Evaluation of Bi-Lateral Co-Infections and Antibiotic Resistance Rates among COVID-19 Patients in Lahore, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation and Identification of Bacterial Isolates
2.3. Antibiotic Susceptibility Testing (AST)
2.4. Statistical Analysis
3. Results
3.1. Demographic Characteristics of Study Population
3.2. Sample-Wise Prevalence of Positive Bacterial Culture among COVD-19 Patients
3.3. Antibiotic Susceptibility Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Platto, S.; Xue, T.; Carafoli, E. COVID19: An announced pandemic. Cell Death Dis. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Ahmed, N.; Rizvi, A.; Naeem, A.; Saleem, W.; Ahmed, A.; Parveen, S.; Ilyas, M. COVID-19 and public awareness. Prof. Med. J. 2020, 27, 1710–1716. [Google Scholar] [CrossRef]
- Bengoechea, J.A.; Bamford, C.G. SARS-CoV-2, bacterial co-infections, and AMR: The deadly trio in COVID-19? EMBO Mol. Med. 2020, 12, e12560. [Google Scholar] [CrossRef]
- Kariyawasam, R.M.; Julien, D.A.; Jelinski, D.C.; Larose, S.L.; Rennert-May, E.; Conly, J.M.; Dingle, T.C.; Chen, J.Z.; Tyrrell, G.J.; Ronksley, P.E. Antimicrobial resistance (AMR) in COVID-19 patients: A systematic review and meta-analysis (November 2019–June 2021). Antimicrob. Resist. Infect. Control 2022, 11, 1–18. [Google Scholar] [CrossRef]
- Ahmed, N.; Khan, M.; Saleem, W.; Karobari, M.I.; Mohamed, R.N.; Heboyan, A.; Rabaan, A.A.; Mutair, A.A.; Alhumaid, S.; Alsadiq, S.A. Evaluation of bi-lateral co-infections and antibiotic resistance rates among COVID-19 patients. Antibiotics 2022, 11, 276. [Google Scholar] [CrossRef]
- Tomczyk, S.; Taylor, A.; Brown, A.; De Kraker, M.E.; El-Saed, A.; Alshamrani, M.; Hendriksen, R.S.; Jacob, M.; Löfmark, S.; Perovic, O. Impact of the COVID-19 pandemic on the surveillance, prevention and control of antimicrobial resistance: A global survey. J. Antimicrob. Chemother. 2021, 76, 3045–3058. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.-P.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef]
- Li, T.; Lu, H.; Zhang, W. Clinical observation and management of COVID-19 patients. Emerg. Microbes Infect. 2020, 9, 687–690. [Google Scholar] [CrossRef]
- Zeshan, B.; Karobari, M.I.; Afzal, N.; Siddiq, A.; Basha, S.; Basheer, S.N.; Peeran, S.W.; Mustafa, M.; Daud, N.H.A.; Ahmed, N. The usage of antibiotics by COVID-19 patients with comorbidities: The risk of increased antimicrobial resistance. Antibiotics 2021, 11, 35. [Google Scholar] [CrossRef]
- McAloon, C.; Collins, Á.; Hunt, K.; Barber, A.; Byrne, A.W.; Butler, F.; Casey, M.; Griffin, J.; Lane, E.; McEvoy, D. Incubation period of COVID-19: A rapid systematic review and meta-analysis of observational research. BMJ Open 2020, 10, e039652. [Google Scholar] [CrossRef]
- Lei, S.; Jiang, F.; Su, W.; Chen, C.; Chen, J.; Mei, W.; Zhan, L.-Y.; Jia, Y.; Zhang, L.; Liu, D. Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. EClinicalMedicine 2020, 21, 100331. [Google Scholar] [CrossRef]
- Haque, M.; Meyer, J.C.; Godman, B. Potential ways to address antimicrobial resistance across India and wider exacerbated by COVID-19: AMR and COVID-19. J. Appl. Pharm. Sci. 2021, 11, 1–7. [Google Scholar] [CrossRef]
- Knight, G.M.; Glover, R.E.; McQuaid, C.F.; Olaru, I.D.; Gallandat, K.; Leclerc, Q.J.; Fuller, N.M.; Willcocks, S.J.; Hasan, R.; van Kleef, E. Antimicrobial resistance and COVID-19: Intersections and implications. eLife 2021, 10, e64139. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.-P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef]
- Ahmed, N.; Khalid, H.; Mushtaq, M.; Basha, S.; Rabaan, A.A.; Garout, M.; Halwani, M.A.; Al Mutair, A.; Alhumaid, S.; Al Alawi, Z. The Molecular Characterization of Virulence Determinants and Antibiotic Resistance Patterns in Human Bacterial Uropathogens. Antibiotics 2022, 11, 516. [Google Scholar] [CrossRef]
- Dray, S.; Coiffard, B.; Persico, N.; Papazian, L.; Hraiech, S. Are tracheal surveillance cultures useful in the intensive care unit? Ann. Transl. Med. 2018, 6, 421. [Google Scholar] [CrossRef]
- Dani, A. Colonization and infection. Cent. Eur. J. Urol. 2014, 67, 86. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- van Duin, D.; Barlow, G.; Nathwani, D. The impact of the COVID-19 pandemic on antimicrobial resistance: A debate. JAC-Antimicrob. Resist. 2020, 2, dlaa053. [Google Scholar] [CrossRef]
- Khurana, S.; Singh, P.; Sharad, N.; Kiro, V.V.; Rastogi, N.; Lathwal, A.; Malhotra, R.; Trikha, A.; Mathur, P. Profile of co-infections & secondary infections in COVID-19 patients at a dedicated COVID-19 facility of a tertiary care Indian hospital: Implication on antimicrobial resistance. Indian J. Med. Microbiol. 2021, 39, 147–153. [Google Scholar]
- Lai, C.-C.; Wang, C.-Y.; Hsueh, P.-R. Co-infections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents? J. Microbiol. Immunol. Infect. 2020, 53, 505–512. [Google Scholar] [CrossRef]
- Hoque, M.N.; Akter, S.; Mishu, I.D.; Islam, M.R.; Rahman, M.S.; Akhter, M.; Islam, I.; Hasan, M.M.; Rahaman, M.M.; Sultana, M. Microbial co-infections in COVID-19: Associated microbiota and underlying mechanisms of pathogenesis. Microb. Pathog. 2021, 156, 104941. [Google Scholar] [CrossRef]
- Wolfe, A.; Baunoch, D.; Wang, D.; Gnewuch, R.; Zhao, X.; Halverson, T.; Cacdac, P.; Huang, S.; Lauterbach, T.; Luke, N. Co-occurrence of SARS-CoV-2 and respiratory pathogens in the frail elderly. medRxiv 2020. [Google Scholar] [CrossRef]
- Chong, W.H.; Saha, B.K.; Ramani, A.; Chopra, A. State-of-the-art review of secondary pulmonary infections in patients with COVID-19 pneumonia. Infection 2021, 49, 591–605. [Google Scholar] [CrossRef]
- Vijay, S.; Bansal, N.; Rao, B.K.; Veeraraghavan, B.; Rodrigues, C.; Wattal, C.; Goyal, J.P.; Tadepalli, K.; Mathur, P.; Venkateswaran, R. Secondary infections in hospitalized COVID-19 patients: Indian experience. Infect. Drug Resist. 2021, 14, 1893. [Google Scholar] [CrossRef]
- Kayarat, B.; Khanna, P.; Sarkar, S. Superadded Coinfections and Antibiotic Resistance in the Context of COVID-19: Where do We Stand? Indian J. Crit. Care Med. Peer-Rev. Off. Publ. Indian Soc. Crit. Care Med. 2021, 25, 699. [Google Scholar]
- Garcia-Vidal, C.; Sanjuan, G.; Moreno-García, E.; Puerta-Alcalde, P.; Garcia-Pouton, N.; Chumbita, M.; Fernandez-Pittol, M.; Pitart, C.; Inciarte, A.; Bodro, M. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: A retrospective cohort study. Clin. Microbiol. Infect. 2021, 27, 83–88. [Google Scholar] [CrossRef]
- Bazaid, A.S.; Barnawi, H.; Qanash, H.; Alsaif, G.; Aldarhami, A.; Gattan, H.; Alharbi, B.; Alrashidi, A.; Al-Soud, W.A.; Moussa, S. Bacterial coinfection and antibiotic resistance profiles among hospitalised COVID-19 patients. Microorganisms 2022, 10, 495. [Google Scholar] [CrossRef]
Name of the Test | Description |
---|---|
Catalase | Used to differentiate between Staphylococcus spp. and Streptococcus spp. |
Coagulase | Used to differentiate between Staphylococcus aureus and other Staphylococcus spp. |
Oxidase | Used to identify Pseudomonas spp., Burkhulderia spp., and Stenotrophomonas spp. |
Citrate, Indole, TSI, and Urease | Used to identify organisms based on their ability to utilize the substrates in each test. |
API strips (API 20E, API 20NE, API staph, and API strept) | API strips comes with a range of biochemical tests that generate a code for each isolate and a database that identifies the organism using the code. |
Variables | Characteristics of Study Population | ||||||
---|---|---|---|---|---|---|---|
No Oxygen Support (n = 1081) | Oxygen Support (n = 96) | Ventilator Dependent (n = 74) | |||||
f | % | f | % | f | % | ||
Age | <30 | 331 | 30.62% | 15 | 15.63% | 13 | 17.57% |
30–50 | 527 | 48.75% | 34 | 35.42% | 27 | 36.49% | |
>50 | 223 | 20.63% | 47 | 48.96% | 34 | 45.95% | |
Gender | Male | 658 | 60.87% | 56 | 58.33% | 45 | 60.81% |
Female | 423 | 39.13% | 40 | 41.67% | 29 | 39.19% | |
Underlying Disease | Diabetes mellitus | 130 | 12.03% | 11 | 11.96% | 10 | 13.51% |
Hypertension | 134 | 12.40% | 10 | 10.87% | 12 | 16.22% | |
Kidney diseases | 142 | 13.14% | 25 | 27.17% | 18 | 24.32% | |
Gastrointestinal disorders | 128 | 11.84% | 14 | 15.22% | 9 | 12.16% | |
Liver disease | 201 | 18.59% | 17 | 18.48% | 13 | 17.57% | |
None | 346 | 32.01% | 19 | 19.79% | 12 | 16.22% |
Samples (n = 1251) | Positive Samples | |
---|---|---|
f | % | |
Blood (n = 443) | 31 | 2.48 |
Sputum (n = 157) | 39 | 3.12 |
Bronchoalveolar lavage (n = 92) | 26 | 2.08 |
Urine (n = 203) | 57 | 4.56 |
Wound swab (n = 41) | 12 | 0.96 |
Tracheal aspirate (n = 236) | 61 | 4.88 |
Pus (n = 79) | 08 | 0.61 |
Antibiotics | Percentage Resistance | |||||
---|---|---|---|---|---|---|
Staphylococcus aureus (n = 10) | Staphylococcus aureus (n = 22) | |||||
NOS | OS | VD | NOS | OS | VD | |
Amikacin | 2.3 | 4.8 | 6.1 | NT | NT | NT |
Chloramphenicol * | 10.2 | 10.8 | 12.5 | NT | NT | NT |
Cefoxitin | 14.4 | 14.6 | 15.7 | NT | NT | NT |
Ciprofloxacin | 63.3 | 70.1 | 84.7 | 70.5 | 83.8 | 84.0 |
Co-trimoxazole | 15.9 | 8.2 | 7.4 | NT | NT | NT |
Clindamycin | 32.8 | 29.6 | 28.2 | NT | NT | NT |
Erythromycin * | 70.4 | 50.5 | 46.3 | 55.7 | 70.1 | 79.8 |
Fusidic acid * | 13.2 | 9.3 | 8.0 | NT | NT | NT |
Gentamicin | 4.8 | 7.6 | 7.9 | NT | NT | NT |
Linezolid | 0.0 | 0.0 | 0.0 | NT | NT | NT |
Penicillin | NT | NT | NT | 10.4 | 12.0 | 14.1 |
Tetracycline | 56.0 | 56.2 | 58.6 | 46.1 | 53.5 | 57.2 |
Tobramycin | 15.0 | 15.4 | 17.1 | NT | NT | NT |
Levofloxacin | 76.3 | 62.6 | 63.1 | NT | NT | NT |
Vancomycin | 0.0 | 0.0 | 0.0 | 3.5 | 3.9 | 4.5 |
Antibiotics | Resistance Percentage (%) | |||||
---|---|---|---|---|---|---|
Escherichia coli (n = 62) | Klebsiella pneumoniae (n = 35) | |||||
NOS | OS | VD | NOS | OS | VD | |
Ampicillin | 98.2 | 100 | 100 | NT | NT | NT |
Amoxicillin clavunate | 88.7 | 90.3 | 90.6 | 90.0 | 93.4 | 94.7 |
Amikacin | 12.0 | 13.8 | 14.2 | 13.2 | 15.4 | 16.8 |
Ceftriaxone | 42.1 | 54.5 | 55.3 | 64.1 | 68.9 | 70.0 |
Cefuroxime | 57.3 | 67.1 | 70.2 | 79.0 | 83.2 | 85.6 |
Cefixime | 57.3 | 67.1 | 70.2 | 77.1 | 84.5 | 88.4 |
Chloramphenicol * | 48.1 | 54.5 | 59.8 | 67.5 | 68.9 | 70.5 |
Ciprofloxacin | 52.8 | 58.2 | 58.6 | 87.6 | 90.8 | 93.6 |
Co-trimoxazole | 24.2 | 27.3 | 30.9 | 30.2 | 33.3 | 35.1 |
Gentamicin | 38.3 | 42.7 | 46.3 | 57.7 | 62.7 | 68.4 |
Fosfomycin ** | 11.2 | 14.3 | 15.8 | NT | NT | NT |
Imipenem | 4 | 4.4 | 5.2 | 4.3 | 4.6 | 4.7 |
Meropenem | 3.9 | 4.3 | 5.1 | 4.2 | 4.6 | 4.7 |
Nitrofurantoin ** | 13.5 | 15.6 | 17.2 | 42.5 | 56.4 | 59.0 |
Piperacillin-tazobactam | 18.0 | 21.4 | 25.7 | 20.6 | 23.6 | 29.6 |
Tetracycline | 14.7 | 16.8 | 22.3 | 45.2 | 52.4 | 56.7 |
Tobramycin | 35.8 | 38.3 | 43.6 | 51.3 | 55.5 | 57.7 |
Colistin | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Polymyxin B | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Antibiotics | Resistance Percentage (%) | |||||
---|---|---|---|---|---|---|
Acinetobacter baumannii (n = 47) | Pseudomonas aeruginosa (n = 38) | |||||
NOS | OS | VD | NOS | OS | VD | |
Amikacin | 33.5 | 34.8 | 37.5 | 12.2 | 12.8 | 14.6 |
Ceftazidime | 82.3 | 85.1 | 86.8 | 44.6 | 55.7 | 56.4 |
Ciprofloxacin | 78.1 | 84.3 | 85.7 | 81.12 | 88.2 | 88.6 |
Levofloxacin | 72.6 | 81.4 | 84.8 | NT | NT | NT |
Co-trimoxazole | 81.2 | 90.2 | 93.1 | NT | NT | NT |
Gentamicin | 80.3 | 88.4 | 90.0 | 13.4 | 14.7 | 17.5 |
Imipenem | 61.01 | 65.1 | 65.8 | 16.3 | 17.4 | 17.9 |
Meropenem | 59.2 | 64.1 | 64.6 | 16.3 | 17.3 | 17.6 |
Piperacillin-tazobactam | 68.0 | 78.5 | 84.8 | 17.2 | 18.6 | 19.0 |
Tetracycline | 85.7 | 93.4 | 96.2 | NT | NT | NT |
Tigecycline | 1.2 | 1.3 | 1.3 | NT | NT | NT |
Tobramycin | 2.5 | 5.8 | 8.8 | 0.0 | 0.0 | 0.0 |
Colistin | 0.0 | 0.0 | 0.0 | NT | NT | NT |
Polymyxin B | 0.0 | 0.0 | 0.0 | NT | NT | NT |
Cefepime | 83.2 | 83.5 | 85.7 | 42.4 | 54.2 | 57.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizvi, A.; Saeed, M.U.; Nadeem, A.; Yaqoob, A.; Rabaan, A.A.; Bakhrebah, M.A.; Al Mutair, A.; Alhumaid, S.; Aljeldah, M.; Al Shammari, B.R.; et al. Evaluation of Bi-Lateral Co-Infections and Antibiotic Resistance Rates among COVID-19 Patients in Lahore, Pakistan. Medicina 2022, 58, 904. https://doi.org/10.3390/medicina58070904
Rizvi A, Saeed MU, Nadeem A, Yaqoob A, Rabaan AA, Bakhrebah MA, Al Mutair A, Alhumaid S, Aljeldah M, Al Shammari BR, et al. Evaluation of Bi-Lateral Co-Infections and Antibiotic Resistance Rates among COVID-19 Patients in Lahore, Pakistan. Medicina. 2022; 58(7):904. https://doi.org/10.3390/medicina58070904
Chicago/Turabian StyleRizvi, Azka, Muhammad Umer Saeed, Ayesha Nadeem, Asma Yaqoob, Ali A. Rabaan, Muhammed A. Bakhrebah, Abbas Al Mutair, Saad Alhumaid, Mohammed Aljeldah, Basim R. Al Shammari, and et al. 2022. "Evaluation of Bi-Lateral Co-Infections and Antibiotic Resistance Rates among COVID-19 Patients in Lahore, Pakistan" Medicina 58, no. 7: 904. https://doi.org/10.3390/medicina58070904
APA StyleRizvi, A., Saeed, M. U., Nadeem, A., Yaqoob, A., Rabaan, A. A., Bakhrebah, M. A., Al Mutair, A., Alhumaid, S., Aljeldah, M., Al Shammari, B. R., Albayat, H., Alwashmi, A. S. S., Nainu, F., Alhashem, Y. N., Naveed, M., & Ahmed, N. (2022). Evaluation of Bi-Lateral Co-Infections and Antibiotic Resistance Rates among COVID-19 Patients in Lahore, Pakistan. Medicina, 58(7), 904. https://doi.org/10.3390/medicina58070904