Therapeutic Strategies to Reduce Burn Wound Conversion
Abstract
:1. Introduction
2. Inflammation and Burn Wound Conversion
3. Ischemia
4. T Cell and Macrophages in the Burn Wound
5. Autophagy
6. Reactive Oxygen Species
7. Other Treatment Approaches
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Burn Association. National Burn Repository 2019 Update: Report of Data from 2009–2018; American Burn Association: Chicago, IL, USA, 2019; p. 60606. [Google Scholar]
- World Health Organization. Burns. Fact Sheets. Published 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/burns (accessed on 7 January 2021).
- Salibian, A.A.; Del Rosario, A.T.; Severo, L.D.A.M.; Nguyen, L.; Banyard, D.A.; Toranto, J.D.; Evans, G.R.; Widgerow, A.D. Current concepts on burn wound conversion—A review of recent advances in understanding the secondary progressions of burns. Burns 2016, 42, 1025–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, V.; Devgan, L.; Bhat, S.; Milner, S.M. The Pathogenesis of Burn Wound Conversion. Ann. Plast. Surg. 2007, 59, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.M. The diagnosis of the depth of burning. Br. J. Surg. 2005, 40, 588–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, D.M. Second thoughts on the burn wound. J. Trauma 1969, 9, 839–862. [Google Scholar] [CrossRef]
- Tobalem, M.; Harder, Y.; Rezaeian, F.; Wettstein, R. Secondary burn progression decreased by erythropoietin. Crit. Care Med. 2013, 41, 963–971. [Google Scholar] [CrossRef]
- Öksüz, S.; Ülkür, E.; Öncül, O.; Köse, G.T.; Küçükodac, Z.; Urhan, M. The effect of subcutaneous mesenchymal stem cell injection on statis zone and apoptosis in an experimental burn model. Plast. Reconstr. Surg. 2013, 131, 463–471. [Google Scholar] [CrossRef]
- Rizzo, J.A.; Burgess, P.; Cartie, R.J.; Prasad, B.M. Moderate systemic hypothermia decreases burn depth progression. Burns 2013, 39, 436–444. [Google Scholar] [CrossRef]
- Singer, A.J.; Taira, B.R.; Lin, F.; Lim, T.; Anderson, R.; McClain, S.A.; Clark, R.A. Curcumin reduces injury progression in a rat comb burn model. J. Burn Care Res. 2011, 32, 135–142. [Google Scholar] [CrossRef]
- Begieneman, M.P.V.; Kubat, B.; Ulrich, M.M.W.; Hahn, N.E.; Stumpf-Stolker, Y.; Tempelaars, M.; Middelkoop, E.; Zeerleder, S.; Wouters, D.; Van Ham, M.S.; et al. Prolonged C1 inhibitor administration improves local healing of burn wounds and reduces myocardial inflammation in a rat burn wound model. J. Burn Care Res. 2012, 33, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Hirth, D.; McClain, S.A.; Singer, A.J.; Clark, R.A. Endothelial necrosis at 1 hour postburn predicts progression of tissue injury. Wound Repair Regen. 2013, 21, 563–570. [Google Scholar] [CrossRef] [Green Version]
- Karimi, A.; Rahmati, S.M.; Navidbakhsh, M. Mechanical characterization of the rat and mice skin tissues using histostructural and uniaxial data. Bioengineered 2015, 6, 153–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zawacki, B.E. Reversal of capillary stasis and prevention of necrosis in burns. Ann. Surg. 1974, 180, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.-Q.; Zhang, H.-H.; Lei, Z.-J.; Ren, P.; Deng, C.; Li, X.-Y.; Chen, S.-Z. The roles of autophagy and apoptosis in burn wound progression in rats. Burns 2013, 39, 1551–1556. [Google Scholar] [CrossRef]
- Shalom, A.; Kramer, E.; Westreich, M. Protective effect of human recombinant copper-zinc superoxide dismutase on zone of stasis survival in burns in rats. Ann. Plast. Surg. 2011, 66, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Singer, A.J.; McClain, S.A.; Taira, B.R.; Guerriero, J.L.; Zong, W. Apoptosis and necrosis in the ischemic zone adjacent to third degree burns. Acad. Emerg. Med. 2008, 15, 549–554. [Google Scholar] [CrossRef]
- Xiao, M.; Li, L.; Hu, Q.; Ma, L.; Liu, L.; Chu, W.; Zhang, H. Rapamycin reduces burn wound progression by enhancing autophagy in deep second-degree burn in rats. Wound Repair Regen. 2013, 21, 852–859. [Google Scholar] [CrossRef]
- Goodwin, N.S. Burn first aid issues again—“Not seeing the forest for the trees”. Burns 2021, 47, 970–972. [Google Scholar] [CrossRef]
- Goodwin, N.S. Just the tip of the iceberg—Inconsistent information on a global scale and the need for a “standard” model of burn 1st aid. Burns 2019, 45, 746–748. [Google Scholar] [CrossRef]
- Moore, F.D., Jr.; Davis, C.; Rodrick, M.; Mannick, J.A.; Fearon, D.T. Neutrophil activation in thermal injury as assessed by increased expression of complement receptors. N. Engl. J. Med. 1986, 314, 948–953. [Google Scholar] [CrossRef]
- Sriramarao, P.; Di Scipio, R.G. Deposition of complement C3 and factor H in tissue traumatized by burn injury. Immunopharmacology 1999, 42, 195–202. [Google Scholar] [CrossRef]
- Bohr, S.; Patel, S.J.; Sarin, D.; Irimia, D.; Yarmush, M.L.; Berthiaume, F. Resolvin D2 prevents secondary thrombosis and necrosis in a mouse burn wound model. Wound Repair Regen. 2013, 21, 35–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.Z.; El Ayadi, A.; Goswamy, J.; Finnerty, C.C.; Mifflin, R.; Sousse, L.; Enkhbaatar, P.; Papaconstantinou, J.; Herndon, D.N.; Ansari, N.H. Topically applied metal chelator reduces thermal injury progression in a rat model of brass comb burn. Burns 2015, 41, 1775–1787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Ayadi, A.; Salsbury, J.R.; Enkhbaatar, P.; Herndon, D.N.; Ansari, N.H. Metal chelation attenuates oxidative stress, inflammation, and vertical burn progression in a porcine brass comb burn model. Redox Biol. 2021, 45, 102034. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, E.E.; Sun, L.T.; Natesan, S.; Zamora, D.O.; Christy, R.J.; Washburn, N.R. Effects of hyaluronic acid conjugation on anti-TNF-α inhibition of inflammation in burns. J. Biomed. Mater. Res. A 2014, 102, 1527–1536. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.T.; Friedrich, E.; Heuslein, J.L.; Pferdehirt, R.E.; Dangelo, N.M.; Natesan, S.; Christy, R.J.; Washburn, N.R. Reduction of burn progression with topical delivery of (antitumor necrosis factor-α)-hyaluronic acid conjugates. Wound Repair Regen. 2012, 20, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Eski, M.; Deveci, M.; Celiköz, B.; Nisanci, M.; Türegün, M. Treatment with cerium nitrate bathing modulate systemic leukocyte activation following burn injury: An experimental study in rat cremaster muscle flap. Burns 2001, 27, 739–746. [Google Scholar] [CrossRef]
- Deveci, M.; Eski, M.; Sengezer, M.; Kisa, U. Effects of cerium nitrate bathing and prompt burn wound excision on IL-6 and TNF-alpha levels in burned rats. Burns 2000, 26, 41–45. [Google Scholar] [CrossRef]
- Dolgachev, V.A.; Ciotti, S.; Liechty, E.; Levi, B.; Wang, S.C.; Baker, J.R.; Hemmila, M.R. Dermal Nanoemulsion Treatment Reduces Burn Wound Conversion and Improves Skin Healing in a Porcine Model of Thermal Burn Injury. J. Burn Care Res. 2021, 42, 1232–1242. [Google Scholar] [CrossRef]
- Xiao, M.; Li, L.; Li, C.; Liu, L.; Yu, Y.; Ma, L. 3,4-Methylenedioxy-β-Nitrostyrene Ameliorates Experimental Burn Wound Progression by Inhibiting the NLRP3 Inflammasome Activation. Plast. Reconstr. Surg. 2016, 137, 566e–575e. [Google Scholar] [CrossRef]
- Holzer, J.C.; Tiffner, K.; Kainz, S.; Reisenegger, P.; de Mattos, I.B.; Funk, M.; Lemarchand, T.; Laaff, H.; Bal, A.; Birngruber, T.; et al. A novel human ex-vivo burn model and the local cooling effect of a bacterial nanocellulose-based wound dressing. Burns 2020, 46, 1924–1932. [Google Scholar] [CrossRef]
- Schwacha, M.G.; Thobe, B.M.; Daniel, T.; Hubbard, W.J. Impact of thermal injury on wound infiltration and the dermal inflammatory response. J. Surg. Res. 2010, 158, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Tobalem, M.; Harder, Y.; Tschanz, E.; Speidel, V.; Pittet-Cuénod, B.; Wettstein, R. First-aid with warm water delays burn progression and increases skin survival. J. Plast. Reconstr. Aesthetic Surg. 2013, 66, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Varley, A.; Sarginson, J.; Young, A. Evidence-based first aid advice for paediatric burns in the United Kingdom. Burns 2016, 42, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Boykin, J.V.; Eriksson, E.; Pittman, R.N. In vivo microcirculation of a scald burn and the progression of postburn dermal ischemia. Plast. Reconstr. Surg. 1980, 66, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Boehm, D.; Menke, H. A History of Fluid Management-From “One Size Fits All” to an Individualized Fluid Therapy in Burn Resuscitation. Medicina 2021, 57, 187, Published 2021 Feb 23. [Google Scholar] [CrossRef]
- Tricklebank, S. Modern trends in fluid therapy for burns. Burns 2009, 35, 757–767. [Google Scholar] [CrossRef]
- Kim, D.E.; Phillips, T.M.; Jeng, J.C.; Rizzo, A.G.; Roth, R.T.; Stanford, J.L.; Jablonski, K.A.; Jordan, M.H. Microvascular assessment of burn depth conversion during varying resuscitation conditions. J. Burn Care Rehabil. 2001, 22, 406–416. [Google Scholar] [CrossRef]
- Carvajal, H.F. Fluid resuscitation of pediatric burn victims: A critical appraisal. Pediatr. Nephrol. 1994, 8, 357–366. [Google Scholar] [CrossRef]
- Matousková, E.; Broz, L.; Pokorná, E.; Königová, R. Prevention of burn wound conversion by allogeneic keratinocytes cultured on acellular xenodermis. Cell Tissue Bank. 2002, 3, 29–35. [Google Scholar] [CrossRef]
- Rocha, J.; Eduardo-Figueira, M.; Barateiro, A.; Fernandes, A.; Brites, D.; Pinto, R.; Freitas, M.; Fernandes, E.; Mota-Filipe, H.; Sepodes, B. Erythropoietin reduces acute lung injury and multiple organ failure/dysfunction associated to a scald-burn inflammatory injury in the rat. Inflammation 2015, 38, 312–326. [Google Scholar] [CrossRef]
- Hamblin, M.R. Novel pharmacotherapy for burn wounds: What are the advancements. Expert Opin. Pharmacother. 2019, 20, 305–321. [Google Scholar] [CrossRef] [PubMed]
- Tobalem, M.; Harder, Y.; Schuster, T.; Rezaeian, F.; Wettstein, R. Erythropoietin in the prevention of experimental burn progression. Br. J. Surg. 2012, 99, 1295–1303. [Google Scholar] [CrossRef] [PubMed]
- Günter, C.I.; Machens, H.-G.; Ilg, F.P.; Hapfelmeier, A.; Jelkmann, W.; Egert-Schwender, S.; Giri, S.; Bader, A.; “EPO in Burns” Study Group. A Randomized Controlled Trial: Regenerative Effects, Efficacy and Safety of Erythropoietin in Burn and Scalding Injuries. Front. Pharmacol. 2018, 9, 951. [Google Scholar] [CrossRef] [PubMed]
- Yuhua, S.; Ligen, L.; Jiake, C.; Tongzhu, S. Effect of Poloxamer 188 on deepening of deep second-degree burn wounds in the early stage. Burns 2012, 38, 95–101. [Google Scholar] [CrossRef]
- McMillen, M.A. Endothelin plasma levels in burn patients. Arch. Surg. 2001, 136, 1084. [Google Scholar] [CrossRef]
- Battal, M.N.; Hata, Y.; Matsuka, K.; Ito, O.; Matsuda, H.; Yoshida, Y.; Kawazoe, T. Reduction of progressive burn injury by using a new nonselective endothelin-A and endothelin-B receptor antagonist, TAK-044: An experimental study in rats. Plast. Reconstr. Surg. 1997, 99, 1610–1619. [Google Scholar] [CrossRef]
- Choi, J.; Kim, R.; Kim, J.; Jeong, W.; Park, S.W.; Lee, H.W.; Chung, H.Y. Nicorandil reduces burn wound progression by enhancing skin blood flow. J. Plast. Reconstr. Aesthetic Surg. 2018, 71, 1196–1206. [Google Scholar] [CrossRef]
- Saliba, M.J., Jr. Heparin in the treatment of burns: A review. Burns 2001, 27, 349–358. [Google Scholar] [CrossRef]
- Clark, R.A. Skin-resident T cells: The ups and downs of on site immunity. J. Investig. Dermatol. 2010, 130, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Havran, W.L.; Jameson, J.M. Epidermal T cells and wound healing. J. Immunol. 2010, 184, 5423–5428. [Google Scholar] [CrossRef]
- Strid, J.; Tigelaar, R.E.; Hayday, A.C. Skin immune surveillance by T cells—A new order? Semin. Immunol. 2009, 21, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.; Daniel, T.; Chaudry, I.H.; Choudhry, M.A.; Schwacha, M.G. T cells of the gammadelta T-cell receptor lineage play an important role in the postburn wound healing process. J. Burn Care Res. 2006, 27, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Enoh, V.T.; Lin, S.H.; Lin, C.Y.; Toliver-Kinsky, T.; Murphey, E.D.; Varma, T.K.; Sherwood, E.R. Mice depleted of alphabeta but not gammadelta T cells are resistant to mortality caused by cecal ligation and puncture. Shock 2007, 27, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Vinish, M.; Cui, W.; Stafford, E.; Bae, L.; Hawkins, H.K.; Cox, R.; Toliver-Kinsky, T. Dendritic cells modulate burn wound healing by enhancing early proliferation. Wound Repair Regen. 2016, 24, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, C.Z.; Salsbury, J.R.; Zhang, J.; Enkhbaatar, P.; Herndon, D.N.; El Ayadi, A.; Ansari, N.H. Thermal injury induces early blood vessel occlusion in a porcine model of brass comb burn. Sci. Rep. 2021, 11, 12457. [Google Scholar] [CrossRef]
- El Ayadi, A.; Wang, C.Z.; Zhang, M.; Wetzel, M.; Prasai, A.; Finnerty, C.C.; Enkhbaatar, P.; Herndon, D.N.; Ansari, N.H. Metal chelation reduces skin epithelial inflammation and rescues epithelial cells from toxicity due to thermal injury in a rat model. Burns Trauma 2020, 8, tkaa024. [Google Scholar] [CrossRef]
- Qing, L.; Fu, J.; Wu, P.; Zhou, Z.; Yu, F.; Tang, J. Metformin induces the M2 macrophage polarization to accelerate the wound healing via regulating AMPK/mTOR/NLRP3 inflammasome singling pathway. Am. J. Transl. Res. 2019, 11, 655–668. [Google Scholar]
- Kotwal, G.J.; Chien, S. Macrophage Differentiation in Normal and Accelerated Wound Healing. Results Probl. Cell Differ. 2017, 62, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.F.; Chao, T.T.; Su, Y.F.; Hsu, C.C.; Chien, C.Y.; Chiu, K.C.; Shiah, S.G.; Lee, C.H.; Liu, S.Y.; Shieh, Y.S. Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling. Oncotarget 2017, 8, 20706–20718. [Google Scholar] [CrossRef] [Green Version]
- Jing, Y.; Wu, F.; Li, D.; Yang, L.; Li, Q.; Li, R. Metformin improves obesity-associated inflammation by altering macrophages polarization. Mol. Cell Endocrinol. 2018, 461, 256–264. [Google Scholar] [CrossRef]
- Mariño, G.; Niso-Santano, M.; Baehrecke, E.H.; Kroemer, G. Self-consumption: The interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell. Biol. 2014, 15, 81–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, M.; Mei, Y.; Sinha, S. Role of the Crosstalk between Autophagy and Apoptosis in Cancer. J. Oncol. 2013, 2013, 102735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gump, J.M.; Thorburn, A. Autophagy and apoptosis: What is the connection? Trends Cell Biol. 2011, 21, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Thangaveloo, M.; Ong, Y.S.; Chong, S.J.; Joethy, J.V.; Becker, D.L. Connexin 43 upregulation in burns promotes burn conversion through spread of apoptotic death signals. Burns 2020, 46, 1389–1397. [Google Scholar] [CrossRef]
- Xiao, M.; Li, L.; Li, C.; Zhang, P.; Hu, Q.; Ma, L.; Zhang, H. Role of autophagy and apoptosis in wound tissue of deep second-degree burn in rats. Acad. Emerg. Med. 2014, 21, 383–391. [Google Scholar] [CrossRef]
- Guo, S.; Fang, Q.; Chen, L.; Yu, M.; Chen, Y.; Li, N.; Han, C.; Hu, X. Locally activated mitophagy contributes to a “built-in” protection against early burn-wound progression in rats. Life Sci. 2021, 276, 119095. [Google Scholar] [CrossRef]
- Han, F.; Li, Z.; Han, S.; Jia, Y.; Bai, L.; Li, X.; Hu, D. SIRT1 suppresses burn injury-induced inflammatory response through activating autophagy in RAW264.7 macrophages. J. Investig. Med. 2021, 69, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Slater, T.F. Free-radical mechanisms in tissue injury. Biochem. J. 1984, 222, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dunnill, C.; Patton, T.; Brennan, J.; Barrett, J.; Dryden, M.; Cooke, J.; Leaper, D.; Georgopoulos, N.T. Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 2017, 14, 89–96. [Google Scholar] [CrossRef]
- Horton, J.W. Free radicals and lipid peroxidation mediated injury in burn trauma: The role of antioxidant therapy. Toxicology 2003, 189, 75–88. [Google Scholar] [CrossRef]
- Hattori, H.; Subramanian, K.K.; Sakai, J.; Luo, H.R. Reactive oxygen species as signaling molecules in neutrophil chemotaxis. Commun. Integr. Biol. 2010, 3, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Dryden, M. Reactive oxygen species: A novel antimicrobial. Int. J. Antimicrob. Agents 2018, 51, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Hurd, T.R.; DeGennaro, M.; Lehmann, R. Redox regulation of cell migration and adhesion. Trends Cell Biol. 2012, 22, 107–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korkmaz, H.I.; Ulrich, M.M.W.; Çelik, G.; van Wieringen, W.; van Zuijlen, P.; Krijnen, P.; Niessen, H. NOX2 Expression Is Increased in Keratinocytes After Burn Injury. J. Burn Care Res. 2020, 41, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Millea, P.J. N-acetylcysteine: Multiple clinical applications. Am. Fam. Physician 2009, 80, 265–269. [Google Scholar]
- Landriscina, A.; Musaev, T.; Rosen, J.; Ray, A.; Nacharaju, P.; Nosanchuk, J.D.; Friedman, A.J. N-acetylcysteine S-nitrosothiol Nanoparticles Prevent Wound Expansion and Accelerate Wound Closure in a Murine Burn Model. J. Drugs Dermatol. 2015, 14, 726–732. [Google Scholar]
- Saputro, I.; Riestiano, B.; Hoekstra, L.T.; Zarasade, L. The effect of oral N-acetylcystein on prevention of extensive tissue destruction in electrical burn injury. Burns 2018, 44, 2059–2063. [Google Scholar] [CrossRef]
- Bostancı, M.E.; Hepokur, C.; Kisli, E. The effects of sildenafil and N-acetylcysteine the zone of stasis in burns. Yanık staz zonu üzerine sildenafil ve N-asetilsisteinin etkisi. Turk. J. Trauma Emerg. Surg. 2021, 27, 9–16. [Google Scholar] [CrossRef]
- Deniz, M.; Borman, H.; Seyhan, T.; Haberal, M. An effective antioxidant drug on prevention of the necrosis of zone of stasis: N-acetylcysteine. Burns 2013, 39, 320–325. [Google Scholar] [CrossRef]
- Özer, Ö.; Topal, U.; Şen, M. The effects of specific and non-specific phosphodiesterase inhibitors and N-acetylcysteine on oxidative stress and remote organ injury in two-hit trauma model. Turk. J. Trauma Emerg. Surg. 2020, 26, 517–525. [Google Scholar] [CrossRef]
- Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol. 2007, 595, 105–125. [Google Scholar] [CrossRef] [PubMed]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A Review of Its Effects on Human Health. Foods 2017, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Barchitta, M.; Maugeri, A.; Favara, G.; Lio, R.M.S.; Evola, G.; Agodi, A.; Basile, G. Nutrition and Wound Healing: An Overview Focusing on the Beneficial Effects of Curcumin. Int. J. Mol. Sci. 2019, 20, 1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seyhan, N. Evaluation of the Healing Effects of Hypericum perforatum and Curcumin on Burn Wounds in Rats. Evid.-Based Complement. Altern. Med. 2020, 2020, 6462956. [Google Scholar] [CrossRef] [Green Version]
- Sajjad, W.; He, F.; Ullah, M.W.; Ikram, M.; Shah, S.M.; Khan, R.; Khan, T.; Khalid, A.; Yang, G.; Wahid, F. Fabrication of Bacterial Cellulose-Curcumin Nanocomposite as a Novel Dressing for Partial Thickness Skin Burn. Front. Bioeng. Biotechnol. 2020, 8, 553037. [Google Scholar] [CrossRef]
- Azam, M.; Ghufran, H.; Butt, H.; Mehmood, A.; Ashfaq, R.; Ilyas, A.M.; Ahmad, M.R.; Riazuddin, S. Curcumin preconditioning enhances the efficacy of adipose-derived mesenchymal stem cells to accelerate healing of burn wounds. Burns Trauma 2021, 9, tkab021. [Google Scholar] [CrossRef]
- Yang, R.; Wang, J.; Zhou, Z.; Qi, S.; Ruan, S.; Lin, Z.; Xin, Q.; Lin, Y.; Chen, X.; Xie, J. Curcumin promotes burn wound healing in mice by upregulating caveolin-1 in epidermal stem cells. Phytother. Res. 2019, 33, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wang, B.; Sun, Y.; Wang, C.; Mukherjee, S.; Yang, C.; Chen, Y. Injectable Enzyme-Based Hydrogel Matrix with Precisely Oxidative Stress Defense for Promoting Dermal Repair of Burn Wound. Macromol. Biosci. 2020, 20, e2000036. [Google Scholar] [CrossRef]
- Yang, C.; Chen, Y.; Huang, H.; Fan, S.; Yang, C.; Wang, L.; Li, W.; Niu, W.; Liao, J. ROS-Eliminating Carboxymethyl Chitosan Hydrogel to Enhance Burn Wound-Healing Efficacy. Front. Pharmacol. 2021, 12, 679580. [Google Scholar] [CrossRef]
- Beldi, V.F.; Rosique, M.J.; Tirapelli, L.F.; Moriguti, E.K.; Nunes, A.; Farina, J.; Evora, P.R.B. Intradermal methylene blue administration on the progression of burn injuries. J. Wound Care 2021, 30, VIIIi–VIIIx. [Google Scholar] [CrossRef]
- Thackham, J.A.; McElwain, D.L.; Long, R.J. The use of hyperbaric oxygen therapy to treat chronic wounds: A review. Wound Repair Regen. 2008, 16, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Niinikoski, J.H. Clinical hyperbaric oxygen therapy, wound perfusion, and transcutaneous oximetry. World J. Surg. 2004, 28, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Hatibie, M.J.; Islam, A.A.; Hatta, M.; Moenadjat, Y.; Susilo, R.H.; Rendy, L. Hyperbaric Oxygen Therapy for Second-Degree Burn Healing: An Experimental Study in Rabbits. Adv. Ski. Wound Care 2019, 32, 1. [Google Scholar] [CrossRef] [PubMed]
- Türkaslan, T.; Yogun, N.; Cimşit, M.; Solakoglu, S.; Ozdemir, C.; Ozsoy, Z. Is HBOT treatment effective in recovering zone of stasis? An experimental immunohistochemical study. Burns 2010, 36, 539–544. [Google Scholar] [CrossRef]
- Rosenberg, L.; Lapid, O.; Bogdanov-Berezovsky, A.; Glesinger, R.; Krieger, Y.; Silberstein, E.; Sagi, A.; Judkins, K.; Singer, A.J. Safety and efficacy of a proteolytic enzyme for enzymatic burn debridement: A preliminary report. Burns 2004, 30, 843–850. [Google Scholar] [CrossRef]
- Singer, A.J.; Taira, B.R.; Anderson, R.; McClain, S.A.; Rosenberg, L. Reepithelialization of mid-dermal porcine burns after rapid enzymatic debridement with Debrase®. J. Burn Care Res. 2011, 32, 647–653. [Google Scholar] [CrossRef]
- Ebrahimian, T.G.; Pouzoulet, F.; Squiban, C.; Buard, V.; André, M.; Cousin, B.; Gourmelon, P.; Benderitter, M.; Casteilla, L.; Tamarat, R. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arter. Thromb. Vasc. Biol. 2009, 29, 503–510. [Google Scholar] [CrossRef] [Green Version]
- Singer, D.D.; Singer, A.J.; Gordon, C.; Brink, P. The effects of rat mesenchymal stem cells on injury progression in a rat model. Acad. Emerg. Med. 2013, 20, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Abbas, O.L.; Özatik, O.; Gönen, Z.B.; Öğüt, S.; Entok, E.; Özatik, F.Y.; Bahar, D.; Bakir, Z.B.; Musmul, A. Prevention of Burn Wound Progression by Mesenchymal Stem Cell Transplantation: Deeper Insights Into Underlying Mechanisms. Ann. Plast. Surg. 2018, 81, 715–724. [Google Scholar] [CrossRef]
- Abbas, O.L.; Özatik, O.; Gönen, Z.B.; Öğüt, S.; Özatik, F.Y.; Salkın, H.; Musmul, A. Comparative Analysis of Mesenchymal Stem Cells from Bone Marrow, Adipose Tissue, and Dental Pulp as Sources of Cell Therapy for Zone of Stasis Burns. J. Investig. Surg. 2019, 32, 477–490. [Google Scholar] [CrossRef]
- Boyko, T.; Marin, C.; Furnari, G.; Flynn, W.; Lukan, J.K. Safety profile of atorvastatin in the role of burn wound injury conversion. Am. J. Surg. 2020, 220, 1323–1326. [Google Scholar] [CrossRef] [PubMed]
- Akershoek, J.J.; Brouwer, K.M.; Vlig, M.; Boekema, B.K.H.L.; Beelen, R.H.J.; Middelkoop, E.; Ulrich, M.M.W. Differential effects of Losartan and Atorvastatin in partial and full thickness burn wounds. PLoS ONE 2017, 12, e0179350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumville, J.C.; Munson, C.; Christie, J. Negative pressure wound therapy for partial-thickness burns. Cochrane Database Syst. Rev. 2014, 2014, CD006215. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ortega, V.; Vergara-Rodriguez, M.J.; Mendoza, B.; García, T. Effect of Negative Pressure Wound Therapy in Electrical Burns. Plast. Reconstr. Surg. Glob. Open 2021, 9, e3383. [Google Scholar] [CrossRef]
- Frear, C.C.; Griffin, B.; Cuttle, L.; McPhail, S.M.; Kimble, R. Study of negative pressure wound therapy as an adjunct treatment for acute burns in children (SONATA in C): Protocol for a randomised controlled trial. Trials 2019, 20, 130. [Google Scholar] [CrossRef]
Target | Pathway | Agent | Reference |
---|---|---|---|
Inflammation | -TNF-α | -Metal chelator in combination with methylsulfonylmethane; | [24,25] |
-Conjugated TNF- α antibodies with hyaluronic acid (HA) in a topical application; | [26] | ||
-Hyaluronic acid-conjugated anti-IL-6 and TNF-α antibodies conjugated antibodies | [27] | ||
-TNF-α and leukocytes transmigration | -Cerium Nitrate | [28,29] | |
-IL-6 | -Antibodies vs. IL-6 | [4] | |
-Inflammatory mediators and sequestration of neutrophils | -Oil-in-water nano emulsion formulation (NB-201) containing benzalkonium chloride | [30] | |
-NLRP3 inflammasome activation | -3,4-methylenedioxy-β-nitrostyrene | [31] | |
-Neutrophil infiltration, proinflammatory cytokine production, and upregulation of anti-inflammatory cytokines | -Mesenchymal stem cells | [101] | |
Ischemia | -Impaired tissue perfusion | -Fluid resuscitation | [37,38,39,40] |
-Desiccation | -Allogeneic keratinocytes cultured on acellular xenodermis | [41] | |
-Increase in nitric oxide synthase expression with decreased inflammation | -Erythropoietin | [7,42] | |
-Cellular Injury | -Poloxamer 188 (P188) | [46] | |
-Endothelin A, and endothelin B | -TAK-044 | [48] | |
-Adenosine triphosphate-sensitive K + channel | -Nicorandil | [49] | |
T-cells and macrophages | -IL-6 and TNF-α expression | -Metal chelation | [24,58] |
Reactive Oxygen Species (ROS) | -Reduction in ROS | -N-acetylcysteine (NAC); | [78,79,80,81,82] |
-Curcumin; | [87] | ||
-Curcumin-treated adipose-derived stem cells | [89] | ||
-Metal chelation | [25] | ||
-Hydrogel with embedded iron-coordinated superoxide dismutase and Vitamin E; | [90] | ||
-Carboxymethyl chitosan hydrogel, | [91] | ||
-Methylene blue intradermal injections | [92] | ||
-Mesenchymal stem cells | [101] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palackic, A.; Jay, J.W.; Duggan, R.P.; Branski, L.K.; Wolf, S.E.; Ansari, N.; El Ayadi, A. Therapeutic Strategies to Reduce Burn Wound Conversion. Medicina 2022, 58, 922. https://doi.org/10.3390/medicina58070922
Palackic A, Jay JW, Duggan RP, Branski LK, Wolf SE, Ansari N, El Ayadi A. Therapeutic Strategies to Reduce Burn Wound Conversion. Medicina. 2022; 58(7):922. https://doi.org/10.3390/medicina58070922
Chicago/Turabian StylePalackic, Alen, Jayson W. Jay, Robert P. Duggan, Ludwik K. Branski, Steven E. Wolf, Naseem Ansari, and Amina El Ayadi. 2022. "Therapeutic Strategies to Reduce Burn Wound Conversion" Medicina 58, no. 7: 922. https://doi.org/10.3390/medicina58070922
APA StylePalackic, A., Jay, J. W., Duggan, R. P., Branski, L. K., Wolf, S. E., Ansari, N., & El Ayadi, A. (2022). Therapeutic Strategies to Reduce Burn Wound Conversion. Medicina, 58(7), 922. https://doi.org/10.3390/medicina58070922