Oxytocin: Narrative Expert Review of Current Perspectives on the Relationship with Other Neurotransmitters and the Impact on the Main Psychiatric Disorders
Abstract
:1. Introduction
2. Oxytocin and the Central Nervous System
3. The Oxytocin Receptor
4. Connections between Oxytocin and Neurotransmitters in Affective Disorders
4.1. Oxytocin and the Glutamatergic System
4.2. Oxytocin and the HPA Axis
4.3. Oxytocin and the Serotonin System
4.4. Oxytocin and Brain-Derived Neurotrophic Factor
5. Oxytocin’s Relevance in Mental Disorders
5.1. Oxytocin and Autism
5.2. Oxytocin and Schizophrenia
5.3. Oxytocin and Personality Disorders
5.4. Depression and Oxytocin
Oxytocin and Psycho-Somatic Manifestations in Affective Disorders
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brownstein, M.J.; Russell, J.T.; Gainer, H. Synthesis, Transport, and Release of Posterior Pituitary Hormones. Science 1980, 207, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Neumann, I. Stimuli and consequences of dendritic release of oxytocin within the brain. Biochem. Soc. Trans. 2007, 35, 1252–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebner, K.; Bosch, O.; AKrömer, S.; Singewald, N.; Neumann, I.D. Release of Oxytocin in the Rat Central Amygdala Modulates Stress-Coping Behavior and the Release of Excitatory Amino Acids. Neuropsychopharmacology 2004, 30, 223–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paiva, L.; Lozic, M.; Allchorne, A.; Grinevich, V.; Ludwig, M. Identification of peripheral oxytocin-expressing cells using sys-temically applied cell-type specific adeno-associated viral vector. J. Neuroendocrinol. 2021, 33, e12970. [Google Scholar] [CrossRef]
- Sheldrick, E.L.; Flint, A.P.F. Post-translational processing of oxytocin-neurophysin prohormone in the ovine corpus luteum: Activity of peptidyl glycine α-amidating mono-oxygenase and concentrations of its cofactor, ascorbic acid. J. Endocrinol. 1989, 122, 313–322. [Google Scholar] [CrossRef]
- Liu, N.; Yang, H.; Han, L.; Ma, M. Oxytocin in Women’s Health and Disease. Front. Endocrinol. 2022, 13, 786271. [Google Scholar] [CrossRef]
- Kerem, L.; Lawson, E. The Effects of Oxytocin on Appetite Regulation, Food Intake and Metabolism in Humans. Int. J. Mol. Sci. 2021, 22, 7737. [Google Scholar] [CrossRef]
- Pescini, S.; Schaebs, F.S.; Gaugg, A.; Meinert, A.; Deschner, T.; Range, F. The Role of Oxytocin in the Dog-Owner Relationship. Animals 2019, 9, 792. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.A.; Portillo, A.; Bennett, N.E.; Gray, P.B. Exploring women’s oxytocin responses to interactions with their pet cats. PeerJ 2021, 9, e12393. [Google Scholar] [CrossRef]
- Zhang, G.; Cai, D. Circadian intervention of obesity development via resting-stage feeding manipulation or oxytocin treatment. Am. J. Physiol. Endocrinol. Metab. 2011, 301, E1004–E1012. [Google Scholar] [CrossRef]
- Ozer, O.F.; Kacar, O.; Demirci, O.; Eren, Y.S.; Bilsel, A.S. Plasma concentrations and correlations of natriuretic peptides and ox-ytocin during labor and early postpartum period. Acta Endocrinol. 2017, 13, 65–71. [Google Scholar]
- Melis, M.R.; Argiolas, A. Oxytocin, Erectile Function and Sexual Behavior: Last Discoveries and Possible Advances. Int. J. Mol. Sci. 2021, 22, 10376. [Google Scholar] [CrossRef]
- Churchland, P.S.; Winkielman, P. Modulating social behavior with oxytocin: How does it work? What does it mean? Horm. Behav. 2012, 61, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Ochedalski, T.; Subburaju, S.; Wynn, P.C.; Aguilera, G. Interaction between oestrogen and oxytocin on hypothalamic-pituitary-adrenal axis activity. J. Neuroendocrinol. 2007, 19, 189–197. [Google Scholar] [CrossRef]
- Gorbulev, V.; Buchner, H.; Akhundova, A.; Fahrenholz, F. Molecular cloning and functional characterization of V2 [8-lysine] vasopressin and oxytocin receptors from a pig kidney cell line. JBIC J. Biol. Inorg. Chem. 1993, 215, 1–7. [Google Scholar] [CrossRef]
- Rozen, F.; Russo, C.; Banville, D.; Zingg, H. Structure, characterization and expression of the rat oxytocin receptor gene. Proc. Nat. Acad. Sci. USA 1995, 92, 200–204. [Google Scholar] [CrossRef] [Green Version]
- Riley, P.R.; Flint, A.P.F.; Abayasekara, E.D.R.; Stewart, H.J. Structure and expression of an ovine endometrial oxytocin receptor cDNA. J. Mol. Endocrinol. 1995, 15, 195–202. [Google Scholar] [CrossRef]
- Bathgate, R.; Rust, W.; Balvers, M.; Hartung, S.; Morley, S.; Ivell, R. Structure and Expression of the Bovine Oxytocin Receptor Gene. DNA Cell Biol. 1995, 14, 1037–1048. [Google Scholar] [CrossRef]
- Kubota, Y.; Kimura, T.; Hashimoto, K.; Tokugawa, Y.; Nobunaga, K.; Azuma, C.; Saji, F.; Murata, Y. Structure and expression of the mouse oxytocin receptor gene. Mol. Cell. Endocrinol. 1996, 124, 25–32. [Google Scholar] [CrossRef]
- Tribollet, E.; Dubois-Dauphin, M.; Dreifuss, J.J.; Barberis, C.; Jard, S. Oxytocin Receptors in the Central Nervous System. Ann. N. Y. Acad. Sci. 1992, 652, 29–38. [Google Scholar] [CrossRef]
- Cardoso, C.; Ellenbogen, M.A.; Serravalle, L.; Linnen, A.M. Stress-induced negative mood moderates the relation between ox-ytocin administration and trust: Evidence for the tend-and-befriend response to stress? Psychoneuroendocrinology 2013, 38, 2800–2804. [Google Scholar] [CrossRef] [PubMed]
- Bakos, J.; Srancikova, A.; Havranek, T.; Bacova, Z. Molecular Mechanisms of Oxytocin Signaling at the Synaptic Connection. Neural Plast. 2018, 2018, 4864107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, T.; Tanizawa, O.; Mori, K.; Brownstein, M.J.; Okayama, H. Structure and expression of a human oxytocin receptor. Nature 1992, 356, 526–529. [Google Scholar] [CrossRef] [PubMed]
- Saphire-Bernstein, S.; Way, B.M.; Kim, H.S.; Sherman, D.K.; Taylor, S.E. Oxytocin receptor gene (OXTR) is related to psychological resources. Proc. Natl. Acad. Sci. USA 2011, 108, 15118–15122. [Google Scholar] [CrossRef] [Green Version]
- Lollivier, V.; Marnet, P.-G.; Delpal, S.; Rainteau, D.; Achard, C.; Rabot, A.; Ollivier-Bousquet, M. Oxytocin stimulates secretory processes in lactating rabbit mammary epithelial cells. J. Physiol. 2005, 570, 125–140. [Google Scholar] [CrossRef]
- Bharadwaj, V.N.; Meyerowitz, J.; Zou, B.; Klukinov, M.; Yan, N.; Sharma, K.; Clark, D.J.; Xie, X.; Yeomans, D.C. Impact of Magnesium on Oxytocin Receptor Function. Pharmaceutics 2022, 14, 1105. [Google Scholar] [CrossRef]
- Gimpl, G.; Wiegand, V.; Burger, K.; Fahrenholz, F. Cholesterol and steroid hormones: Modulators of oxytocin receptor function. Prog. Brain Res. 2002, 139, 43–55. [Google Scholar] [CrossRef]
- Tost, H.; Kolochana, B.; Meyer-Lindenberg, A. A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proc. Natl. Acad. Sci. USA 2010, 107, 13936–13941. [Google Scholar] [CrossRef] [Green Version]
- Womersley, J.S.; Hemmings, S.M.J.; Ziegler, C.; Gutridge, A.; Ahmed-Leitao, F.; Rosenstein, D.; Domschke, K.; Seedat, S. Childhood emotional neglect and oxytocin receptor variants: Association with limbic brain volumes. World J. Biol. Psychiatry 2019, 21, 513–528. [Google Scholar] [CrossRef]
- Burmester, V.; Nicholls, D.; Buckle, A.; Stanojevic, B.; Crous-Bou, M. Review of eating disorders and oxytocin receptor polymorphisms. J. Eat Disord. 2021, 9, 85. [Google Scholar] [CrossRef]
- Chen, F.S.; Kumsta, R.; von Dawans, B.; Monakhov, M.; Ebstein, R.P.; Heinrichs, M. Common oxytocin receptor gene (OXTR) polymorphism and social support interact to reduce stress in humans. Proc. Natl. Acad. Sci. USA 2011, 108, 19937–19942. [Google Scholar] [CrossRef] [Green Version]
- Tribollet, E.; Barberis, C. Vasopressin and Oxytocin Receptors in the Central Nervous System. Crit. Rev. Neurobiol. 1996, 10, 119–154. [Google Scholar] [CrossRef]
- Bale, T.; Dorsa, D.; Johnston, C. Oxytocin receptor mRNA expression in the ventromedial hypothalamus during the estrous cycle. J. Neurosci. 1995, 15, 5058–5064. [Google Scholar] [CrossRef]
- Insel, T.R.; Shapiro, E.L. Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proc. Natl. Acad. Sci. USA 1992, 89, 5981–5985. [Google Scholar] [CrossRef] [Green Version]
- Vell, R.; Bathgate, R.A.; Walther, N.; Kimura, T. The molecular basis of oxytocin and oxytocin receptor gene expression in reproductive tissues. Adv. Exp. Med. Biol. 1998, 449, 297–306. [Google Scholar]
- Kavaliers, M.; Matta, R.; Choleris, E. Mate-choice copying, social information processing, and the roles of oxytocin. Neurosci. Biobehav. Rev. 2017, 72, 232–242. [Google Scholar] [CrossRef]
- Flint, A.P. Interferon, the oxytocin receptor and the maternal recognition of pregnancy in ruminants and non-ruminants: A comparative approach. Reprod. Fertil. Dev. 1995, 7, 313–318. [Google Scholar] [CrossRef]
- Takayanagi, Y.; Onaka, T. Roles of Oxytocin in Stress Responses, Allostasis and Resilience. Int. J. Mol. Sci. 2021, 23, 150. [Google Scholar] [CrossRef]
- Sippel, L.M.; Allington, C.E.; Pietrzak, R.H.; Harpaz-Rotem, I.; Mayes, L.C.; Olff, M. Oxytocin and Stress-related Disorders: Neu-robiological Mechanisms and Treatment Opportunities. Chronic Stress 2017, 1, 2470547016687996. [Google Scholar] [CrossRef]
- Qi, J.; Han, W.Y.; Yang, J.Y. Oxytocin regulates changes of extracellular glutamate and GABA levels induced by metamphetamine in the mouse brain. Addict. Biol. 2012, 17, 758–769. [Google Scholar] [CrossRef]
- Bosch, O.; Sartori, S.B.; Singewald, N.; Neumann, I.D. Extracellular amino acid levels in the paraventricular nucleus and the central amygdala in high- and low-anxiety dams rats during maternal aggression: Regulation by oxytocin. Stress 2007, 10, 261–270. [Google Scholar] [CrossRef]
- Heinrichs, M.; Meinlschmidt, G.; Wippich, W.; Ehlert, U.; Hellhammer, D.H. Selective amnesic effects of oxytocin on human memory. Physiol. Behav. 2004, 83, 31–38. [Google Scholar] [CrossRef]
- Peris, J.; Fadyen, K.; Smith, J.A. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets. J. Comp. Neurol. 2017, 525, 1094–1108. [Google Scholar] [CrossRef]
- Hökfelt, T. Neuropeptides in perspective: The last ten years. Neuron 1991, 7, 867–879. [Google Scholar] [CrossRef]
- Mairesse, J.; Gatta, E.; Reynaert, M.-L.; Marrocco, J.; Morley-Fletcher, S.; Soichot, M.; Deruyter, L.; Van Camp, G.; Bouwalerh, H.; Fagioli, F.; et al. Activation of presynaptic oxytocin receptors enhances glutamate release in the ventral hippocampus of prenatally restraint stressed rats. Psychoneuroendocrinology 2015, 62, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs, M.; Baumgartner, T.; Kirschbaum, C.; Ehlert, U. Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol. Psychiatry 2003, 54, 1389–1398. [Google Scholar] [CrossRef]
- Yoshida, M.; Takayanagi, Y.; Inoue, K.; Kimura, T.; Young, L.J.; Onaka, T.; Nishimori, K. Evidence That Oxytocin Exerts Anxiolytic Effects via Oxytocin Receptor Expressed in Serotonergic Neurons in Mice. J. Neurosci. 2009, 29, 2259–2271. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.E.; Greenberg, J.S.; Seltzer, M.M. Social Support and Well-being at Mid-Life Among Mothers of Adolescents and Adults with Autism Spectrum Disorders. J. Autism Dev. Disord. 2011, 42, 1818–1826. [Google Scholar] [CrossRef]
- Ditzen, B.; Schaer, M.; Gabriel, B.; Bodenmann, G.; Ehlert, U.; Heinrichs, M. Intranasal Oxytocin Increases Positive Communication and Reduces Cortisol Levels During Couple Conflict. Biol. Psychiatry 2009, 65, 728–731. [Google Scholar] [CrossRef]
- Mottolese, R.; Redouté, J.; Costes, N.; Le Bars, D.; Sirigu, A. Switching brain serotonin with oxytocin. Proc. Natl. Acad. Sci. USA 2014, 111, 8637–8642. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, H.; Riis, M.; Knigge, U.; Kjaer, A.; Warberg, J.; Kjaer, A. Serotonin Receptors Involved in Vasopressin and Oxytocin Secretion. J. Neuroendocr. 2003, 15, 242–249. [Google Scholar] [CrossRef]
- Marazziti, D.; Baroni, S.; Giannaccini, G.; Betti, L.; Massimetti, G.; Carmassi, C.; Catena-Dell’Osso, M. A link between oxytocin and serotonin in humans: Supporting evidence from peripheral markers. Eur. Neuropsychopharmacol. 2012, 22, 578–583. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K.; Björkstrand, E.; Hillegaart, V.; Ahlenius, S. Oxytocin as a possible mediator of SSRI-induced antidepressant effects. Psychopharmacology 1999, 142, 95–101. [Google Scholar] [CrossRef]
- Javed, A.; Kamradt, M.C.; Van de Kar, L.D.; Gray, T.S. D-Fenfluramine induces serotonin-mediated Fos expression in cortico-tropin-releasing factor and oxytocin neurons of the hypothalamus, and serotonin-independent Fos expression in enkephalin and neurotensin neurons of the amygdala. Neuroscience 1999, 90, 851–858. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K.; Hillegaart, V.; Alster, P.; Ahlenius, S. Effects of 5-HT agonists, selective for different receptor subtypes, on oxytocin, CCK, gastrin and somatostatin plasma levels in the rat. Neuropharmacology 1996, 35, 1635–1640. [Google Scholar] [CrossRef]
- Moos, F.; Richard, P. Serotonergic Control of Oxytocin Release during Suckling in the Rat: Opposite Effects in Conscious and Anesthetized Rats. Neuroendocrinology 1983, 36, 300–306. [Google Scholar] [CrossRef]
- Bagdy, G.; Kalogeras, K.T. Stimulation of 5-HT1A and 5-HT2/5-HT1C receptors induce oxytocin release in the male rat. Brain Res. 1993, 611, 330–332. [Google Scholar]
- Dolen, G.; Darvishzadeh, A.; Huang, K.W.; Malenka, R.C. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 2013, 501, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Lefevre, A.; Mottolese, R.; Redouté, J.; Costes, N.; Le Bars, D.; Geoffray, M.-M.; Leboyer, M.; Sirigu, A. Oxytocin Fails to Recruit Serotonergic Neurotransmission in the Autistic Brain. Cereb. Cortex 2017, 28, 4169–4178. [Google Scholar] [CrossRef]
- Madden, A.M.; Zup, S.L. Effects of developmental hyperserotonemia on juvenile play behavior, oxytocin and serotonin re-ceptor expression in the hypothalamus are age and sex dependent. Physiol. Behav. 2014, 128, 260–269. [Google Scholar] [CrossRef]
- Edwards, K.A.; Madden, A.M.; Zup, S.L. Serotonin receptor regulation as a potential mechanism for sexually dimorphic oxytocin dysregulation in a model of Autism. Brain Res. 2018, 1701, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; You, Y.; Gupta, V.B.; Klistorner, A.; Graham, S.L. TrkB Receptor Signalling: Implications in Neurodegenerative, Psychiatric and Proliferative Disorders. Int. J. Mol. Sci. 2013, 14, 10122–10142. [Google Scholar] [CrossRef] [PubMed]
- Suliman, S.; Hemmings, S.M.; Seedat, S. Brain-Derived Neurotrophic Factor (BDNF) protein levels in anxiety disorders: Sys-tematic review and meta-regression analysis. Front. Integr. Neurosci. 2013, 7, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miuli, A.; D’Andrea, G.; Pettorruso, M.; Mancusi, G.; Mosca, A.; Di Carlo, F.; Martinotti, G.; di Giannantonio, M. From a cycle to a period: The potential role of BDNF as plasticity and phase-specific biomarker in cocaine use disorder. Curr. Neuropharmacol. 2022, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- Edinoff, A.N.; Thompson, E.; Merriman, C.E.; Alvarez, M.R.; Alpaugh, E.S.; Cornett, E.M.; Murnane, K.S.; Kozinn, R.L.; Shah-Bruce, M.; Kaye, A.M.; et al. Oxytocin, a Novel Treatment for Methamphetamine Use Disorder. Neurol. Int. 2022, 14, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Martinotti, G.; Sepede, G.; Brunetti, M.; Ricci, V.; Gambi, F.; Chillemi, E.; Vellante, F.; Signorelli, M.; Pettorruso, M.; De Risio, L.; et al. BDNF concentration and impulsiveness level in post-traumatic stress disorder. Psychiatry Res. 2015, 229, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.-Y.; Shahrokh, D.; Hellstrom, I.C.; Wen, X.; Diorio, J.; Breuillaud, L.; Caldji, C.; Meaney, M.J. Brain-Derived Neurotrophic Factor in the Nucleus Accumbens Mediates Individual Differences in Behavioral Responses to a Natural, Social Reward. Mol. Neurobiol. 2019, 57, 290–301. [Google Scholar] [CrossRef]
- Maynard, K.R.; Hobbs, J.W.; Phan, B.N.; Gupta, A.; Rajpurohit, S.; Williams, C.; Rajpurohit, A.; Shin, J.H.; Jaffe, A.E.; Martinowich, K. BDNF-TrkB signaling in oxytocin neurons contributes to maternal behavior. eLife 2018, 7, e33676. [Google Scholar] [CrossRef]
- Opar, A. Search for potential autism treatments turns to ‘trust hormone’. Nat. Med. 2008, 14, 353. [Google Scholar] [CrossRef]
- Young, L. Being human: Love: Neuroscience reveals all. Nature 2009, 457, 148. [Google Scholar] [CrossRef]
- Gordon, I.; Wyk, B.C.V.; Bennett, R.H.; Cordeaux, C.; Lucas, M.V.; Eilbott, J.A.; Zagoory-Sharon, O.; Leckman, J.F.; Feldman, R.; Pelphrey, K.A. Oxytocin enhances brain function in children with autism. Proc. Natl. Acad. Sci. USA 2013, 110, 20953–20958. [Google Scholar] [CrossRef] [Green Version]
- Gordon, I.; Jack, A.; Pretzsch, C.; Wyk, B.V.; Leckman, J.F.; Feldman, R.; Pelphrey, K.A. Intranasal Oxytocin Enhances Connectivity in the Neural Circuitry Supporting Social Motivation and Social Perception in Children with Autism. Sci. Rep. 2016, 6, 35054. [Google Scholar] [CrossRef] [Green Version]
- Kovács, K.L.; Sarnyai, Z.; Szabó, G. Oxytocin and Addiction: A Review. Psychoneuroendocrinology 1998, 23, 945–962. [Google Scholar] [CrossRef]
- Anagnostou, E.; Soorya, L.; Chaplin, W.; Bartz, A.J.; Halpern, D.; Wasserman, S.; Wang, A.T.; Pepa, L.; Tanel, N.; Kushki, A.; et al. Intranasal oxytocin versus placebo in the treatment of adults with autism spectrum disorders: A randomized controlled trial. Mol. Autism 2012, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Hung, L.W.; Neuner, S.; Polepalli, J.S.; Beier, K.T.; Wright, M.; Walsh, J.J.; Lewis, E.M.; Luo, L.; Deisseroth, K.; Dölen, G.; et al. Gating of social reward by oxytocin in the ventral tegmental area. Science 2017, 357, 1406–1411. [Google Scholar] [CrossRef] [Green Version]
- Melis, M.R.; Melis, T.; Cocco, C.; Succu, S.; Sanna, F.; Pillolla, G.; Boi, A.; Ferri, G.-L.; Argiolas, A. Oxytocin injected into the ventral tegmental area induces penile erection and increases extracellular dopamine in the nucleus accumbens and paraventricular nucleus of the hypothalamus of male rats. Eur. J. Neurosci. 2007, 26, 1026–1035. [Google Scholar] [CrossRef]
- Preti, A.; Melis, M.; Siddi, S.; Vellante, M.; Doneddu, G.; Fadda, R. Oxytocin and Autism: A Systematic Review of Randomized Controlled Trials. J. Child Adolesc. Psychopharmacol. 2014, 24, 54–68. [Google Scholar] [CrossRef]
- Zhou, M.S.; Nasir, M.; Farhat, L.C.; Kook, M.; Artukoglu, B.B.; Bloch, M.H. Meta-analysis: Pharmacologic Treatment of Restricted and Repetitive Behaviors in Autism Spectrum Disorders. J. Am. Acad. Child Adolesc. Psychiatry 2021, 60, 35–45. [Google Scholar] [CrossRef]
- John, S.; Jaeggi, A.V. Oxytocin levels tend to be lower in autistic children: A meta-analysis of 31 studies. Autism 2021, 25, 2152–2161. [Google Scholar] [CrossRef]
- Rubin, L.H.; Carter, C.S.; Drogos, L.; Pournajafi-Nazarloo, H.; Sweeney, J.A.; Maki, P.M. Peripheral oxytocin is associated with reduced symptom severity in schizophrenia. Schizophr. Res. 2010, 124, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Rubin, L.H.; Carter, C.S.; Bishop, J.R. Reduced levels of vasopressin and reduced behavioral modulation of oxytocin in psychotic disorders. Schizophr. Bull. 2014, 40, 1374–1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasayama, D.; Hattori, K.; Teraishi, T.; Hori, H.; Ota, M.; Yoshida, S.; Arima, K.; Higuchi, T.; Amano, N.; Kunugi, H. Negative correlation between cerebrospinal fluid oxytocin levels and negative symptoms of male patients with schizophrenia. Schizophr. Res. 2012, 139, 201–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strauss, G.P.; Keller, W.R.; Koenig, J.; Gold, J.M.; Ossenfort, K.L.; Buchanan, R.W. Plasma oxytocin levels predict olfactory identification and negative symptoms in individuals with schizophrenia. Schizophr. Res. 2015, 162, 57–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kéri, S.; Kiss, I.; Kelemen, O. Sharing secrets: Oxytocin and trust in schizophrenia. Soc. Neurosci. 2009, 4, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.C.; Tas, C.; Kuzu, D. Social approach and avoidance behaviour for negative emotions is modulated by endogenous oxytocin and paranoia in schizophrenia. Psychiatry Res. 2014, 219, 436–442. [Google Scholar] [CrossRef]
- Strauss, G.P.; Keller, W.R.; Koenig, J.I. Endogenous oxytocin levels are associated with the perception of emotion in dynamic body expressions in schizophrenia. Schizophr. Res. 2015, 162, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Strauss, G.P.; Keller, W.R.; Koenig, J.I. Plasma oxytocin levels predict social cue recognition in individuals with schizophrenia. Schizophr. Res. 2015, 162, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Frost, K.; Keller, W.; Buchanan, R. C-14Plasma Oxytocin Levels are Associated with Impaired Social Cognition and Neurocognition in Schizophrenia. Arch. Clin. Neuropsychol. 2014, 29, 577–578. [Google Scholar] [CrossRef] [Green Version]
- Goh, K.; Chen, C.-H.; Lane, H.-Y. Oxytocin in Schizophrenia: Pathophysiology and Implications for Future Treatment. Int. J. Mol. Sci. 2021, 22, 2146. [Google Scholar] [CrossRef]
- Jawad, M.Y.; Ahmad, B.; Hashmi, A.M. Role of Oxytocin in the Pathogenesis and Modulation of Borderline Personality Dis-order: A Review. Cureus 2021, 13, e13190. [Google Scholar]
- Bertsch, K.; Herpertz, S.C. Oxytocin and Borderline Personality Disorder. Curr. Top. Behav. Neurosci. 2018, 35, 499–514. [Google Scholar]
- Gedeon, T.; Parry, J.; Völlm, B. The Role of Oxytocin in Antisocial Personality Disorders: A Systematic Review of the Literature. Front. Psychiatry 2019, 10, 76. [Google Scholar] [CrossRef] [Green Version]
- Cochran, D.M.; Fallon, D.; Hill, M.; Frazier, J.A. The role of oxytocin in psychiatric disorders: A review of biological and ther-apeutic research findings. Harv. Rev. Psychiatry 2013, 21, 219–247. [Google Scholar] [CrossRef]
- Jobst, A.; Krause, D.; Maiwald, C.; Härtl, K.; Myint, A.-M.; Kästner, R.; Obermeier, M.; Padberg, F.; Brücklmeier, B.; Weidinger, E.; et al. Oxytocin course over pregnancy and postpartum period and the association with postpartum depressive symptoms. Arch. Women’s Ment. Health 2016, 19, 571–579. [Google Scholar] [CrossRef]
- Skrundz, M.; Bolten, M.; Nast, I.; Hellhammer, D.H.; Meinlschmidt, G. Plasma oxytocin concentration during pregnancy is as-sociated with development of postpartum depression. Neuropsychopharmacology 2011, 36, 1886–1893. [Google Scholar] [CrossRef] [Green Version]
- Cardaillac, C.; Rua, C.; Simon, E.G.; El-Hage, W. Oxytocin and postpartum depression. J. Gynecol. Obstet. Biol. Reprod. 2016, 45, 786–795. [Google Scholar] [CrossRef]
- Hamdan, A.; Tamim, H. The Relationship between Postpartum Depression and Breastfeeding. Int. J. Psychiatry Med. 2012, 43, 243–259. [Google Scholar] [CrossRef]
- Cox, E.; Stuebe, A.; Pearson, B.; Grewen, K.; Rubinow, D.; Meltzer-Brody, S. Oxytocin and HPA stress axis reactivity in postpartum women. Psychoneuroendocrinology 2015, 55, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Linkowski, P.; Geenen, V.; Kerkhofs, M.; Mendlewicz, J.; Legros, J.J. Cerebrospinal fluid neurophysins in affective illness and in schizophrenia. Eur. Arch. Psychiatry Neurol. Sci. 1984, 234, 162–165. [Google Scholar] [CrossRef]
- Pitts, A.F.; Samuelson, S.D.; Meller, W.H.; Bissette, G.; Nemeroff, C.B.; Kathol, R.G. Cerebrospinal fluid corticotropin-releasing hormone, vasopressin, and oxytocin concentrations in treated patients with major depression and controls. Biol. Psychiatry 1995, 38, 330–335. [Google Scholar] [CrossRef]
- Van Londen, L.; Goekoop, J.G.; van Kempen, G.M. Plasma levels of arginine vasopressin elevated in patients with major depression. Neuropsychopharmacology 1997, 17, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Frasch, A.; Zetzsche, T.; Steiger, A.; Jirikowski, G.F. Reduction of plasma oxytocin levels in patients suffering from major de-pression. Adv. Exp. Med. Biol. 1995, 395, 257–258. [Google Scholar]
- Bell, C.J.; Nicholson, H.; Mulder, R.T.; Luty, S.E.; Joyce, P.R. Plasma oxytocin levels in depression and their correlation with the temperament dimension of reward dependence. J. Psychopharmacol. 2006, 20, 656–660. [Google Scholar] [CrossRef]
- Parker, K.J.; Kenna, H.A.; Zeitzer, J.M.; Keller, J.; Blasey, C.M.; Amico, J.A.; Schatzberg, A.F. Preliminary evidence that plasma oxytocin levels are elevated in major depression. Psychiatry Res. 2010, 178, 359–362. [Google Scholar] [CrossRef] [Green Version]
- Ozsoy, S.; Esel, E.; Kula, M. Serum oxytocin levels in patients with depression and the effects of gender and antidepressant treatment. Psychiatry Res. 2009, 169, 249–252. [Google Scholar] [CrossRef]
- Kelley, A.E.; Berridge, K. The Neuroscience of Natural Rewards: Relevance to Addictive Drugs. J. Neurosci. 2002, 22, 3306–3311. [Google Scholar] [CrossRef] [Green Version]
- Ciobica, A.; Balmus, I.M.; Padurariu, M. Is Oxytocin Relevant for the Affective Disorders? Acta Endocrinol. 2016, 12, 65–71. [Google Scholar] [CrossRef]
- Matsuzaki, M.; Matsushita, H.; Tomizawa, K.; Matsui, H. Oxytocin: A therapeutic target for mental disorders. J. Physiol. Sci. 2012, 62, 441–444. [Google Scholar] [CrossRef]
- Chaviaras, S.; Mak, P.; Ralph, D.; Krishnan, L.; Broadbear, J.H. Assessing the antidepressant-like effects of carbetocin, an oxytocin agonist, using a modification of the forced swimming test. Psychopharmacology 2010, 210, 35–43. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K.; Ahlenius, S.; Hillegaart, V.; Alster, P. High doses of oxytocin cause sedation and low doses cause an an-xiolytic-like effect in male rats. Pharm. Biochem. Behav. 1994, 49, 101–106. [Google Scholar] [CrossRef]
- Perello, M.; Raingo, J. Leptin Activates Oxytocin Neurons of the Hypothalamic Paraventricular Nucleus in Both Control and Diet-Induced Obese Rodents. PLoS ONE 2013, 8, e59625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, B.R.; Drutarosky, M.D.; Stricker, E.M.; Verbalis, J.G. Brain Oxytocin Receptor Antagonism Blunts the Effects of Anorexigenic Treatments in Rats: Evidence for Central Oxytocin Inhibition of Food Intake. Endocrinology 1991, 129, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Lawson, E.A.; Holsen, L.M.; Santin, M. Postprandial oxytocin secretion is associated with severity of anxiety and de-pressive symptoms in anorexia nervosa. J. Clin. Psychiatr. 2013, 74, 14838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.-R.; Kim, J.-H.; Kim, C.-H.; Shin, J.G.; Treasure, J. Association between the Oxytocin Receptor Gene Polymorphism (rs53576) and Bulimia Nervosa. Eur. Eat. Disord. Rev. 2015, 23, 171–178. [Google Scholar] [CrossRef]
- Acevedo, S.F.; Valencia, C.; Lutter, M.; McAdams, C.J. Severity of eating disorder symptoms related to oxytocin receptor polymorphisms in anorexia nervosa. Psychiatry Res. 2015, 228, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Thakurta, R.G.; Singh, O.P.; Bhattacharya, A.; Mallick, A.K.; Ray, P.; Sen, S.; Das, R. Nature of Sexual Dysfunctions in Major Depressive Disorder and its Impact on Quality of Life. Indian J. Psychol. Med. 2012, 34, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Gil, M.; Bhatt, R.; Picotte, K.B.; Hull, E.M. Sexual experience increases oxytocin receptor gene expression and protein in the medial preoptic area of the male rat. Psychoneuroendocrinology 2013, 38, 1688–1697. [Google Scholar] [CrossRef] [Green Version]
- Teng, R.-B.; Zhang, X.-H. Oxytocin and male sexual function. Zhonghua Nan Ke Xue 2011, 17, 558–561. [Google Scholar]
- Woodman, C.L.; Breen, K.; Noyes, R.; Moss, C.; Fagerholm, R.; Yagla, S.J.; Summers, R. The Relationship Between Irritable Bowel Syndrome and Psychiatric Illness: A Family Study. J. Psychosom. Res. 1998, 39, 45–54. [Google Scholar] [CrossRef]
- Lee, C.; Doo, E.; Choi, J.M. Brain-Gut Axis Research Group of Korean Society of Neurogastroenterology and Motility. The Increased Level of Depression and Anxiety in Irritable Bowel Syndrome Patients Compared with Healthy Controls: Systematic Review and Meta-analysis. J. Neurogastroenterol. Motil. 2017, 23, 349–362. [Google Scholar] [CrossRef] [Green Version]
- Hashmonai, M.; Torem, S.; Argov, S.; Barzilai, A.; Schramek, A. Prolonged post-vagotomy gastric atony treated by oxytocin. Br. J. Surg. 1979, 66, 550–551. [Google Scholar] [CrossRef]
- Welch, M.G.; Margolis, K.G.; Li, Z.; Gershon, M.D. Oxytocin regulates gastrointestinal motility, inflammation, macromolecular permeability, and mucosal maintenance in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 307, G848–G862. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florea, T.; Palimariciuc, M.; Cristofor, A.C.; Dobrin, I.; Chiriță, R.; Bîrsan, M.; Dobrin, R.P.; Pădurariu, M. Oxytocin: Narrative Expert Review of Current Perspectives on the Relationship with Other Neurotransmitters and the Impact on the Main Psychiatric Disorders. Medicina 2022, 58, 923. https://doi.org/10.3390/medicina58070923
Florea T, Palimariciuc M, Cristofor AC, Dobrin I, Chiriță R, Bîrsan M, Dobrin RP, Pădurariu M. Oxytocin: Narrative Expert Review of Current Perspectives on the Relationship with Other Neurotransmitters and the Impact on the Main Psychiatric Disorders. Medicina. 2022; 58(7):923. https://doi.org/10.3390/medicina58070923
Chicago/Turabian StyleFlorea, Tudor, Matei Palimariciuc, Ana Caterina Cristofor, Irina Dobrin, Roxana Chiriță, Magdalena Bîrsan, Romeo Petru Dobrin, and Manuela Pădurariu. 2022. "Oxytocin: Narrative Expert Review of Current Perspectives on the Relationship with Other Neurotransmitters and the Impact on the Main Psychiatric Disorders" Medicina 58, no. 7: 923. https://doi.org/10.3390/medicina58070923
APA StyleFlorea, T., Palimariciuc, M., Cristofor, A. C., Dobrin, I., Chiriță, R., Bîrsan, M., Dobrin, R. P., & Pădurariu, M. (2022). Oxytocin: Narrative Expert Review of Current Perspectives on the Relationship with Other Neurotransmitters and the Impact on the Main Psychiatric Disorders. Medicina, 58(7), 923. https://doi.org/10.3390/medicina58070923