease against SARS-CoV-2: An In-Silico Study. Medicina. 2022; 58(4):515. https://doi.org/10.3390/medicina58040515
Chicago/Turabian StyleAlzamami, Ahmad, Norah A. Alturki, Youssef Saeed Alghamdi, Shaban Ahmad, Saleh Alshamrani, Saeed A. Asiri, and Mutaib M. Mashraqi. 2022. "Hemi-Babim and Fenoterol as Potential Inhibitors of MPro and Papain-like Protease against SARS-CoV-2: An In-Silico Study" Medicina 58, no. 4: 515. https://doi.org/10.3390/medicina58040515
APA StyleAlzamami, A., Alturki, N. A., Alghamdi, Y. S., Ahmad, S., Alshamrani, S., Asiri, S. A., & Mashraqi, M. M. (2022). Hemi-Babim and Fenoterol as Potential Inhibitors of MPro and Papain-like Protease against SARS-CoV-2: An In-Silico Study. Medicina, 58(4), 515. https://doi.org/10.3390/medicina58040515